SimTech Publications

Publications of EXC 2075 by project network

Publications EXC 2075

  1. 2024 (submitted)

    1. W. Nowak, T. Brünnette, M. Schalkers, and M. Möller, “Overdispersion in gate tomography: Experiments and continuous, two-scale random walk model on the Bloch sphere,” ACM Transactions on Quantum Computing.
    2. F. Ejaz, N. Wildt, T. Wöhling, and W. Nowak, “Estimating total groundwater storage and its associated uncertainty through spatiotemporal Kriging of groundwater-level data,” Journal of Hydrology.
  2. 2024

    1. J. Meißner, D. Göddeke, and M. Herschel, Knowledge-Infused Optimization for Parameter Selection in Numerical Simulations. in Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). 2024.
    2. A. Beyer, V. Wagner, V. Klingel, M. Heymann, and N. Radde, Extending a synthetic Notch morphogen circuit model to construct 2D cell structures. in IFAC-PapersOnLine. Elsevier, 2024.
    3. P. Conti et al., “VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification.” 2024.
    4. J. Pelzer, “Models and Prepared Datasets for the First Stage : based on the Single Heat Pump Simulation Datasets.” 2024. doi: 10.18419/darus-3690.
    5. R. R. Herkert, “Replication Code for: Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data.” 2024. doi: 10.18419/darus-4227.
    6. T. Munz-Körner and D. Weiskopf, “Visual Analysis System to Explore the Visual Quality of Multidimensional Time Series Projections.” DaRUS, 2024. doi: 10.18419/DARUS-3553.
    7. J. Pelzer, “Models and Prepared Datasets for the Second Stage : based on the Two Heat Pumps Simulation Datasets.” 2024. doi: 10.18419/darus-3689.
    8. P. Stärk and A. Schlaich, “Supporting Information: Chemical Potential Differences in Nanoscopic Teflon/Kapton Capillaries.” 2024. doi: 10.18419/darus-3149.
    9. F. Uhlig, S. Tovey, and C. Holm, “Emergence of Accurate Atomic Energies from Machine Learned Noble Gas Potentials.” 2024.
    10. S. Tovey, C. Holm, and M. Spannowsky, “Generating Reservoir State Descriptions with Random Matrices.” Apr. 2024. doi: arXiv:2404.07278.
    11. S. Tovey, C. Lohrmann, and C. Holm, “Emergence of Chemotactic Strategies with Multi-Agent Reinforcement Learning.” 2024. doi: https://doi.org/10.48550/arXiv.2404.01999.
    12. S. Tovey et al., “SwarmRL: Building the Future of Smart Active Systems.” Apr. 2024. doi: https://doi.org/10.48550/arXiv.2404.16388.
    13. J. Kneifl, J. Fehr, S. L. Brunton, and J. N. Kutz, “Multi-Hierarchical Surrogate Learning for Structural Dynamical Crash Simulations Using Graph Convolutional Neural Networks.” 2024.
    14. F. Bechler, “Simulation Results from the Descriptive Graph-based Model of two Example Driving Scenarios.” 2024. doi: 10.18419/darus-4116.
    15. M. Alvarez Chaves, H. Gupta, U. Ehret, and A. Guthke, “Replication Data for: On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data.” 2024. doi: 10.18419/darus-4087.
    16. P. L. Reiser, J. E. Aguilar, A. Guthke, and P.-C. Bürkner, “Replication Code for: Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference.” 2024. doi: 10.18419/darus-4093.
    17. J. Pelzer, “Raw Simulation Datasets for Extending Heat Plumes.” 2024. doi: 10.18419/darus-4133.
    18. C. Homs Pons and R. Lautenschlager, “Replication Data for: Coupled Simulations and Parameter Inversion for Neural System and Electrophysiological Muscle Models.” 2024. doi: 10.18419/darus-4031.
    19. L. Keim and H. Class, “Replication Code for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures.” 2024. doi: 10.18419/darus-4089.
    20. B. Röder, H. Ebel, and P. Eberhard, “Motion and Motor-Current Data of a Four-Bar Linkage.” 2024. doi: 10.18419/darus-4152.
    21. L. Keim and H. Class, “Replication Data for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures.” 2024. doi: 10.18419/darus-4143.
    22. S. Roy, F. Wang, and D. Gläser, “Harvester-Curator, a tool to elevate metadata provision in data and/or software repositories.” 2024. doi: 10.18419/darus-3785.
    23. T. Munz-Körner and D. Weiskopf, “Supplemental Material for ‘Exploring Visual Quality of Multidimensional Time Series Projections.’” DaRUS, 2024. doi: 10.18419/DARUS-3965.
    24. P. Rodegast, S. Maier, J. Kneifl, and J. Fehr, “On using Machine Learning Algorithms for Motorcycle Collision Detection.” 2024.
    25. R. R. Herkert, “Replication Code for: Error Analysis of Randomized Symplectic Model Order Reduction for Hamiltonian systems.” 2024. doi: 10.18419/darus-4185.
    26. J. M. Magiera, “Replication Data for: Constraint-aware neural networks for Riemann problems.” 2024. doi: 10.18419/darus-3869.
    27. H. Häring, D. Gramlich, C. Ebenbauer, and C. W. Scherer, “Trajectory Generation for the Unicycle Model Using Semidefinite Relaxations,” in accepted for publication, in accepted for publication. 2024.
    28. J. Elenter, L. F. O. Chamon, and A. Ribeiro, “Near-optimal solutions of constrained learning problems,” in International Conference on Learning Representations~(ICLR), in International Conference on Learning Representations~(ICLR). 2024.
    29. A. Penzkofer, L. Shi, and A. Bulling, “VSA4VQA: Scaling A Vector Symbolic Architecture To Visual Question Answering on Natural Images,” in Proc. 46th Annual Meeting of the Cognitive Science Society (CogSci), in Proc. 46th Annual Meeting of the Cognitive Science Society (CogSci). 2024.
    30. S. Scheurer and W. Nowak, “Neural Process Regression,” in geoENV2024 Book of Abstracts, in geoENV2024 Book of Abstracts. Chania, Crete, GR: Creative Commons Licence BY-NC-ND 4.0, Jun. 2024, pp. 155--156.
    31. X. Yu, B. Lee, and M. Sedlmair, “Design Space of Visual Feedforward And Corrective Feedback in XR-Based Motion Guidance Systems,” in Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI), in Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI). ACM, 2024, pp. 1--7. doi: https://doi.org/10.1145/3613904.3642143.
    32. M. Fleck, S. Darouich, N. Hansen, and J. Gross, “Transferable Anisotropic Mie Potential Force Field for Alkanediols,” The Journal of Physical Chemistry B, vol. 128, no. 19, Art. no. 19, May 2024, doi: 10.1021/acs.jpcb.4c00962.
    33. M. Pechlaner, W. F. van Gunsteren, L. J. Smith, B. Stankiewicz, L. N. Wirz, and N. Hansen, “Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach,” Journal of Chemical Information and Modeling, vol. 64, no. 12, Art. no. 12, Jun. 2024, doi: 10.1021/acs.jcim.4c00416.
    34. S. Weirich, D. Kusevic, P. Schnee, J. Reiter, J. Pleiss, and A. Jeltsch, “Discovery of NSD2 non-histone substrates and design of a super-substrate,” Communications Biology, vol. 7, no. 1, Art. no. 1, 2024, doi: 10.1038/s42003-024-06395-z.
    35. A. Schneider, T. B. Lystbæk, D. Markthaler, N. Hansen, and B. Hauer, “Biocatalytic stereocontrolled head-to-tail cyclizations of unbiased terpenes as a tool in chemoenzymatic synthesis,” Nature Communications, vol. 15, no. 1, Art. no. 1, Jun. 2024, doi: 10.1038/s41467-024-48993-9.
    36. A. Schlaich, J. O. Daldrop, B. Kowalik, M. Kanduč, E. Schneck, and R. R. Netz, “Water Structuring Induces Nonuniversal Hydration Repulsion between Polar Surfaces: Quantitative Comparison between Molecular Simulations, Theory, and Experiments,” Langmuir, vol. 40, no. 15, Art. no. 15, Apr. 2024, doi: 10.1021/acs.langmuir.3c03656.
    37. T. Dai et al., “Modeling and Experimental Validation of High‐Flow Fluid‐Driven Membrane Valves for Hyperactuated Soft Robots,” Advanced Intelligent Systems, May 2024, doi: 10.1002/aisy.202300864.
    38. M. Gao, P. Mossier, and C.-D. Munz, “Shock capturing for a high-order ALE discontinuous Galerkin method with applications to fluid flows in time-dependent domains,” Computers & fluids, vol. 269, p. 106124, Jan. 2024, doi: 10.1016/j.compfluid.2023.106124.
    39. A. Kharitenko and C. W. Scherer, “On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities,” IEEE Transactions on Automatic Control, 2024, doi: 10.1109/TAC.2024.3362859.
    40. S. Xiao and W. Nowak, “Failure probability estimation with failure samples: An extension of the two-stage Markov chain Monte Carlo simulation,” Mechanical Systems and Signal Processing, vol. 212, p. 111300, Feb. 2024, doi: https://doi.org/10.1016/j.ymssp.2024.111300.
    41. M. Seidel, M. Hertneck, P. Yu, S. Linsenmayer, D. V. Dimarogonas, and F. Allgöwer, “A Window-based Periodic Event-triggered Consensus Scheme for Multi-agent Systems,” IEEE Transactions on Control of Network Systems, vol. 11, no. 1, Art. no. 1, Mar. 2024, doi: 10.1109/tcns.2023.3285863.
    42. M. Rosenfelder, H. Ebel, and P. Eberhard, “Force-Based Organization and Control Scheme for the Non-Prehensile Cooperative Transportation of Objects,” Robotica, vol. 42, no. 2, Art. no. 2, 2024, doi: 10.1017/S0263574723001704.
    43. C. Lohrmann, C. Holm, and S. S. Datta, “Influence of bacterial swimming and hydrodynamics on infection by phages,” bioRxiv, Jan. 2024, doi: 10.1101/2024.01.15.575727.
    44. M. Millard, D. W. Franklin, and W. Herzog, “A three filament mechanistic model of musculotendon force and impedance,” eLife Computational and Systems Biologiy, 2024, doi: https://doi.org/10.7554/eLife.88344.3.
    45. T. Siebert, Ed., “Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound. Front. Bioeng. Biotechnol. 12:1388907.,” Frontiers in Bioengineering and Biotechnology, vol. 12, Jun. 2024, doi: 10.3389/fbioe.2024.1388907.
    46. J. Chen, W. Luo, H. Ebel, and P. Eberhard, “Optimization-Based Trajectory Planning for Transport Collaboration of Heterogeneous Systems,” at - Automatisierungstechnik, vol. 72, no. 2, Art. no. 2, 2024, doi: 10.1515/auto-2023-0078.
    47. A. S. Sahrmann, L. Vosse, T. Siebert, G. G. Handsfield, and O. Röhrle, “3D ultrasound-based determination of skeletal muscle fascicle orientations,” Biomechanics and Modeling in Mechanobiology, Mar. 2024, doi: 10.1007/s10237-024-01837-3.
    48. B. Bursik, R. Stierle, A. Schlaich, P. Rehner, and J. Gross, “Viscosities of inhomogeneous systems from generalized entropy scaling,” Physics of Fluids, vol. 36, no. 4, Art. no. 4, Apr. 2024, doi: 10.1063/5.0189902.
    49. J. Berberich, D. Fink, and C. Holm, “Robustness of quantum algorithms against coherent control errors,” Physical Review A, vol. 109, no. 1, Art. no. 1, Jan. 2024, doi: 10.1103/PhysRevA.109.012417.
    50. X. Xu, X. Zhang, A. Ruban, S. Schmauder, and B. T. Grabowski, “Accurate complex-stacking-fault Gibbs energy in Ni3Al at high temperatures,” Scripta materialia, vol. 242, p. 115934, 2024, doi: 10.1016/j.scriptamat.2023.115934.
    51. H. F. Carvalho, L. Mestrom, U. Hanefeld, and J. Pleiss, “Beyond the Chemical Step: The Role of Substrate Access in Acyltransferase from Mycobacterium smegmatis,” ACS Catal., vol. 14, pp. 10077--10088, Jun. 2024, doi: 10.1021/acscatal.4c00812.
    52. F. Neubauer, P. Bredl, M. Xu, K. Patel, J. Pleiss, and B. Uekermann, “MetaConfigurator: A User-Friendly Tool for Editing Structured Data Files,” Datenbank-Spektrum, vol. 24, pp. 161–169, 2024, doi: 10.1007/s13222-024-00472-7.
    53. J. Potyka and K. Schulte, “A volume of fluid method for three dimensional direct numerical simulations of immiscible droplet collisions,” International Journal of Multiphase Flow, vol. 170, p. 104654, Jan. 2024, doi: 10.1016/j.ijmultiphaseflow.2023.104654.
    54. E. Scherff, S. E. Schnell, T. Siebert, and S. D’Souza, “Reference measures of lower-limb joint range of motion, muscle strength, and selective voluntary motor control of typically developing children aged 5–17 years,” Journal of Children’s Orthopaedics, pp. 1–10, May 2024, doi: 10.1177/18632521241234768.
    55. M. Pechlaner, W. F. van Gunsteren, L. J. Smith, and N. Hansen, “Molecular structure refinement based on residual dipolar couplings using magnetic-field rotational sampling,” The Journal of Chemical Physics, vol. 161, no. 4, Art. no. 4, Jul. 2024, doi: 10.1063/5.0203153.
    56. T. J. Meijer, T. Holicki, S. J. A. M. van den Eijnden, C. W. Scherer, and W. P. M. H. Heemels, “The Non-Strict Projection Lemma,” IEEE Transactions on Automatic Control, pp. 1–8, 2024, doi: 10.1109/TAC.2024.3371374.
    57. H. Ebel, M. Rosenfelder, and P. Eberhard, “Cooperative Object Transportation with Differential-Drive Mobile Robots: Control and Experimentation,” Robotics and Autonomous Systems, vol. 173, p. 104612, 2024, doi: 10.1016/j.robot.2023.104612.
    58. S. Höpfl, H.-M. Tautenhahn, V. Wagner, and N. E. Radde, “Marginal Percentile Intervals in Bayesian Inference are Overconfident,” IFAC-PapersOnLine, 2024.
    59. J. Pleiss, “FAIR Data and Software: Improving Efficiency and Quality of Biocatalytic Science,” ACS Catal., vol. 14, no. 4, Art. no. 4, Feb. 2024, doi: 10.1021/acscatal.3c06337.
    60. P. Carlo Danesini, M. Heim, A. Tomalka, T. Siebert, and F. Ates, “Endomysium determines active and passive force production in muscle fibers,” Journal of Biomechanics, vol. 168, p. 112134, May 2024, doi: 10.1016/j.jbiomech.2024.112134.
    61. A. S. Sahrmann, L. Vosse, T. Siebert, G. G. Handsfield, and O. Röhrle, “Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound,” Frontiers in Bioengineering and Biotechnology, vol. 12, 2024, doi: 10.3389/fbioe.2024.1388907.
    62. B. Song and A. Iannelli, “The role of identification in data-driven policy iteration: A system theoretic study,” International Journal of Robust and Nonlinear Control, vol. n/a, no. n/a, Art. no. n/a, 2024, doi: https://doi.org/10.1002/rnc.7475.
    63. S. M. Seyedpour, M. Azhdari, L. Lambers, T. Ricken, and G. Rezazadeh, “One-dimensional thermomechanical bio-heating analysis of viscoelastic tissue to laser radiation shapes,” International Journal of Heat and Mass Transfer, vol. 218, p. 124747, 2024, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124747.
    64. J. Magiera and C. Rohde, “A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate,” Communications in  Applied Mathematics and  Computation, 2024, doi: 0.1007/s42967-023-00349-8.
    65. M. Fleck, J. Gross, and N. Hansen, “Multifidelity Gaussian Processes for Predicting Shear Viscosity over Wide Ranges of Liquid State Points Based on Molecular Dynamics Simulations,” Industrial & Engineering Chemistry Research, vol. 63, no. 8, Art. no. 8, 2024, doi: 10.1021/acs.iecr.3c03931.
    66. M. Hörl and C. Rohde, “Rigorous Derivation of Discrete Fracture Models for Darcy Flow in the Limit of Vanishing Aperture,” Networks and  Heterogeneous Media, vol. 19, no. 1, Art. no. 1, 2024, doi: 10.3934/nhm.2024006.
    67. M. Álvarez Chaves, H. V. Gupta, U. Ehret, and A. Guthke, “On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data,” Entropy, vol. 26, no. 5, Art. no. 5, 2024, doi: 10.3390/e26050387.
    68. T. Munz-Körner and D. Weiskopf, “Exploring visual quality of multidimensional time series projections,” Visual Informatics, 2024, doi: https://doi.org/10.1016/j.visinf.2024.04.004.
    69. F. Zills, M. R. Schäfer, S. Tovey, J. Kästner, and C. Holm, “Machine Learning-Driven Investigation of the Structure and Dynamics of the BMIM-BF₄ Room Temperature Ionic Liquid,” Faraday Discussions, 2024, doi: 10.1039/D4FD00025K.
    70. L. Grunenberg et al., “Probing Self-Diffusion of Guest Molecules in a Covalent Organic Framework: Simulation and Experiment,” ACS Nano, vol. 18, no. 25, Art. no. 25, Jun. 2024, doi: 10.1021/acsnano.3c12167.
    71. S. Weidner, A. Tomalka, C. Rode, and T. Siebert, “Impact of lengthening velocity on the generation of eccentric force by slow-twitch muscle fibers in long stretches,” Pfluegers Archiv - European Journal of Physiology, Jul. 2024, doi: 10.1007/s00424-024-02991-4.
    72. B. Maier, D. Göddeke, F. Huber, T. Klotz, O. Röhrle, and M. Schulte, “OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System,” Journal of Computational Science, vol. 79, 2024, doi: https://doi.org/10.1016/j.jocs.2024.102291.
    73. R. Stierle, G. Bauer, N. Thiele, B. Bursik, P. Rehner, and J. Gross, “Classical density functional theory in three dimensions with GPU-accelerated automatic differentiation: Computational performance analysis using the example of adsorption in covalent-organic frameworks,” Chemical Engineering Science, vol. 298, p. 120380, Oct. 2024, doi: 10.1016/j.ces.2024.120380.
    74. F. Zills, M. R. Schäfer, N. Segreto, J. Kästner, C. Holm, and S. Tovey, “Collaboration on Machine-Learned Potentials with IPSuite: A Modular Framework for Learning-on-the-Fly,” The Journal of Physical Chemistry B, Apr. 2024, doi: 10.1021/acs.jpcb.3c07187.
    75. Y. Miao, C. Rohde, and H. Tang, “Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities,” Stochastic Partial Differential Equations: Analysis & Computation, vol. 12, no. 1, Art. no. 1, 2024, doi: 10.1007/s40072-023-00291-z.
    76. M. Alkämper, J. Magiera, and C. Rohde, “An Interface-Preserving Moving Mesh in Multiple Space  Dimensions,” ACM Transactions in  Mathematical Software, vol. 50, no. 1, Art. no. 1, Mar. 2024, doi: 10.1145/3630000.
    77. M. Alkämper, J. Magiera, and C. Rohde, “An Interface-Preserving Moving Mesh in Multiple Space  Dimensions,” ACM Trans. Math. Softw., vol. 50, no. 1, Art. no. 1, Mar. 2024, doi: 10.1145/3630000.
    78. H. Gao et al., “Pore-scale study of the effects of grain size on the capillary-associated interfacial area during primary drainage,” Journal of Hydrology, vol. 632, p. 130865, 2024, doi: https://doi.org/10.1016/j.jhydrol.2024.130865.
    79. B. Flemisch et al., “Research Data Management in Simulation Science: Infrastructure, Tools, and Applications,” Datenbank-Spektrum, 2024, doi: https://doi.org/10.1007/s13222-024-00475-4.
    80. P. Schnee, J. Pleiss, and A. Jeltsch, “Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques,” Critical Reviews in Biochemistry and Molecular Biology, vol. 59, no. 1–2, Art. no. 1–2, 2024, doi: 10.1080/10409238.2024.2318547.
    81. T. Rau, M. Sedlmair, and A. Köhn, “chARpack: The Chemistry Augmented Reality Package,” J. Chem. Inf. Model., vol. 64, no. 12, Art. no. 12, 2024, doi: 10.1021/acs.jcim.4c00462.
    82. J. Bartsch, P. Knopf, S. Scheurer, and J. Weber, “Controlling a Vlasov-Poisson Plasma by a Particle-in-Cell Method based on a Monte Carlo Framework,” SIAM Journal on Control and Optimization, vol. 62, no. 4, Art. no. 4, Jul. 2024, doi: 10.1137/23M1563852.
    83. S. V. Klostermann, J. Kappler, A. Waigum, M. R. Buchmeiser, A. Köhn, and J. Kästner, “The reduction behavior of sulfurized polyacrylonitrile (SPAN) in lithium–sulfur batteries using a carbonate electrolyte: a computational study,” Phys. Chem. Chem. Phys., vol. 26, pp. 9998–10007, 2024, doi: 10.1039/D3CP06248A.
    84. M. Millard, N. Stutzig, J. Fehr, and T. Siebert, “A benchmark of muscle models to length changes great and small,” bioRxiv, 2024, doi: 10.1101/2024.07.26.605117.
    85. R. Blickhan and T. Siebert, “Note on hydrostatic skeletons: Muscles operating within a pressurized environment,” Biology Open, p. bio.060318, May 2024, doi: 10.1242/bio.060318.
    86. V. Zaverkin et al., “Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials,” npj Comput. Mater., vol. 10, p. 83, 2024, doi: 10.1038/s41524-024-01254-1.
  3. 2023 (submitted)

    1. F. Mohammadi et al., “Uncertainty-aware Validation Benchmarks for Coupling Free Flow and Porous-Medium Flow,” Water Resources Research.
  4. 2023

    1. A. Penzkofer, S. Schaefer, F. Strohm, M. Bâce, S. Leutenegger, and A. Bulling, Int-HRL: Towards Intention-based Hierarchical Reinforcement Learning. in Proc. Adaptive and Learning Agents Workshop (ALA). 2023, pp. 1--7. [Online]. Available: https://arxiv.org/abs/2306.11483
    2. P. Buchfink, S. Glas, B. Haasdonk, and B. Unger, “Model reduction on manifolds: A differential geometric framework,” arXiv e-prints, 2023. [Online]. Available: https://arxiv.org/abs/2312.01963
    3. C. Lienstromberg, S. Schiffer, and R. Schubert, “A variational approach to the non-newtonian Navier-Stokes equations,” 2023. doi: doi:10.48550/ARXIV.2312.03546.
    4. M. Oesting and O. Wintenberger, “https://cnrs.hal.science/hal-02958799v2,” 2023.
    5. J. L. Stober, J. Potyka, M. Ibach, B. Weigand, and K. Schulte, “DNS of the Early Phase of Oblique Droplet Impact on Thin Films with FS3D,” High Performance Computing in Science and Engineering ’23, Springer International Publishing, 2023. [Online]. Available: /brokenurl# https://doi.org/10.48550/arXiv.2311.17690
    6. P. Buchfink, S. Glas, and B. Haasdonk, “Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds,” arXiv e-prints, 2023. [Online]. Available: https://arxiv.org/abs/2312.00724
    7. L. Bold, H. Eschmann, M. Rosenfelder, H. Ebel, and K. Worthmann, “On Koopman-Based Surrogate Models for Non-Holonomic Robots,” 2023. [Online]. Available: /brokenurl# arXiv:2301.07960
    8. C. A. Beschle and A. Barth, “Quasi continuous level Monte Carlo for random elliptic PDEs,” 2023. [Online]. Available: https://arxiv.org/abs/2303.08694
    9. D. Holzmüller, “Regression from linear models to neural networks: double descent, active learning, and sampling,” University of Stuttgart, 2023.
    10. J. Potyka, K. Schulte, and C. Planchette, “Simulation and Experimental data on liquid distribution after the head-on separation of immiscible liquid droplet collisions.” 2023. doi: 10.18419/darus-3594.
    11. J. Rettberg et al., “Replication Data for: Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar.” 2023. doi: 10.18419/darus-3248.
    12. J. Lederer and M. Oesting, “Extremes in High Dimensions: Methods and Scalable Algorithms.” 2023.
    13. M. M. Morato, T. Holicki, and C. W. Scherer, “Stabilizing Model Predictive Control Synthesis using Integral Quadratic Constraints and Full-Block Multipliers.” 2023. doi: 10.22541/au.167731929.92691723/v1.
    14. A. Baier and D. Frank, “deepsysid: System Identification Toolkit for Multistep Prediction using Deep Learning.” 2023. doi: 10.18419/darus-3455.
    15. A. Schlaich, “Material for the paper ‘The possible role of lipid bilayer properties in the evolutionary disappearance of betaine lipids in seed plants.’” 2023. doi: 10.18419/darus-2360.
    16. V. Zaverkin, D. Holzmüller, L. Bonfirraro, and J. Kästner, “Pre-trained and fine-tuned ANI models for: Transfer learning for chemically accurate interatomic neural network potentials.” 2023. doi: 10.18419/darus-3299.
    17. J. Pelzer, “Dataset: Two Heat Pumps Simulation - Raw, 100 Data Points.” 2023. doi: 10.18419/darus-3651.
    18. P. F. Santana Chacon, M. Hammer, I. Wochner, J. R. Walter, and S. Schmitt, “Replication Data for: A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers.” 2023. doi: 10.18419/darus-3796.
    19. J. Potyka and K. Schulte, “Setups for and Outcomes of Immiscible Liquid Droplet Collision Simulations.” 2023. doi: 10.18419/darus-3557.
    20. T. Holicki and C. W. Scherer, “IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties.” 2023. doi: 10.48550/arXiv.2212.08837.
    21. D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart, “Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression arXiv v3.” 2023. doi: 10.18419/darus-3394.
    22. P. Rodegast, S. Maier, J. Kneifl, and J. C. Fehr, “Simulation Data from Motorcycle Sensors in Operational and Crash Scenarios.” 2023. doi: 10.18419/darus-3301.
    23. J. Pelzer, “Dataset: Single Heat Pump Simulation - Raw, 100 Data Points.” 2023. doi: 10.18419/darus-3649.
    24. J. Pelzer, “Dataset: Two Heat Pumps Simulation - Raw, 1000 Data Points.” 2023. doi: 10.18419/darus-3652.
    25. T. Munz-Körner, S. Künzel, and D. Weiskopf, “Supplemental Material for ‘Visual-Explainable AI: The Use Case of Language Models.’” 2023. doi: 10.18419/darus-3456.
    26. M. Haas, D. Holzmüller, U. von Luxburg, and I. Steinwart, “Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension.” 2023.
    27. A. Baier, D. Aspandi Latif, and S. Staab, “Supplements for ‘ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks’".” 2023. doi: 10.18419/darus-3457.
    28. F. Kempter, L. Lantella, N. Stutzig, J. C. Fehr, and T. Siebert, “Neck Reflex Behavior in Driving Simulator Experiments - Academic-Scale Simulator at ITM.” 2023. doi: 10.18419/darus-3000.
    29. T. Holicki, J. Nicodemus, P. Schwerdtner, and B. Unger, “Energy matching in reduced passive and port-Hamiltonian systems.” 2023. doi: 10.48550/arXiv.2309.05778.
    30. N. Schäfer et al., “Model Parameters and Evaluation Data for our Visual Analysis System for Scene-Graph-Based Visual Question Answering.” 2023. doi: 10.18419/darus-3597.
    31. J. Kneifl, D. Rosin, O. Avci, O. Röhrle, and J. C. Fehr, “Continuum-mechanical Forward Simulation Results of a Human Upper-limb Model Under Varying Muscle Activations.” 2023. doi: 10.18419/darus-3302.
    32. T. J. Meijer, T. Holicki, S. J. A. M. van den Eijnden, C. W. Scherer, and W. P. M. H. Heemels, “The Non-Strict Projection Lemma.” 2023. doi: 10.48550/arXiv.2305.08735.
    33. M. Oesting and O. Wintenberger, “Estimation of the Spectral Measure from Convex Combinations of Regularly Varying Random Vectors.” 2023. [Online]. Available: https://cnrs.hal.science/hal-02958799v2
    34. J. Pelzer, “Dataset: Single Heat Pump Simulation - Raw, 1000 Data Points.” 2023. doi: 10.18419/darus-3650.
    35. M. Schmitt, “Replication Code for: Meta-Uncertainty in Bayesian Model Comparison.” 2023. doi: 10.18419/darus-3514.
    36. J. Kneifl and J. C. Fehr, “Crash Simulations of a Racing Kart’s Structural Frame Colliding against a Rigid Wall.” 2023. doi: 10.18419/darus-3789.
    37. M. Steffen, “Registered Cars and Motorized Two- and Three-wheelers in Worldwide Countries.” 2023. doi: 10.18419/darus-3378.
    38. M. Degen et al., “Supplementary material for ‘Structural basis for ninjurin-1 mediated plasma membrane rupture in lytic cell death.’” 2023. doi: 10.18419/darus-3373.
    39. R. S. Skukies, “2023 CCN Time Window Project Code.” 2023. doi: 10.18419/darus-3635.
    40. M. Rosenfelder, H. Ebel, and P. Eberhard, “Experiment Videos of the Force-Based Non-Prehensile Cooperative Transportation of Objects with Mobile Robots.” 2023. doi: 10.18419/darus-3331.
    41. M. Rosenfelder, H. Ebel, and P. Eberhard, “Experiment Videos of a Force-Based Organization and Control Scheme for the Non-Prehensile Cooperative Transportation of Objects.” 2023. doi: 10.18419/darus-3611.
    42. T. Holicki and C. W. Scherer, “Input-Output-Data-Enhanced Robust Analysis via Lifting.” 2023. doi: 10.48550/arXiv.2211.02149.
    43. J. Rettberg, D. Wittwar, and R. R. Herkert, “Softwarepackage CCMOR2 : Certified Coupled Model Order Reduction - part 2.” 2023. doi: 10.18419/darus-3839.
    44. J. Wachlmayr, G. Fläschner, K. Pluhackova, W. Sandtner, C. Siligan, and A. Horner, “Supplementary Material for ‘Entropic barrier of water permeation through single-file channels.’” 2023. doi: 10.18419/darus-3390.
    45. X. Xu, “Replication Data for: Strong impact of spin fluctuations on the antiphase boundaries of weak itinerant ferromagnetic Ni3Al.” 2023. doi: 10.18419/darus-3579.
    46. J. Pelzer, “Dataset: Single Heat Pump Simulation - Prepared ‘Learn Params’, 100 Data Points.” 2023. doi: 10.18419/darus-3653.
    47. R. R. Herkert, “Replication Code for: Randomized Symplectic Model Order Reduction for Hamiltonian Systems.” 2023. doi: 10.18419/darus-3519.
    48. R. Kohlhaas, I. Kröker, S. Oladyshkin, and W. Nowak, “Gaussian active learning on multi-resolution arbitrary polynomial chaos emulator : Data and Software.” 2023. doi: 10.18419/darus-2829.
    49. F. Huber, P.-C. Bürkner, D. Göddeke, and M. Schulte, “Experimental Data and Models for ‘Knowledge-Based Modeling of Simulation Behavior for Bayesian Optimization.’” 2023. doi: 10.18419/darus-3550.
    50. M. Kelm, C. Bringedal, and B. Flemisch, “Replication Data for phase-field contributions in level-set comparison study.” 2023. doi: 10.18419/darus-3359.
    51. N. Schäfer et al., “Visual Analysis System for Scene-Graph-Based Visual Question Answering.” 2023. doi: 10.18419/darus-3589.
    52. J. Rettberg, D. Wittwar, P. Buchfink, R. Herkert, J. Fehr, and B. Haasdonk, “Improved a posteriori Error Bounds for Reduced port-Hamiltonian Systems.” 2023. doi: https://doi.org/10.48550/arXiv.2303.17329.
    53. C. W. Scherer, C. Ebenbauer, and T. Holicki, “Optimization Algorithm Synthesis based on Integral Quadratic Constraints: A Tutorial.” ArXiV, 2023. doi: 10.48550/arXiv.2306.00565.
    54. T. Paul, “Artificial Intelligence Based Evaluation of Protein Quality: Evaluation of Backmapped Proteins,” 2023.
    55. N. Wildt, S. Scheurer, W. Nowak, and C. Haslauer, “Learning PFAS mechanisms with a FInite Volume Neural Network (FINN),” in Fall Meeting 2023, in Fall Meeting 2023. San Francisco, CA, USA: American Geophysical Union (AGU), Dec. 2023.
    56. M. Ibach, V. Vaikuntanathan, Al. Arad, D. Katoshevski, B. Greenberg, and B. Weigand, “Numerical Study of Oscillating Droplets and their Relevance to Grouping in Streams,” presented at the ILASS-Europe 2023, 32nd Conference on Liquid Atomization and Spray Systems, 4-7 September 2023, 2023.
    57. X. Yu, “DC Limb Motion Guidance in Extended Reality,” in 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), in 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). Mar. 2023, pp. 967–968. doi: 10.1109/VRW58643.2023.00326.
    58. T. Fuhrmann, R. Poser, B. Weigand, and G. Lamanna, “Interfacial interaction of a porous periodic topology adjacent to a turbulent fluid flow by highly resolved PIV measurements,” in Book of Abstracts of 15th Annual International Conference on Porous Media, in Book of Abstracts of 15th Annual International Conference on Porous Media. 2023, pp. 333–334.
    59. J. Cervino, L. F. O. Chamon, B. D. Haeffele, R. Vidal, and A. Ribeiro, “Learning Globally Smooth Functions on Manifolds,” in International Conference on Machine Learning~(ICML), in International Conference on Machine Learning~(ICML). 2023.
    60. F. A. Taha, S. Yan, and E. Bitar, “A Distributionally Robust Approach to Regret Optimal Control using the Wasserstein Distance,” in 2023 62nd IEEE Conference on Decision and Control (CDC), in 2023 62nd IEEE Conference on Decision and Control (CDC). 2023, pp. 2768–2775. doi: 10.1109/CDC49753.2023.10384311.
    61. D. Appel, S. Jöns, J. Keim, C. Müller, J. Zeifang, and C.-D. Munz, “A narrow band-based dynamic load balancing scheme for the level-set ghost-fluid method,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 305--320.
    62. P. Gebhardt et al., “Auxiliary Means to Improve Motion Guidance Memorability in Extended Reality,” in 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), in 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). Mar. 2023, pp. 689–690. doi: 10.1109/VRW58643.2023.00187.
    63. I. Hounie, L. F. O. Chamon, and A. Ribeiro, “Automatic Data Augmentation via Invariance-Constrained Learning,” in International Conference on Machine Learning~(ICML), in International Conference on Machine Learning~(ICML). 2023.
    64. D. Schneider, T. Schrader, and B. Uekermann, “Data-Parallel Radial-Basis Function Interpolation in preCICE,” in 10th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering, M. Papadrakakis, S. B., and O. E., Eds., in 10th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering. CIMNE, 2023. doi: 10.23967/c.coupled.2023.016.
    65. T. Martin, T. B. Schön, and F. Allgöwer, “Gaussian inference for data-driven state-feedback design of nonlinear systems,” in 22nd IFAC World Congress, in 22nd IFAC World Congress. 2023, pp. 4796–4803. doi: doi.org/10.1016/j.ifacol.2023.10.1245.
    66. N. Hube, M. Reinelt, K. Vidackovic, and M. Sedlmair, “Work vs. Leisure – Differences in Avatar Characteristics Depending on Social Situations,” in Proceedings of the 16th International Symposium on Visual Information Communication and Interaction (VINCI ’23), in Proceedings of the 16th International Symposium on Visual Information Communication and Interaction (VINCI ’23). Association for Computing Machinery, 2023. doi: https://doi.org/10.1145/3615522.3615537.
    67. N. Schäfer et al., “Visual Analysis of Scene-Graph-Based Visual Question Answering,” in Proceedings of the 16th International Symposium on Visual Information Communication and Interaction, in Proceedings of the 16th International Symposium on Visual Information Communication and Interaction. Guangzhou, China: Association for Computing Machinery, Oct. 2023, pp. 1–8. doi: 10.1145/3615522.3615547.
    68. D. Pfeifer, A. Baumann, M. Giani, C. Scheifele, and J. Fehr, “Hybrid Digital Twins Using FMUs to Increase the Validity and Domain of Virtual Commissioning Simulations,” in Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains, in Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains. Springer, 2023. doi: 10.1007/978-3-031-27933-1_19.
    69. S. Schlor, R. Strässer, and F. Allgöwer, “Koopman interpretation and analysis of a public-key cryptosystem: Diffie-Hellman key exchange,” in Proceedings of the 22nd IFAC World Congress, in Proceedings of the 22nd IFAC World Congress. Yokohama, Japan, 2023, pp. 984–990. doi: 10.1016/j.ifacol.2023.10.1693.
    70. L. Hewing et al., “Enhancing the Guidance, Navigation and Control of Autonomous Parafoils using Machine Learning Methods,” in Papers of ESA GNC-ICATT 2023, in Papers of ESA GNC-ICATT 2023. ESA, Jul. 2023. doi: 10.5270/esa-gnc-icatt-2023-135.
    71. R. Strässer, J. Berberich, and F. Allgöwer, “Control of bilinear systems using gain-scheduling: Stability and performance guarantees,” in 62nd IEEE Conference on Decision and Control (CDC), in 62nd IEEE Conference on Decision and Control (CDC). Singapore, Singapore, 2023, pp. 4674–4681. doi: 10.1109/CDC49753.2023.10384021.
    72. M. Millard, F. Kempter, N. Stutzig, T. Siebert, and J. Fehr, “Improving the Accuracy of Musculotendon Models for the Simulation of Active Lengthening,” in Proceedings of the International Research Council on the Biomechanics of Injury Conference, in Proceedings of the International Research Council on the Biomechanics of Injury Conference. Cambridge, UK, 2023.
    73. F. Grioui and T. Blascheck, “Heart Rate Visualizations on a Virtual Smartwatch to Monitor Physical Activity Intensity,” in Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, in Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2023. doi: 10.5220/0011665500003417.
    74. J. Haischt and M. Sedlmair, “What’s (Not) Tracking? Factors of Influence in Industrial Augmented Reality Tracking: A Use Case Study in an Automotive Environment,” in Proceedings of the 15th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, in Proceedings of the 15th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Ingolstadt, Germany: Association for Computing Machinery, Sep. 2023, pp. 42–51. doi: 10.1145/3580585.3607156.
    75. M. Wieland, M. Sedlmair, and T.-K. Machulla, “VR, Gaze, and Visual Impairment: An Exploratory Study of the Perception of Eye Contact across different Sensory Modalities for People with Visual Impairments in Virtual Reality,” in Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, in Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. Hamburg, Germany: Association for Computing Machinery, Apr. 2023, pp. 1–6. doi: 10.1145/3544549.3585726.
    76. M. Ibach, J. Steigerwald, and B. Weigand, “Thixotropic effects in oscillating droplets,” presented at the 11th International Conference on Multiphase Flow (ICMF), April 2–7, 2023, 2023.
    77. D. Kempf et al., “Development of turbulent inflow methods for the high order HPC framework FLEXI,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 289--304. doi: 10.1007/978-3-031-17937-2_17.
    78. R. Strässer, J. Berberich, and F. Allgöwer, “Robust data-driven control for nonlinear systems using the Koopman operator,” in Proceedings of the 22nd IFAC World Congress, in Proceedings of the 22nd IFAC World Congress, vol. 56. 2023, pp. 2257–2262. doi: https://doi.org/10.1016/j.ifacol.2023.10.1190.
    79. J. Keim, A. Schwarz, S. Chiocchetti, C. Rohde, and A. Beck, “A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes,” in Finite volumes for complex applications X. Vol. 2.  Hyperbolic and related problems, in Finite volumes for complex applications X. Vol. 2.  Hyperbolic and related problems, vol. 433. Springer, Cham, 2023, pp. 209--217. doi: 10.13140/RG.2.2.18046.87363.
    80. A. Schwarz, J. Keim, S. Chiocchetti, and A. Beck, “A Reinforcement Learning Based Slope Limiter for Second-Order Finite Volume Schemes,” in 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), M. Kaliske, Ed., in 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM). Wiley-VCH, 2023, p. e202200207. doi: 10.1002/pamm.202200207.
    81. D. Gramlich, C. W. Scherer, H. Häring, and C. Ebenbauer, “Synthesis of constrained robust feedback policies and model predictive control,” arXiv, 2023. doi: 10.48550/ARXIV.2310.11404.
    82. M. Rosenfelder, H. Ebel, and P. Eberhard, “A Force-Based Formation Synthesis Approach for the Cooperative Transportation of Objects,” in Advances in Service and Industrial Robotics, T. Petrič, A. Ude, and L. Žlajpah, Eds., in Advances in Service and Industrial Robotics, vol. 135. Springer, 2023, pp. 317–324. doi: 10.1007/978-3-031-32606-6_37.
    83. A. Schlottke, M. Ibach, J. Steigerwald, and B. Weigand, “Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 239--257. doi: 10.1007/978-3-031-17937-2_14.
    84. S. Rigling, X. Yu, and M. Sedlmair, “‘In Your Face!’: Visualizing Fitness Tracker Data in Augmented Reality,” in Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, in Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. Hamburg, Germany: Association for Computing Machinery, Apr. 2023, pp. 1–7. doi: 10.1145/3544549.3585912.
    85. A. Schmitz-Hübsch, R. Becker, and M. Wirzberger, “Personality Traits in the Emotion-Performance-Relationship in Intelligent Tutoring Systems,” in Adaptive Instructional Systems. HCII 2023. Lecture Notes in Computer Science, in Adaptive Instructional Systems. HCII 2023. Lecture Notes in Computer Science. , Springer, 2023, pp. 60–75. doi: 10.1007/978-3-031-34735-1_5.
    86. R. Weeber et al., “ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems,” in Comprehensive Computational Chemistry, in Comprehensive Computational Chemistry. , Elsevier, 2023. doi: https://doi.org/10.1016/B978-0-12-821978-2.00103-3.
    87. T. Siebert et al., “Die Reflexaktivität der Halsmuskulatur bei seitlichen Fahrmanövern im Fahrsimulator,” J. E.-N. Kerstin Witte, Stefan Pastel, Ed., Steinbeis-Edition, Stuttgart, 2023.
    88. M. Millard, F. Kempter, J. Fehr, N. Stutzig, and T. Siebert, “A muscle model for injury simulation,” presented at the The 28th Congress of the European Society of Biomechanics, 2023.
    89. M. Millard et al., “Cervical muscle reflexes during lateral accelerations,” presented at the The 28th Congress of the European Society of Biomechanics, 2023.
    90. R. R. Herkert, P. Buchfink, B. Haasdonk, J. Rettberg, and J. C. Fehr, “Randomized Symplectic Model Order Reduction for Hamiltonian Systems,” pp. 1–8, 2023, doi: 10.48550/arXiv.2303.04036.
    91. B. Xiong, M. Nayyeri, S. Pan, and S. Staab, “Shrinking Embeddings for Hyper-Relational Knowledge Graphs,” The 61st Annual Meeting of the Association for Computational Linguistics, 2023, [Online]. Available: https://arxiv.org/abs/2306.02199
    92. J. Härter, D. S. Martínez, R. Poser, B. Weigand, and G. Lamanna, “Coupling between a turbulent outer flow and an adjacent porous medium : High resolved Particle Image Velocimetry measurements,” Physics of Fluids, vol. 35, no. 2, Art. no. 2, 2023, doi: 10.1063/5.0132193.
    93. S. Gravelle, S. Haber-Pohlmeier, C. Mattea, S. Stapf, C. Holm, and A. Schlaich, “NMR Investigation of Water in Salt Crusts: Insights from Experiments and Molecular Simulations,” Langmuir, vol. 39, no. 22, Art. no. 22, May 2023, doi: 10.1021/acs.langmuir.3c00036.
    94. S. M. Seyedpour, L. Lambers, G. Rezazadeh, and T. Ricken, “Mathematical modelling of the dynamic response of an implantable enhanced capacitive glaucoma pressure sensor,” Measurement: Sensors, p. 100936, 2023, doi: https://doi.org/10.1016/j.measen.2023.100936.
    95. S. Schwindt et al., “Bayesian calibration points to misconceptions in three-dimensional hydrodynamic reservoir modelling,” Water Resources Research, vol. 59, p. e2022WR033660, 2023, doi: https://doi.org/10.1029/2022WR033660.
    96. D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart, “A Framework and Benchmark for Deep Batch Active Learning for Regression,” Journal of Machine Learning Research, vol. 24, no. 164, Art. no. 164, 2023, [Online]. Available: http://jmlr.org/papers/v24/22-0937.html
    97. D. Pfeifer, J. Scheid, J. Kneifl, and J. Fehr, “An improved development process of production plants using digital twins with extended dynamic behaviour in virtual commissioning and control – Simulation@Operations,” Proceedings in Applied Mathematics & Mechanics, 2023, doi: 10.1002/pamm.202300225.
    98. S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental evaluation of fluid connectivity in two-phase flow in porous media,” Advances in Water Resources, vol. 172, p. 104378, Feb. 2023, doi: 10.1016/j.advwatres.2023.104378.
    99. O. V. Martynenko et al., “Development and verification of a physiologically motivated internal controller for the open-source extended Hill-type muscle model in LS-DYNA,” Biomechanics and Modeling in Mechanobiology, vol. 22, no. 6, Art. no. 6, 2023, doi: 10.1007/s10237-023-01748-9.
    100. Molpeceres, G., Zaverkin, V., Furuya, K., Aikawa, Y., and Kästner, J., “Reaction dynamics on amorphous solid water surfaces using interatomic machine-learned potentials - Microscopic energy partition revealed from the P + H → PH reaction,” Astronomy & Astrophysics, vol. 673, p. A51, 2023, doi: 10.1051/0004-6361/202346073.
    101. C. Lohrmann and C. Holm, “Optimal motility strategies for self-propelled agents to explore porous media,” Physical Review B, vol. 108, no. 5, Art. no. 5, Nov. 2023, doi: 10.1103/PhysRevE.108.054401.
    102. C. G. Lopes, V. H. Nascimento, and L. F. O. Chamon, “Distributed Universal Adaptive Networks,” IEEE Transactions on Signal Processing, vol. 71, pp. 1817--1832, 2023, doi: 10.1109/TSP.2023.3275812.
    103. C. C. Horuz et al., “Physical Domain Reconstruction with Finite Volume Neural Networks,” Applied Artificial Intelligence, vol. 37, no. 1, Art. no. 1, 2023, doi: https://doi.org/10.1080/08839514.2023.2204261.
    104. S. Jöns and C.-D. Munz, “Riemann solvers for phase transition in a compressible sharp-interface method,” Applied mathematics and computation, vol. 440, p. 127624, 2023, doi: 10.1016/j.amc.2022.127624.
    105. H. Jäger, A. Schlaich, J. Yang, C. Lian, S. Kondrat, and C. Holm, “A screening of results on the decay length in concentrated electrolytes,” Faraday Discussions, vol. 246, no. 0, Art. no. 0, Aug. 2023, doi: 10.1039/D3FD00043E.
    106. S. Keshav, F. Fritzen, and M. Kabel, “FFT-based homogenization at finite strains using composite boxels (ComBo),” Computational Mechanics, vol. 71, pp. 191–212, Oct. 2023, doi: 10.1007/s00466-022-02232-4.
    107. D. Holzmüller and F. Bach, “Convergence rates for non-log-concave sampling and log-partition estimation,” arXiv:2303.03237, 2023.
    108. J. Rettberg et al., “Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar,” Mathematical and Computer Modelling of Dynamical Systems, vol. 29, no. 1, Art. no. 1, 2023, doi: 10.1080/13873954.2023.2173238.
    109. T. Braun, R. Stierle, M. Fischer, and J. Gross, “Investigating Learning and Improving Teaching in Engineering Thermodynamics Guided by Constructive Alignment and Competency Modeling: Part II. Assessment and Exam Design,” Chemical Engineering Education, vol. 57, no. 3, Art. no. 3, 2023, doi: 10.18260/2-1-370.660-133030.
    110. A. Reimer, T. van Westen, and J. Groß, “Physically based equation of state for Mie ν-6 fluids,” The journal of chemical physics, vol. 158, no. 16, Art. no. 16, 2023, doi: 10.1063/5.0141856.
    111. C. A. Rösinger and C. W. Scherer, “Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings,” 2023, doi: 10.1109/TAC.2023.3329851.
    112. J. Keim, C.-D. Munz, and C. Rohde, “A relaxation model for the non-isothermal Navier-Stokes-Korteweg equations in confined domains,” Journal of Computational Physics, vol. 474, p. 111830, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021999122008932?via%3Dihub
    113. C. A. Rösinger and C. W. Scherer, “Gain-Scheduling Controller Synthesis for Nested Systems With Full Block Scalings,” IEEE Transactions on Automatic Control, pp. 1–16, 2023, doi: 10.1109/TAC.2023.3329851.
    114. I. Banerjee, A. Guthke, C. J. Van De Ven, K. G. Mumford, and W. Nowak, “Comparison of Four Competing Invasion Percolation Models for Gas Flow in Porous Media,” Authorea Preprints, 2023.
    115. S. Sharba, J. Herb, and F. Fritzen, “Reduced order homogenization of thermoelastic materials with strong temperature dependence and comparison to a machine-learned model,” Archive of Applied Mechanics, vol. 93, no. 7, Art. no. 7, Jul. 2023, doi: 10.1007/s00419-023-02411-6.
    116. J. Yang, S. Kondrat, C. Lian, H. Liu, A. Schlaich, and C. Holm, “Solvent Effects on Structure and Screening in Confined Electrolytes,” Physical  Review Letters, vol. 131, no. 11, Art. no. 11, Sep. 2023, doi: 10.1103/PhysRevLett.131.118201.
    117. X. Xu, X. Zhang, A. Ruban, S. Schmauder, and B. Grabowski, “Strong impact of spin fluctuations on the antiphase boundaries of weak itinerant ferromagnetic Ni3Al,” Acta Materialia, vol. 255, p. 118986, Aug. 2023, doi: 10.1016/j.actamat.2023.118986.
    118. C. Guttà, C. Morhard, and M. Rehm, “Applying a GAN-based classifier to improve transcriptome-based prognostication in breast cancer,” PLOS Computational Biology, vol. 19, no. 4, Art. no. 4, Apr. 2023, doi: 10.1371/journal.pcbi.1011035.
    119. S. Lauterbach et al., “EnzymeML: seamless data flow and modeling of enzymatic data,” Nature Methods, vol. 20, no. 3, Art. no. 3, 2023, doi: 10.1038/s41592-022-01763-1.
    120. M. Soundaranathan et al., “Modelling the Evolution of Pore Structure during the Disintegration of Pharmaceutical Tablets,” Pharmaceutics, vol. 15, no. 2, Art. no. 2, 2023, doi: 10.3390/pharmaceutics15020489.
    121. J. Wachlmayr, G. Fläschner, K. Pluhackova, W. Sandtner, C. Siligan, and A. Horner, “Entropic barrier of water permeation through single-file channels,” Communications Chemistry, vol. 6, no. 1, Art. no. 1, Jun. 2023, doi: 10.1038/s42004-023-00919-0.
    122. H. Mandler and B. Weigand, “Feature importance in neural networks as a means of interpretation for data-driven turbulence models,” Computers & Fluids, p. 105993, Jul. 2023, doi: 10.1016/j.compfluid.2023.105993.
    123. R. Bauer et al., “Visual Ensemble Analysis of Fluid Flow in Porous Media Across Simulation Codes and Experiment,” Transport in Porous Media, 2023, doi: 10.1007/s11242-023-02019-y.
    124. R. Christian, T. Andre, B. R., and S. Tobias, “Structurally motivated models to explain the muscle’s force-length relationship,” Biophysical Journal 1, vol. 122, no. 17, Art. no. 17, Sep. 2023, doi: 10.1016/j.bpj.2023.05.026.
    125. V. Artemov et al., “The Three-Phase Contact Potential Difference Modulates the Water Surface Charge,” The Journal of Physical Chemistry Letters, vol. 14, no. 20, Art. no. 20, May 2023, doi: 10.1021/acs.jpclett.3c00479.
    126. M. F. Morales Oreamuno, S. Oladyshkin, and W. Nowak, “Information-Theoretic Scores for Bayesian Model Selection and Similarity Analysis: Concept and Application to a Groundwater Problem,” Water Resources Research, vol. 59, no. 7, Art. no. 7, Jul. 2023, doi: 10.1029/2022WR033711.
    127. T. Walter, N. Stutzig, and T. Siebert, “Active exoskeleton reduces erector spinae muscle activity during lifting,” Frontiers in Bioengineering and Biotechnology, vol. 11, Apr. 2023, doi: 10.3389/fbioe.2023.1150170.
    128. G. Chourdakis, D. Schneider, and B. Uekermann, “OpenFOAM-preCICE: Coupling OpenFOAM with External Solvers for Multi-Physics Simulations,” OpenFOAM® Journal, vol. 3, pp. 1–25, Feb. 2023, doi: 10.51560/ofj.v3.88.
    129. J. Gödeke and G. Rigaud, “Imaging based on Compton scattering: model uncertainty and data-driven reconstruction methods,” Inverse Problems, vol. 39, no. 3, Art. no. 3, Feb. 2023, doi: 10.1088/1361-6420/acb2ed.
    130. L. Zhang, W. Nowak, S. Oladyshkin, Y. Wang, and J. Cai, “Opportunities and challenges in $CO_2$ geologic utilization and storage,” Advances in Geo-Energy Research, vol. 8, no. 3, Art. no. 3, Jul. 2023, [Online]. Available: https://doi.org/10.46690/ager.2023.06.01
    131. H. Class, L. Keim, L. Schirmer, B. Strauch, K. Wendel, and M. Zimmer, “Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond with Aqueous Concentrations in a Stagnant Water Column,” Geosciences, vol. 13, no. 2, Art. no. 2, 2023, doi: 10.3390/geosciences13020051.
    132. V. Zaverkin, D. Holzmüller, L. Bonfirraro, and J. Kästner, “Transfer learning for chemically accurate interatomic neural network potentials,” Physical Chemistry Chemical Physics, vol. 25, no. 7, Art. no. 7, 2023, doi: 10.1039/D2CP05793J.
    133. T. Martin and F. Allgöwer, “Data-driven inference on optimal input-output properties of polynomial systems with focus on nonlinearity measures,” IEEE Transactions on Automatic Control, vol. 68, no. 5, Art. no. 5, 2023, doi: 10.1109/TAC.2022.3226652.
    134. H. Bonasch and B. V. Ehinger, “Decoding accuracies as well as ERP amplitudes do not show between-task correlations,” Conference on Cognitive Computational Neuroscience, 2023, doi: 10.32470/CCN.2023.1029-0.
    135. R. S. Skukies and B. Ehinger, “The effect of estimation time window length on overlap correction in EEG data,” Conference on Cognitive Computational Neuroscience, 2023, doi: 10.32470/CCN.2023.1229-0.
    136. I. Nitzke, R. Stierle, S. Stephan, M. Pfitzner, J. Gross, and J. Vrabec, “Phase equilibria and interface properties of hydrocarbon propellant-oxygen mixtures in the transcritical regime,” Physics of Fluids, vol. 35, no. 3, Art. no. 3, 2023, doi: 10.1063/5.0138973.
    137. M. Gao, D. Appel, A. Beck, and C.-D. Munz, “A high-order fluid–structure interaction framework with application to shock-wave/turbulent boundary-layer interaction over an elastic panel,” Journal of Fluids and Structures, vol. 121, p. 103950, Aug. 2023, doi: 10.1016/j.jfluidstructs.2023.103950.
    138. S. Oladyshkin, T. Praditia, I. Kroeker, F. Mohammadi, W. Nowak, and S. Otte, “The Deep Arbitrary Polynomial Chaos Neural Network or how Deep Artificial Neural Networks could benefit from Data-Driven Homogeneous Chaos Theory,” Neural Networks, vol. 166, pp. 85–104, Sep. 2023, doi: 10.1016/j.neunet.2023.06.036.
    139. M. Hammer, G. Bauer, R. Stierle, J. Groß, and Ø. Wilhelmsen, “Classical density functional theory for interfacial properties of hydrogen, helium, deuterium, neon, and their mixtures,” The Journal of Chemical Physics, vol. 158, no. 10, Art. no. 10, 2023, doi: 10.1063/5.0137226.
    140. I. Tischler, A. Schlaich, and C. Holm, “Disentanglement of Surface and Confinement Effects for Diene Metathesis in Mesoporous Confinement,” ACS Omega, vol. 9, no. 1, Art. no. 1, Dec. 2023, doi: 10.1021/acsomega.3c06195.
    141. R. Stierle, M. Fischer, T. Braun, and J. Gross, “Investigating Learning and Improving Teaching in Engineering Thermodynamics Guided by Constructive Alignment and Competency Modeling: Part I. Improving Our Learning Environment - How We Support Student Learning,” Chemical Engineering Education, vol. 57, no. 2, Art. no. 2, 2023, doi: 10.18260/2-1-370.660-126287.
    142. M. S. Khella et al., “The T1150A cancer mutant of the protein lysine dimethyltransferase NSD2 can introduce H3K36 trimethylation,” Journal of Biological Chemistry, vol. 299, no. 6, Art. no. 6, 2023, doi: https://doi.org/10.1016/j.jbc.2023.104796.
    143. L. Pfitzer, J. Heitkämper, J. Kästner, and R. Peters, “Use of the N–O Bonds in N-Mesyloxyamides and N-Mesyloxyimides To Gain Access to 5-Alkoxy-3,4-dialkyloxazol-2-ones and 3-Hetero-Substituted Succinimides: A Combined Experimental and Theoretical Study,” Synthesis, vol. 55, no. 26, Art. no. 26, 2023, doi: 10.1055/s-0042-1751447.
    144. M. Oesting, A. Rapp, and E. Spodarev, “Detection of long range dependence in the time domain for (in)finite-variance time series,” Statistics, pp. 1–28, Dec. 2023, doi: 10.1080/02331888.2023.2287749.
    145. T. Martin, T. B. Schön, and F. Allgöwer, “Guarantees for data-driven control of nonlinear systems using semidefinite programming: A survey,” Annual Reviews in Control, vol. 56, p. 100911, 2023, doi: 10.1016/j.arcontrol.2023.100911.
    146. D. Gramlich, T. Holicki, C. W. Scherer, and C. Ebenbauer, “A Structure Exploiting SDP Solver for Robust Controller Synthesis,” IEEE Control Syst. Lett., vol. 7, pp. 1831–1836, 2023, doi: 10.1109/LCSYS.2023.3277314.
    147. L. R. Skreinig et al., “guitARhero: Interactive Augmented Reality Guitar Tutorials,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–10, 2023, doi: 10.1109/TVCG.2023.3320266.
    148. S. M. Seyedpour, A. Thom, and T. Ricken, “Simulation of Contaminant Transport through the Vadose Zone: A Continuum Mechanical Approach within the Framework of the Extended Theory of Porous Media (eTPM),” Water, vol. 15, no. 2, Art. no. 2, 2023, doi: 10.3390/w15020343.
    149. L. Neumaier, D. Roskosch, J. Schilling, G. Bauer, J. Gross, and A. Bardow, “Refrigerant Selection for Heat Pumps: The Compressor Makes the Difference,” Energy Technology, Feb. 2023, doi: 10.1002/ente.202201403.
    150. B. N. Hahn, G. Rigaud, and R. Schmähl, “A class of regularizations based on nonlinear isotropic diffusion for inverse problems,” IMA Journal of Numerical Analysis, Feb. 2023, doi: 10.1093/imanum/drad002.
    151. J. Hay et al., “Application of data-driven surrogate models for active human model response prediction and restraint system optimization,” Frontiers in applied mathematics and statistics, vol. 9, pp. 1–16, 2023, doi: 10.3389/fams.2023.1156785.
    152. M. Millard, D. W. Franklin, and W. Herzog, “A three filament mechanistic model of musculotendon force and impedance,” bioRxiv, 2023, doi: 10.1101/2023.03.27.534347.
    153. P. Buchfink, S. Glas, and B. Haasdonk, “Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds and Approximation with Weakly Symplectic Autoencoder,” SIAM Journal on Scientific Computing, vol. 45, no. 2, Art. no. 2, Mar. 2023, doi: 10.1137/21m1466657.
    154. M. Azhdari et al., “Non-local three phase lag bio thermal modeling of skin tissue and experimental evaluation,” International Communications in Heat and Mass Transfer, vol. 149, p. 107146, 2023, doi: https://doi.org/10.1016/j.icheatmasstransfer.2023.107146.
    155. T. Martin and F. Allgöwer, “Data-driven system analysis of nonlinear systems using polynomial approximation,” IEEE Trans. Automat. Control (early access), 2023, doi: 10.1109/TAC.2023.3321212.
    156. L. F. O. Chamon, S. Paternain, M. Calvo-Fullana, and A. Ribeiro, “Constrained Learning with Non-Convex Losses,” IEEE Transactions on Information Theory, vol. 69, no. 3, Art. no. 3, 2023, doi: 10.1109/TIT.2022.3187948.
    157. A. Straub, G. K. Karch, J. Steigerwald, F. Sadlo, B. Weigand, and T. Ertl, “Visual Analysis of Interface Deformation in Multiphase Flow,” Journal of Visualization, vol. 26, no. 6, Art. no. 6, 2023, doi: 10.1007/s12650-023-00939-x.
    158. L. Ruiz, L. F. O. Chamon, and A. Ribeiro, “Transferability Properties of Graph Neural Networks,” IEEE Transactions on Signal Processing, vol. 71, pp. 3474--3489, 2023, doi: 10.1109/TSP.2023.3297848.
    159. C. W. Scherer, “Robust Exponential Stability and Invariance Guarantees with General Dynamic O’Shea-Zames-Falb Multipliers,” Jun. 2023, doi: 10.48550/ARXIV.2306.00571.
    160. I. Kröker, S. Oladyshkin, and I. Rybak, “Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems,” Computational Geosciences, 2023, doi: 10.1007/s10596-023-10236-z.
    161. A. Kharitenko and C. Scherer, “Time-varying Zames–Falb multipliers for LTI Systems are superfluous,” Automatica, vol. 147, p. 110577, Jan. 2023, doi: 10.1016/j.automatica.2022.110577.
    162. R. Merkle and A. Barth, “On Properties and Applications of Gaussian Subordinated Lévy Fields,” Methodology and Computing in Applied Probability, vol. 25, p. 62, 2023, doi: 10.1007/s11009-023-10033-2.
    163. R. Kohlhaas, I. Kröker, S. Oladyshkin, and W. Nowak, “Gaussian active learning on multi-resolution arbitrary polynomial chaos emulator: concept for bias correction, assessment of surrogate reliability and its application to the carbon dioxide benchmark,” Computational Geosciences, vol. 27, no. 3, Art. no. 3, 2023, doi: doi:10.1007/s10596-023-10199-1.
    164. H. Sharma, H. Mu, P. Buchfink, R. Geelen, S. Glas, and B. Kramer, “Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds,” Computer Methods in Applied Mechanics and Engineering, vol. 417, p. 116402, Dec. 2023, doi: 10.1016/j.cma.2023.116402.
    165. C. D. Remy, Z. Brei, D. Bruder, J. Remy, K. Buffinton, and R. B. Gillespie, “The ‘Fluid Jacobian’: Modeling force-motion relationships in fluid-driven soft robots,” The International Journal of Robotics Research, Nov. 2023, doi: 10.1177/02783649231210592.
    166. J. Jayaraj, N. Seetha, and S. M. Hassanizadeh, “Modeling the Transport and Retention of Nanoparticles in a Single Partially Saturated Pore in Soil,” Water Resources Research, vol. 59, no. 6, Art. no. 6, Jun. 2023, doi: 10.1029/2022wr034302.
    167. P.-C. Bürkner, I. Kröker, S. Oladyshkin, and W. Nowak, “The sparse Polynomial Chaos expansion: a fully Bayesian approach with joint priors on the coefficients and global selection of terms,” Journal of Computational Physics, p. 112210, 2023, doi: https://doi.org/10.1016/j.jcp.2023.112210.
    168. J. Kromer, J. Potyka, K. Schulte, and D. Bothe, “Efficient sequential PLIC interface positioning for enhanced performance of the three-phase VoF method,” Computers & Fluids, vol. 266, p. 106051, Nov. 2023, doi: 10.1016/j.compfluid.2023.106051.
    169. L. Yan, M. H. Golestan, W. Zhou, S. M. Hassanizadeh, C. F. Berg, and A. Raoof, “Direct Evidence of Salinity Difference Effect on Water Transport in Oil: Pore–Scale Mechanisms,” Energy &amp$\mathsemicolon$ Fuels, Sep. 2023, doi: 10.1021/acs.energyfuels.3c02245.
    170. A. Wagner, A. Sonntag, S. Reuschen, W. Nowak, and W. Ehlers, “Hydraulically induced fracturing in heterogeneous porous media using a TPM-phase-field model and geostatistics,” Proceedings in Applied Mathematics and Mechanics, vol. 23, p. e202200118, 2023, doi: https://doi.org/10.1002/pamm.202200118.
    171. L. Mandl, A. Mielke, S. M. Seyedpour, and T. Ricken, “Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem,” Scientific Reports, vol. 13, no. 1, Art. no. 1, 2023, doi: 10.1038/s41598-023-42141-x.
    172. J. Potyka, K. Schulte, and C. Planchette, “Liquid distribution after head-on separation of two colliding immiscible liquid droplets,” Physics of Fluids, vol. 35, no. 10, Art. no. 10, Oct. 2023, doi: 10.1063/5.0168080.
    173. V. Wagner and N. Radde, “The impossible challenge of estimating non-existent moments of the Chemical Master Equation,” Bioinformatics, vol. 39, no. Supplement_1, Art. no. Supplement_1, Jun. 2023, doi: 10.1093/bioinformatics/btad205.
    174. S. Burbulla, M. Hörl, and C. Rohde, “Flow in Porous Media with Fractures of Varying Aperture,” SIAM J. Sci. Comput, vol. 45, no. 4, Art. no. 4, 2023, doi: 10.1137/22M1510406.
    175. T. Holicki and C. W. Scherer, “Data-Based Refinement of Parametric Uncertainty Descriptions,” submitted for publication, 2023.
    176. F. Ejaz, A. Guthke, T. Wöhling, and W. Nowak, “Comprehensive uncertainty analysis for surface water and groundwater projections under climate change based on a lumped geo-hydrological model,” Journal of Hydrology, vol. 626, 2023, doi: https://doi.org/10.1016/j.jhydrol.2023.130323.
    177. M. Kurz, P. Offenhäuser, and A. Beck, “Deep reinforcement learning for turbulence modeling in large eddy simulations,” International Journal of Heat and Fluid Flow, vol. 99, p. 109094, Feb. 2023, doi: 10.1016/j.ijheatfluidflow.2022.109094.
    178. H. Ebel, M. Rosenfelder, and P. Eberhard, “Note on the Predictive Control of Non-Holonomic Systems and Underactuated Vehicles in the Presence of Drift,” Proceedings in Applied Mathematics and Mechanics, vol. 23, no. 4, Art. no. 4, 2023, doi: 10.1002/pamm.202300022.
    179. R. Frömer, M. R. Nassar, B. V. Ehinger, and A. Shenhav, “Common neural choice signals emerge artifactually amidst multiple distinct value signals,” bioRxiv, 2023, doi: 10.1101/2022.08.02.502393.
    180. M. Schneider, D. Gläser, K. Weishaupt, E. Coltman, B. Flemisch, and R. Helmig, “Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems,” Journal of Computational Physics, vol. 482, p. 112042, Jun. 2023, doi: 10.1016/j.jcp.2023.112042.
    181. S. Gravelle, D. Beyer, M. Brito, A. Schlaich, and C. Holm, “Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures,” The Journal of Physical Chemistry B, vol. 127, no. 25, Art. no. 25, Jun. 2023, doi: 10.1021/acs.jpcb.3c01646.
    182. T. Giess, S. Itzigehl, J. Range, R. Schömig, J. R. Bruckner, and J. Pleiss, “FAIR and scalable management of small-angle X-ray scattering data,” Journal of Applied Crystallography, vol. 56, no. 2, Art. no. 2, Apr. 2023, doi: 10.1107/S1600576723001577.
    183. S. Bolik et al., “Lipid bilayer properties potentially contributed to the evolutionary disappearance of betaine lipids in seed plants,” BMC biology, vol. 21, p. 275, 2023, doi: 10.1186/s12915-023-01775-z.
    184. M. J. Gander, S. B. Lunowa, and C. Rohde, “Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations,” SIAM J. Sci. Comput., vol. 45, no. 1, Art. no. 1, 2023, doi: 10.1137/21M1415005.
    185. J. Berberich, C. W. Scherer, and F. Allgower, “Combining Prior Knowledge and Data for Robust Controller Design,” IEEE Transactions on Automatic Control, vol. 68, no. 8, Art. no. 8, 2023, doi: 10.1109/tac.2022.3209342.
    186. P. Reiser, J. E. Aguilar, A. Guthke, and P.-C. Bürkner, “Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference,” arXiv preprint arXiv:2312.05153, vol. (submitted), 2023.
    187. C. Lienstromberg, S. Schiffer, and R. Schubert, “A data-driven approach to viscous fluid mechanics: The stationary case,” Arch. Rational Mech. Anal., vol. 247, no. 2, Art. no. 2, 2023, doi: 10.1007/s00205-023-01849-w.
    188. C. Müller, P. Mossier, and C.-D. Munz, “A sharp interface framework based on the inviscid Godunov-Peshkov-Romenski equations : Simulation of evaporating fluids,” Journal of computational physics, vol. 473, p. 111737, 2023, doi: 10.1016/j.jcp.2022.111737.
    189. P. Mossier, D. Appel, A. D. Beck, and C.-D. Munz, “An Efficient hp-Adaptive Strategy for a Level-Set Ghost-Fluid Method,” Journal of Scientific Computing, vol. 97, no. 2, Art. no. 2, Oct. 2023, doi: 10.1007/s10915-023-02363-7.
    190. K. Gubaev, V. Zaverkin, P. Srinivasan, A. I. Duff, J. Kästner, and B. Grabowski, “Performance of two complementary machine-learned potentials in modelling chemically complex systems,” NPJ Computational Materials, vol. 9, p. 129, 2023, doi: 10.1038/s41524-023-01073-w.
    191. V. Wagner, R. Strässer, F. Allgöwer, and N. E. Radde, “A provably convergent control closure scheme for the Method of Moments of the Chemical Master Equation,” Journal of Chemical Theory and Computation, vol. 19, no. 24, Art. no. 24, Dec. 2023, doi: https://doi.org/10.1021/acs.jctc.3c00548.
    192. Á. D. Carral, X. Xu, S. Gravelle, A. YazdanYar, S. Schmauder, and M. Fyta, “Stability of binary precipitates in Cu-Ni-Si-Cr alloys investigated through active learning,” Materials Chemistry and Physics, vol. 306, p. 128053, Sep. 2023, doi: 10.1016/j.matchemphys.2023.128053.
    193. S. Höpfl, J. Pleiss, and N. E. Radde, “Bayesian estimation reveals that reproducible models in Systems Biology get more citations,” Scientific reports, vol. 13, p. 2695, 2023, doi: 10.1038/s41598-023-29340-2.
    194. C. Steinhausen et al., “Characterisation of the transient mixing behaviour of evaporating near-critical droplets,” Frontiers in Physics, vol. 11, 2023, doi: 10.3389/fphy.2023.1192416.
    195. A. R. Nikolaev, B. V. Ehinger, R. N. Meghanathan, and C. van Leeuwen, “Planning to revisit: Neural activity in refixation precursors,” Journal of Vision, vol. 23, no. 7, Art. no. 7, Jul. 2023, doi: 10.1167/jov.23.7.2.
    196. C. Yan, B. Ehinger, A. Pérez-Bellido, M. V. Peelen, and F. P. de Lange, “Humans predict the forest, not the trees : statistical learning of  spatiotemporal structure in visual scenes,” Cerebral cortex, vol. 33, no. 13, Art. no. 13, 2023, doi: 10.1093/cercor/bhad115.
    197. C. Lohrmann and C. Holm, “A novel model for biofilm initiation in porous media flow,” Soft Matter, vol. 19, no. 36, Art. no. 36, 2023, doi: 10.1039/D3SM00575E.
    198. K. Mouris et al., “Stability criteria for Bayesian calibration of reservoir sedimentation models,” Modeling Earth Systems and Environment, 2023, doi: 10.1007/s40808-023-01712-7.
    199. L. Lambers et al., “Quantifying Fat Zonation in Liver Lobules: An IntegratedMultiscale In-silico Model Combining DisturbedMicroperfusion and Fat Metabolism via aContinuum-Biomechanical Bi-scale, Tri-phasic Approach,” Sep. 2023, doi: 10.21203/rs.3.rs-3348101/v1.
    200. A. Alanwar, A. Koch, F. Allgöwer, and F. H. Johansson, “Data-Driven Reachability Analysis from Noisy Data,” IEEE Transactions on Automatic Control, pp. 1–16, 2023, doi: 10.1109/TAC.2023.3257167.
    201. A. Straub, N. Karadimitriou, G. Reina, S. Frey, H. Steeb, and T. Ertl, “Visual Analysis of Displacement Processes in Porous Media using Spatio-Temporal Flow Graphs,” IEEE Transactions on Visualization and Computer Graphics, 2023, doi: 10.1109/TVCG.2023.3326931.
    202. J. Lißner and F. Fritzen, “Double U‐Net: Improved multiscale modeling via fully convolutional neural networks,” Proceedings in Applied Mathematics & Mechanics (PAMM), Sep. 2023, doi: 10.1002/pamm.202300205.
    203. J. Kneifl, D. Rosin, O. Avci, O. Röhrle, and J. Fehr, “Low-dimensional data-based surrogate model of a continuum-mechanical musculoskeletal system based on non-intrusive model order reduction,” Archive of Applied Mechanics, vol. 93, pp. 3637–3663, 2023, doi: 10.1007/s00419-023-02458-5.
    204. L. Zhuang, S. M. Hassanizadeh, and C.-Z. Qin, “Experimental determination of in-plane permeability of nonwoven thin fibrous materials,” Textile Research Journal, vol. 93, no. 19–20, Art. no. 19–20, Jun. 2023, doi: 10.1177/00405175231181089.
    205. M. Degen et al., “Structural basis of NINJ1-mediated plasma membrane rupture in cell death,” Nature, vol. 618, no. 7967, Art. no. 7967, Jun. 2023, doi: 10.1038/s41586-023-05991-z.
    206. D. Gramlich, P. Pauli, C. W. Scherer, F. Allgöwer, and C. Ebenbauer, “Convolutional Neural Networks as 2-D systems,” Mar. 2023, doi: 10.48550/ARXIV.2303.03042.
    207. I. Ðula, T. Berberena, K. Kepliner, and M. Wirzberger, “Hooked on artificial agents: a systems thinking perspective,” Frontiers in Behavioral Economics, vol. 2, p. 1223281, 2023, doi: 10.3389/frbhe.2023.1223281.
  5. 2022

    1. P. Gebhardt, X. Yu, A. Köhn, and M. Sedlmair, MolecuSense: Using Force-Feedback Gloves for Creating and Interacting with Ball-and-Stick Molecules in VR. in Proceedings of the 15th International Symposium on Visual Information Communication and Interaction. New York, NY, USA: Association for Computing Machinery, 2022, pp. 1–5. doi: 10.1145/3554944.3554956.
    2. J. Potyka et al., “Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D,” High Performance Computing in Science and Engineering ’22, Springer International Publishing, 2022. [Online]. Available: https://arxiv.org/abs/2212.09727
    3. W. Luo, J. Chen, H. Ebel, and P. Eberhard, “Time-Optimal Handover Trajectory Planning for Aerial Manipulators based on Discrete Mechanics and Complementarity Constraints,” 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2209.00533
    4. M. Rosenfelder, H. Ebel, J. Krauspenhaar, and P. Eberhard, “Model Predictive Control of Non-Holonomic Vehicles: Beyond Differential-Drive,” 2022. [Online]. Available: https://arxiv.org/abs/2205.11400
    5. T. Holicki, “A Complete Analysis and Design Framework for Linear Impulsive and Related Hybrid Systems,” University of Stuttgart, 2022. doi: 10.18419/opus-12158.
    6. T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf, “NMTVis - Extended Neural Machine Translation Visualization System.” 2022. doi: 10.18419/darus-2124.
    7. D. Lieb, “Advanced neural network architectures for continuum biomechanical simulation surrogates.” 2022.
    8. D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart, “Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression arXiv v2.” 2022. doi: 10.18419/darus-3110.
    9. D. Holzmüller, “Replication Data for: Fast Sparse Grid Operations using the Unidirectional Principle: A Generalized and Unified Framework.” 2022. doi: 10.18419/darus-1779.
    10. S. Hermann, “Case Study Database for: Documenting Research Software in Engineering Science.” 2022. doi: 10.18419/darus-2681.
    11. T. Praditia, M. Karlbauer, S. Otte, S. Oladyshkin, M. V. Butz, and W. Nowak, “Replication Data for: Learning Groundwater Contaminant Diffusion-Sorption Processes with a Finite Volume Neural Network.” 2022. doi: 10.18419/darus-3249.
    12. T. Wenzel, G. Santin, and B. Haasdonk, “Stability of convergence rates: Kernel interpolation on non-Lipschitz domains.” arXiv, 2022. doi: 10.48550/ARXIV.2203.12532.
    13. J. Kneifl, J. Hay, and J. Fehr, “Human Occupant Motion in Pre-Crash Scenario.” 2022. doi: 10.18419/darus-2471.
    14. B. Maier, D. Göddeke, F. Huber, T. Klotz, O. Röhrle, and M. Schulte, “OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System.” 2022.
    15. K. Davis and M. Schulte, “Replication Data for: Geothermal-ML - predicting thermal plume from groundwater heat pumps.” 2022. doi: 10.18419/darus-3184.
    16. I. Banerjee and P. Walter, “Replication Data for: The Method of Forced Probabilities: a Computation Trick for Bayesian Model Evidence : MFP implementation codes on SIP.” 2022. doi: 10.18419/darus-2815.
    17. M. Takamoto et al., “PDEBench Pretrained Models : Pretrained models for ‘PDEBench: An Extensive Benchmark for Scientific Machine Learning.’” 2022. doi: 10.18419/darus-2987.
    18. L. Nölle et al., “EHTM Code and Manual.” 2022. doi: 10.18419/darus-1144.
    19. M. Hammer, J. M. Riede, L. Meszaros-Beller, and S. Schmitt, “gspine: A Human Spine Model Built Using Literature Data : a human spine model built using literature data.” 2022. doi: 10.18419/darus-2814.
    20. M. Takamoto et al., “PDEBench Datasets : Data for ‘PDEBench: An Extensive Benchmark for Scientific Machine Learning.’” 2022. doi: 10.18419/darus-2986.
    21. M. Alkämper and J. M. Magiera, “Interface Preserving Moving Mesh (Code).” 2022. doi: 10.18419/darus-1671.
    22. S. Schmitt, “demoa-base: a biophysics simulator for muscle-driven motion.” 2022. doi: 10.18419/darus-2550.
    23. G. Tkachev, “PyPlant: A Python Framework for Cached Function Pipelines.” 2022. doi: 10.18419/darus-2249.
    24. I. Wochner and S. Schmitt, “MPC/OC Code for: Learning with Muscles: Benefits for Data-Efficiency and Robustness in Anthropomorphic Tasks.” 2022. doi: 10.18419/darus-3268.
    25. K. Davis and M. Schulte, “Replication Data for: Radial basis function interpolation with partition of unity for PyRBF.” 2022. doi: 10.18419/darus-3183.
    26. D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart, “Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression arXiv v1.” 2022. doi: 10.18419/darus-2615.
    27. K. Davis and M. Schulte, “COM-4 model to replicate simulation results for the GEO.KW project.” 2022. doi: 10.18419/darus-3185.
    28. K. Davis and M. Schulte, “REG-30 model to replicate simulation results for the GEO.KW project.” 2022. doi: 10.18419/darus-3195.
    29. A. Baier and S. Staab, “A Simulated 4-DOF Ship Motion Dataset for System Identification under Environmental Disturbances.” 2022. doi: 10.18419/darus-2905.
    30. C. Keßler et al., “Supplementary material for ‘Influence of Layer Slipping on Adsorption of Light Gases in Covalent Organic Frameworks: A Combined Experimental and Computational Study.’” 2022. doi: 10.18419/darus-2308.
    31. T. P. Fellmeth, “- Live or let die - Bcl-2 protein transmembrane domain interactions in apoptosis signaling,” University of Stuttgart, Germany, 2022.
    32. A. Arad, V. Vaikuntanathan, M. Ibach, J. B. Greenberg, B. Weigand, and D. Katoshevski, “CFD Simulations of Droplet Grouping in Acoustic Standing Waves,” presented at the ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, 2022.
    33. T. Holicki and C. W. Scherer, “A Dynamic S-Procedure for Dynamic Uncertainties,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 55. 2022, pp. 103–108. doi: 10.1016/j.ifacol.2022.09.331.
    34. D. Gramlich, C. W. Scherer, and C. Ebenbauer, “Robust Differential Dynamic Programming,” in 2022 IEEE 61st Conference on Decision and Control (CDC), in 2022 IEEE 61st Conference on Decision and Control (CDC). 2022. doi: 10.1109/cdc51059.2022.9992569.
    35. M. Takamoto et al., “PDEBench: An Extensive Benchmark for Scientific Machine Learning,” in 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks, in 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks. 2022.
    36. P. Gavrilenko et al., “A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Cham: Springer International Publishing, 2022, pp. 378--386.
    37. S. Shuva, P. Buchfink, O. Röhrle, and B. Haasdonk, “Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Springer International Publishing, 2022, pp. 402--409.
    38. C. Fiedler, C. W. Scherer, and S. Trimpe, “Learning Functions and Uncertainty Sets Using Geometrically Constrained Kernel Regression,” in 61st IEEE Conf. Decision and Control, in 61st IEEE Conf. Decision and Control. IEEE, Dec. 2022. doi: 10.1109/cdc51059.2022.9993144.
    39. M. Ibach et al., “Numerical Investigation of Multiple Droplet Streams and the Effect on Grouping Behavior,” presented at the ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, 2022.
    40. I. Desai, C. Bringedal, and B. Uekermann, “A Flexible Software Approach to Simulate Two-Scale Coupled Problems,” in 8th European Congress on Computational Methods in Applied Sciences and Engineering, in 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. doi: 10.23967/eccomas.2022.037.
    41. M. Karlbauer, T. Praditia, S. Otte, S. Oladyshkin, W. Nowak, and M. V. Butz, “Composing Partial Differential Equations with Physics-Aware Neural Networks,” in Proceedings of the 39th International Conference on Machine Learning, in Proceedings of the 39th International Conference on Machine Learning. Baltimore, USA, 2022.
    42. A. Sousa Calepso, N. Hube, N. Berenguel Senn, V. Brandt, and M. Sedlmair, “cARdLearner: Using Expressive Virtual Agents when Learning Vocabulary in Augmented Reality,” in ACM Conference on Human Factors in Computing Systems Extended Abstracts (CHI-EA)), in ACM Conference on Human Factors in Computing Systems Extended Abstracts (CHI-EA)). New Orleans, LA, USA, 2022. doi: 10.1145/3491101.3519631.
    43. L. R. Skreinig et al., “AR Hero: Generating Interactive Augmented Reality Guitar Tutorials,” in 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), in 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). Mar. 2022, pp. 395–401. doi: 10.1109/VRW55335.2022.00086.
    44. P. Buchfink, S. Glas, and B. Haasdonk, “Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems,” in IFAC-PapersOnLine, in IFAC-PapersOnLine, vol. 55. 2022, pp. 463--468. doi: 10.1016/j.ifacol.2022.09.138.
    45. J. Härter, R. Poser, B. Weigand, and G. Lamanna, “Impact of Porous-Media Topology on Turbulent Fluid Flow: Time-Resolved PIV Measurements,” in 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics, in 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics. 2022. doi: 10.55037/lxlaser.20th.80.
    46. R. Leiteritz, P. Buchfink, B. Haasdonk, and D. Pflüger, “Surrogate-data-enriched Physics-Aware Neural Networks,” in Proceedings of the Northern Lights Deep Learning Workshop 2022, in Proceedings of the Northern Lights Deep Learning Workshop 2022, vol. 3. Mar. 2022. doi: 10.7557/18.6268.
    47. N. Hube, A. Achberger, P. Liepert, J. Vogelsang, K. Vidačković, and M. Sedlmair, “Study on the Influence of Upper Limb Representations and Haptic Feedback in Virtual Reality,” in 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), in 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). Oct. 2022, pp. 802–807. doi: 10.1109/ISMAR-Adjunct57072.2022.00172.
    48. G. Tkachev, R. Cutura, M. Sedlmair, S. Frey, and T. Ertl, “Metaphorical Visualization: Mapping Data to Familiar Concepts,” in CHI Conference on Human Factors in Computing Systems Extended Abstracts, in CHI Conference on Human Factors in Computing Systems Extended Abstracts. ACM, Apr. 2022. doi: 10.1145/3491101.3516393.
    49. T. Wenzel, M. Kurz, A. Beck, G. Santin, and B. Haasdonk, “Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Cham: Springer International Publishing, 2022, pp. 410--418.
    50. C. C. Horuz et al., “Inferring Boundary Conditions in Finite Volume Neural Networks,” in International Conference on Artificial Neural Networks and Machine Learning -- ICANN 2022, E. Pimenidis, P. Angelov, C. Jayne, A. Papaleonidas, and M. Aydin, Eds., in International Conference on Artificial Neural Networks and Machine Learning -- ICANN 2022. Cham: Springer International Publishing, 2022, pp. 538–549. doi: https://doi.org/10.1007/978-3-031-15919-0_45.
    51. D. Kempf and C.-D. Munz, “Zonal Hybrid Computational Aeroacoustics Simulation of Trailing Edge Noise Using a High-Order Discontinuous Galerkin Method,” in 28th AIAA/CEAS Aeroacoustics 2022 Conference, in 28th AIAA/CEAS Aeroacoustics 2022 Conference. American Institute of Aeronautics and Astronautics, Jun. 2022. doi: 10.2514/6.2022-3021.
    52. B. Xiong, S. Zhu, N. Potyka, S. Pan, C. Zhou, and S. Staab, “Pseudo-Riemannian Graph Convolutional Networks,” in Advances in Neural Information Processing Systems, in Advances in Neural Information Processing Systems. 2022. [Online]. Available: https://arxiv.org/abs/2106.03134
    53. N. Hube, K. Vidackovic, and M. Sedlmair, “Using Expressive Avatars to Increase Emotion Recognition: A Pilot Study,” in Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, in Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. New Orleans, LA, USA: Association for Computing Machinery, Apr. 2022, pp. 1–7. doi: 10.1145/3491101.3519822.
    54. A. Straub, S. Boblest, G. K. Karch, F. Sadlo, and T. Ertl, “Droplet-Local Line Integration for Multiphase Flow,” in 2022 IEEE Visualization and Visual Analytics (VIS), in 2022 IEEE Visualization and Visual Analytics (VIS). 2022, pp. 135–139. doi: 10.1109/VIS54862.2022.00036.
    55. S. Oppold and M. Herschel, “Provenance-based explanations: are they useful?,” in International Workshop on the Theory and Practice  of Provenance (TAPP), in International Workshop on the Theory and Practice  of Provenance (TAPP). 2022, pp. 2:1--2:4. doi: 10.1145/3530800.3534529.
    56. T. Martin, T. B. Schön, and F. Allgöwer, “Gaussian inference for data-driven state-feedback design of nonlinear systems,” in 22nd IFAC World Congress (accepted), Preprint: arXiv:2211.05639, in 22nd IFAC World Congress (accepted), Preprint: arXiv:2211.05639. 22nd IFAC World Congress (accepted), Preprint: arXiv:2211.05639, 2022.
    57. T. Martin and F. Allgöwer, “Determining dissipativity for nonlinear systems from noisy data using Taylor polynomial approximation,” in Proc. American Control Conf. (ACC), in Proc. American Control Conf. (ACC). Atlanta, GA, USA, 2022, pp. 1432–1437.
    58. P. Neumann et al., “MaST: Scale-Bridging Exploration of Transcritical Fluid Systems,” in dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg: Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr, vol. 1, D. Schulz, A. Fay, W. Matiaske, and M. Schulz, Eds., in dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg: Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr, vol. 1. , 2022, pp. 101–106. doi: 10.24405/14522.
    59. C. Guttà, C. Morhard, and M. Rehm, “T-GAN-D: a GAN-based classifier for breast cancer                    prognostication.” Zenodo, Oct. 2022. doi: 10.5281/zenodo.7151831.
    60. M. Millard, T. Siebert, N. Stutzig, and J. Fehr, “Whiplash Simulation: How Muscle Modelling and Movement Interact,” in Book of Abstracts, in Book of Abstracts. International Center for Numerical Methods in Engineering (CIMNE), Jul. 2022, p. 834.
    61. C. Hagenlocher, R. Siebert, B. Taschke, S. Wieske, A. Hausser, and M. Rehm, “ER stress-induced cell death proceeds independently of the TRAIL-R2 signaling axis in pancreatic β cells,” Cell Death Discovery, vol. 8, no. 1, Art. no. 1, Jan. 2022, doi: 10.1038/s41420-022-00830-y.
    62. A. Schäfer Rodrigues Silva et al., “Diagnosing Similarities in Probabilistic Multi-Model Ensembles - an Application to Soil-Plant-Growth-Modeling,” Modeling Earth Systems and Environment, vol. 8, pp. 5143–5175, 2022, doi: 10.1007/s40808-022-01427-1.
    63. R. Merkle and A. Barth, “Subordinated Gaussian random fields in elliptic partial differential equations,” Stochastics and Partial Differential Equations: Analysis and Computations, vol. 11, pp. 819–867, 2022, doi: 10.1007/s40072-022-00246-w.
    64. A. Barth and A. Stein, “Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients,” ESAIM: M2AN, vol. 56, no. 5, Art. no. 5, 2022, doi: 10.1051/m2an/2022054.
    65. S. Weidner, A. Tomalka, C. Rode, and T. Siebert, “How velocity impacts eccentric force generation of fully activated skinned skeletal muscle fibers in long stretches,” Journal of Applied Physiology, vol. 133, no. 1, Art. no. 1, 2022, doi: 10.1152/japplphysiol.00735.2021.
    66. L. Yan et al., “A quantitative study of salinity effect on water diffusion in n-alkane phases: From pore-scale experiments to molecular dynamic simulation,” Fuel, vol. 324, p. 124716, Sep. 2022, doi: 10.1016/j.fuel.2022.124716.
    67. A. H. Ludwig-Słomczyńska and M. Rehm, “Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases,” Obesity, May 2022, doi: 10.1002/OBY.23424.
    68. J. Vera et al., “Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence,” Briefings in Bioinformatics, Oct. 2022, doi: 10.1093/BIB/BBAC433.
    69. Q. Zhou, J. Fehr, D. Bestle, and X. Rui, “Simulation of generally shaped 3D elastic body dynamics with large motion using transfer matrix method incorporating model order reduction,” Multibody System Dynamics, vol. 59, no. 3, Art. no. 3, 2022, doi: 10.1007/s11044-022-09869-2.
    70. J. Nicodemus, J. Kneifl, J. Fehr, and B. Unger, “Physics-informed Neural Networks-based Model Predictive Control for Multi-link Manipulators,” IFAC-PapersOnLine, vol. 55, no. 20, Art. no. 20, 2022, doi: 10.1016/j.ifacol.2022.09.117.
    71. J. Eller, T. Sauerborn, B. Becker, I. Buntic, J. Gross, and R. Helmig, “Modelling Subsurface Hydrogen Storage with Transport Properties from Entropy Scaling using the PC-SAFT Equation of State,” Water Resources Research, Apr. 2022, doi: 10.1029/2021wr030885.
    72. N. Seetha and S. M. Hassanizadeh, “A two-way coupled model for the co-transport of two different colloids in porous media,” Journal of Contaminant Hydrology, vol. 244, p. 103922, 2022, doi: 10.1016/j.jconhyd.2021.103922.
    73. S. Xiao and W. Nowak, “Reliability sensitivity analysis based on a two-stage Markov chain Monte Carlo simulation,” Aerospace Science and Technology, vol. 130, p. 107938, 2022, doi: 10.1016/j.ast.2022.107938.
    74. F. Bertrand, M. Brodbeck, and T. Ricken, “On robust discretization methods for poroelastic problems: Numerical examples and counter-examples,” Examples and Counterexamples, vol. 2, p. 100087, Nov. 2022, doi: 10.1016/j.exco.2022.100087.
    75. I. Banerjee, P. Walter, A. Guthke, K. G. Mumford, and W. Nowak, “The Method of Forced Probabilities: A Computation Trick for Bayesian Model Evidence,” Computational Geosciences, 2022, doi: 10.1007/s10596-022-10179-x.
    76. J. Eirich, M. Münch, D. Jäckle, M. Sedlmair, J. Bonart, and T. Schreck, “RfX: A Design Study for the Interactive Exploration of a Random Forest to Enhance Testing Procedures for Electrical Engines,” Computer Graphics Forum, vol. 41, no. 6, Art. no. 6, Mar. 2022, doi: 10.1111/cgf.14452.
    77. D. Gramlich, C. Ebenbauer, and C. W. Scherer, “Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions,” Systems & Control Letters, vol. 165, 2022, doi: 10.1016/j.sysconle.2022.105271.
    78. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, vol. 21, no. 2, Art. no. 2, Feb. 2022, doi: 10.1038/s41563-021-01121-0.
    79. J. Magiera and C. Rohde, “A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces,” Journal of  Computational Physics, p. 111551, 2022, doi: https://doi.org/10.1016/j.jcp.2022.111551.
    80. P. Mossier, A. Beck, and C.-D. Munz, “A p-adaptive discontinuous Galerkin method with hp-shock capturing,” Joural of Scientific Computing, vol. 91, no. 4, Art. no. 4, 2022, doi: 10.1007/s10915-022-01770-6.
    81. D. Kempf and C.-D. Munz, “Zonal direct-hybrid aeroacoustic simulation of trailing edge noise using a high-order discontinuous Galerkin spectral element method,” Acta Acustica, vol. 6, p. 39, 2022, doi: 10.1051/aacus/2022030.
    82. G. Chourdakis et al., “preCICE v2: A sustainable and user-friendly coupling library,” Open Research Europe, vol. 2, p. 51, Apr. 2022, doi: 10.12688/openreseurope.14445.1.
    83. S. Liese, A. Schlaich, and R. R. Netz, “Dielectric Constant of Aqueous Solutions of Proteins and Organic Polymers from Molecular Dynamics Simulations,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0089397.
    84. T. Praditia, M. Karlbauer, S. Otte, S. Oladyshkin, M. V. Butz, and W. Nowak, “Learning Groundwater Contaminant Diffusion-Sorption Processes with a Finite Volume Neural Network,” Water Resources Research, vol. 58, no. 12, Art. no. 12, 2022, doi: 10.1029/2022WR033149.
    85. A. Mack et al., “Preferential Self-interaction of DNA Methyltransferase DNMT3A Subunits Containing the R882H Cancer Mutation Leads to Dominant Changes of Flanking Sequence Preferences,” Journal of Molecular Biology, vol. 434, no. 7, Art. no. 7, 2022, doi: 10.1016/j.jmb.2022.167482.
    86. C. Boccellato and M. Rehm, “Glioblastoma, from disease understanding towards optimal cell-based in vitro models,” Cellular Oncology, Jun. 2022, doi: 10.1007/s13402-022-00684-7.
    87. L. Boumaiza et al., “Predicting Vertical LNAPL Distribution in the Subsurface under the Fluctuating Water Table Effect,” Groundwater Monitoring & Remediation, 2022, doi: 10.1111/gwmr.12497.
    88. V. Vaikuntanathan et al., “An Analytical Study on the Mechanism of Grouping of Droplets,” Fluids, vol. 7, no. 5, Art. no. 5, 2022, doi: 10.3390/fluids7050172.
    89. K. Pluhackova, V. Schittny, P.-C. Bürkner, C. Siligan, and A. Horner, “Multiple pore lining residues modulate water permeability of GlpF,” Protein Science, vol. 31, no. 10, Art. no. 10, 2022, doi: https://doi.org/10.1002/pro.4431.
    90. C. Brecher et al., “Commitment zu aktivem Daten- und -softwaremanagement in großen Forschungsverbünden,” Bausteine Forschungsdatenmanagement, vol. 1, 2022, doi: 10.17192/BFDM.2022.1.8412.
    91. S. Aseyednezhad, L. Yan, S. M. Hassanizadeh, and A. Raoof, “An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film,” Advances in Water Resources, vol. 159, pp. 1--9, 2022, doi: 10.1016/j.advwatres.2021.104058.
    92. M. Pechlaner, W. F. van Gunsteren, N. Hansen, and L. J. Smith, “Molecular dynamics simulation or structure refinement of proteins: are solvent molecules required? A case study using hen lysozyme,” European Biophysics Journal, vol. 51, no. 3, Art. no. 3, Apr. 2022, doi: 10.1007/s00249-022-01593-1.
    93. A. Köhn and J. Olsen, “Capabilities and limits of the unitary coupled-cluster approach with generalized two-body cluster operators,” J. Chem. Phys., vol. 157, no. 12, Art. no. 12, 2022, doi: 10.1063/5.0104815.
    94. V. Wagner, S. Höpfl, V. Klingel, M. C. Pop, and N. E. Radde, “An inverse transformation algorithm to infer parameter distributions from population snapshot data,” IFAC-PapersOnLine, vol. 55, no. 23, Art. no. 23, 2022, doi: https://doi.org/10.1016/j.ifacol.2023.01.020.
    95. A. Tomalka, M. Heim, A. Klotz, C. Rode, and T. Siebert, “Ultrastructural and kinetic evidence support that thick filaments slide through the Z-disc,” Interface : journal of the Royal Society, vol. 19, no. 197, Art. no. 197, 2022, doi: 10.1098/rsif.2022.0642.
    96. V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Exploring chemical and conformational spaces by batch mode deep active learning,” Digital Discovery, vol. 1, pp. 605–620, 2022, doi: 10.1039/D₂DD00034B.
    97. H. Eschmann, H. Ebel, and P. Eberhard, “Exploration-Exploitation-Based Trajectory Tracking of Mobile Robots Using Gaussian Processes and Model Predictive Control,” Robotica, vol. 41, no. 10, Art. no. 10, 2022, doi: 10.1017/S0263574723000863.
    98. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions,” Transport in Porous Media, Nov. 2022, doi: 10.1007/s11242-022-01879-0.
    99. W. F. van Gunsteren, M. Pechlaner, L. J. Smith, B. Stankiewicz, and N. Hansen, “A Method to Derive Structural Information on Molecules from Residual Dipolar Coupling NMR Data,” The Journal of Physical Chemistry B, vol. 126, no. 21, Art. no. 21, May 2022, doi: 10.1021/acs.jpcb.2c02410.
    100. C. Scherer, “Dissipativity and Integral Quadratic Constraints, Tailored computational robustness tests for complex interconnections,” IEEE Control Systems Magazine (to appear), 2022, [Online]. Available: https://arxiv.org/abs/2105.07401
    101. T. Martin and F. Allgöwer, “Data-driven system analysis of nonlinear systems using polynomial approximation,” IEEE Trans. Automat. Control (accepted), 2022.
    102. P. Schnee et al., “Mechanistic basis of the increased methylation activity of the SETD2 protein lysine methyltransferase towards a designed super-substrate peptide,” Communications Chemistry, vol. 5, no. 1, Art. no. 1, 2022, doi: 10.1038/s42004-022-00753-w.
    103. T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf, “Visualization-based improvement of neural machine translation,” Computers & Graphics, vol. 103, pp. 45–60, 2022, doi: https://doi.org/10.1016/j.cag.2021.12.003.
    104. J. Kneifl, J. Hay, and J. Fehr, “Real-time Human Response Prediction Using a Non-intrusive Data-driven Model Reduction Scheme,” IFAC-PapersOnLine, vol. 55, no. 20, Art. no. 20, 2022, doi: 10.1016/j.ifacol.2022.09.109.
    105. A. Kharitenko and C. W. Scherer, “On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities,” Oct. 2022.
    106. K. Cheng, L. Z, S. Xiao, S. Oladyshkin, and W. Nowak, “Mixed covariance function Kriging model for uncertainty quantification,” International Journal for Uncertainty Quantification, vol. 12, no. 3, Art. no. 3, 2022, doi: 10.1615/Int.J.UncertaintyQuantification.2021035851.
    107. R. Merkle and A. Barth, “On Some Distributional Properties of Subordinated Gaussian Random Fields,” Methodology and Computing in Applied Probability, vol. 24, pp. 2661–2688, 2022, doi: 10.1007/s11009-022-09958-x.
    108. J. Eller, T. Sauerborn, B. Becker, I. Buntic, J. Gross, and R. Helmig, “Modeling Subsurface Hydrogen Storage With Transport Properties From Entropy Scaling Using the PC‐SAFT Equation of State,” Water Resources Research, vol. 58, no. 4, Art. no. 4, 2022, doi: 10.1029/2021wr030885.
    109. M. Kelm, S. Gärttner, C. Bringedal, B. Flemisch, P. Knabner, and N. Ray, “Comparison study of phase-field and level-set method for three-phase systems including two minerals,” Computational Geosciences, vol. 26, no. 3, Art. no. 3, 2022, doi: 10.1007/s10596-022-10142-w.
    110. I. Tischler, F. Weik, R. Kaufmann, M. Kuron, R. Weeber, and C. Holm, “A thermalized electrokinetics model including stochastic reactions suitable for multiscale simulations of reaction-advection-diffusion systems,” Journal of Computational Science, vol. 63, p. 101770, 2022, doi: 10.1016/j.jocs.2022.101770.
    111. J. Berberich, C. W. Scherer, and F. Allgöwer, “Combining Prior Knowledge and Data for Robust Controller Design,” IEEE Transactions on Automatic Control, vol. 68, no. 8, Art. no. 8, 2022, doi: 10.1109/tac.2022.3209342.
    112. V. Korn and K. Pluhackova, “Not sorcery after all: Roles of multiple charged residues in membrane insertion of gasdermin-A3,” Frontiers in Cell and Developmental Biology, vol. 10, 2022, doi: 10.3389/fcell.2022.958957.
    113. N. E. R. Zimmermann, G. Guevara-Carrion, J. Vrabec, and N. Hansen, “Predicting and Rationalizing the Soret Coefficient of Binary Lennard-Jones Mixtures in the Liquid State,” Advanced Theory and Simulations, vol. 5, no. 11, Art. no. 11, Jul. 2022, doi: 10.1002/adts.202200311.
    114. S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental Evaluation of Fluid Connectivity in Two-Phase Flow in Porous Media During Drainage,” Water Resources Research, vol. 58, no. 11, Art. no. 11, Nov. 2022, doi: 10.1029/2022wr033451.
    115. L. Chavez Rodriguez, A. González-Nicolás, B. Ingalls, W. Nowak, S. Xiao, and H. Pagel, “Optimal design of experiments to improve the characterization of atrazine degradation pathways in soil,” European Journal of Soil Science, vol. 73, no. 1, Art. no. 1, 2022, doi: 10.1111/ejss.13211.
    116. Y. S. R. Krishna, N. Seetha, and S. M. Hassanizadeh, “Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media,” Journal of Contaminant Hydrology, vol. 251, p. 104079, Dec. 2022, doi: 10.1016/j.jconhyd.2022.104079.
    117. A. Rodriguez-Pretelin, E. Morales-Casique, and W. Nowak, “Optimization-based clustering of random fields for computationally efficient and goal-oriented uncertainty quantification: concept and demonstration for delineation of wellhead protection areas in transient aquifers,” Advances in Water Resources, vol. 162, p. 104146, 2022, doi: 10.1016/j.advwatres.2022.104146.
    118. V. Wagner, B. Castellaz, M. Oesting, and N. Radde, “Quasi-Entropy Closure: A Fast and Reliable Approach to Close the Moment Equations of the Chemical Master Equation,” Bioinformatics, vol. 38, no. 18, Art. no. 18, 2022, doi: 10.1093/bioinformatics/btac501.
    119. C. W. Scherer, “Dissipativity, Convexity and Tight O\textquotesingleShea-Zames-Falb Multipliers for Safety Guarantees,” IFAC-PapersOnLine, vol. 55, no. 30, Art. no. 30, 2022, doi: 10.1016/j.ifacol.2022.11.044.
    120. D. Markthaler, H. Kraus, and N. Hansen, “Binding free energies for the SAMPL8 CB8 ‘Drugs of Abuse’ challenge from umbrella sampling combined with Hamiltonian replica exchange,” Journal of Computer-Aided Molecular Design, vol. 36, pp. 1–9, 2022, doi: 10.1007/s10822-021-00439-w.
    121. H. Mandler and B. Weigand, “On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application,” International Journal of Heat and Fluid Flow, vol. 97, p. 109017, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109017.
    122. B. Maier and M. Schulte, “Mesh generation and multi-scale simulation of a contracting muscle–tendon complex,” Journal of Computational Science, vol. 59, p. 101559, 2022, doi: https://doi.org/10.1016/j.jocs.2022.101559.
    123. C. Arndt, A. Denker, J. Nickel, J. Leuschner, M. Schmidt, and G. Rigaud, “In Focus - hybrid deep learning approaches to the HDC2021 challenge,” Inverse Problems and Imaging, vol. 0, no. 0, Art. no. 0, 2022, doi: 10.3934/ipi.2022061.
    124. H. Hsueh, A. Guthke, T. Wöhling, and W. Nowak, “Diagnosis of model-structural errors with a sliding time-window Bayesian analysis,” Water Resources Research, vol. 58, p. e2021WR030590, 2022, doi: doi:10.1029/2021WR030590.
    125. M. Gültig, J. P. Range, B. Schmitz, and J. Pleiss, “Integration of Simulated and Experimentally Determined Thermophysical Properties of Aqueous Mixtures by ThermoML,” Journal of Chemical & Engineering Data, vol. 67, no. 11, Art. no. 11, 2022, doi: 10.1021/acs.jced.2c00391.
    126. R. Cui, S. M. Hassanizadeh, and S. Sun, “Pore-network modeling of flow in shale nanopores : Network structure, flow principles, and computational algorithms,” Earth science reviews, vol. 234, no. November, Art. no. November, 2022, doi: 10.1016/j.earscirev.2022.104203.
    127. D. Lee, N. Karadimitriou, M. Ruf, and H. Steeb, “Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods,” Solid Earth, vol. 13, pp. 1475--1494, 2022, doi: 10.5194/se-13-1475-2022.
    128. R. Merkle and A. Barth, “Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient,” BIT Numerical Mathematics, vol. 62, pp. 1279–1317, 2022, doi: 10.1007/s10543-022-00912-4.
    129. A. Gonzalez-Nicolas et al., “Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities,” Transport in Porous Media, vol. 143, no. 2, Art. no. 2, 2022, doi: 10.1007/s11242-022-01777-5.
    130. D. Markthaler, M. Fleck, B. Stankiewicz, and N. Hansen, “Exploring the Effect of Enhanced Sampling on Protein Stability Prediction,” Journal of Chemical Theory and Computation, vol. 18, no. 4, Art. no. 4, Mar. 2022, doi: 10.1021/acs.jctc.1c01012.
    131. N. Gössweiner-Mohr et al., “The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold,” Small, vol. 18, no. 31, Art. no. 31, 2022, doi: https://doi.org/10.1002/smll.202202056.
    132. S. Hermann and J. Fehr, “Documenting research software in engineering science,” Scientific Reports, vol. 12, no. 1, Art. no. 1, Apr. 2022, doi: 10.1038/s41598-022-10376-9.
    133. M. Gao, T. Kuhn, and C. Munz, “On the investigation of oblique shock‐wave/turbulent boundary‐layer interactions with a high‐order discontinuous Galerkin method,” International Journal for Numerical Methods in Fluids, vol. 94, no. 8, Art. no. 8, Apr. 2022, doi: 10.1002/fld.5091.
    134. I. Kröker and S. Oladyshkin, “Arbitrary Multi-Resolution Multi-Wavelet-based Polynomial Chaos Expansion for Data-Driven Uncertainty Quantification,” Reliability Engineering & System Safety, vol. 222, p. 108376, 2022, doi: 10.1016/j.ress.2022.108376.
    135. S. Gravelle, C. Holm, and A. Schlaich, “Transport of thin water films: from thermally activated random walks to hydrodynamics,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0099646.
    136. A. Schwarz, P. Kopper, J. Keim, H. Sommerfeld, C. Koch, and A. Beck, “A neural network based framework to model particle rebound and fracture,” Wear, vol. 508–509, p. 204476, Nov. 2022, doi: 10.1016/j.wear.2022.204476.
    137. M. Kurz, P. Offenhäuser, D. Viola, O. Shcherbakov, M. Resch, and A. Beck, “Deep reinforcement learning for computational fluid dynamics on HPC systems,” Journal of Computational Science, vol. 65, p. 101884, Nov. 2022, doi: 10.1016/j.jocs.2022.101884.
    138. A. L. Gert, B. V. Ehinger, S. Timm, T. C. Kietzmann, and P. König, “WildLab: A naturalistic free viewing experiment reveals previously unknown electroencephalography signatures of face processing,” European Journal of Neuroscience, vol. 56, no. 11, Art. no. 11, Nov. 2022, doi: 10.1111/ejn.15824.
    139. S. Frey et al., “Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media,” Computer graphics forum, vol. 41, no. 1, Art. no. 1, 2022, doi: 10.1111/cgf.14432.
    140. M. Ibach, V. Vaikuntanathan, A. Arad, D. Katoshevski, J. B. Greenberg, and B. Weigand, “Investigation of droplet grouping in monodisperse streams by direct numerical simulations,” Physics of Fluids, vol. 34, no. 8, Art. no. 8, 2022, doi: 10.1063/5.0097551.
    141. C. Kessler et al., “Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study,” Microporous and Mesoporous Materials, vol. 336, p. 111796, May 2022, doi: 10.1016/j.micromeso.2022.111796.
    142. L. Neumaier, J. Schilling, A. Bardow, and J. Gross, “Dielectric constant of mixed solvents based on perturbation theory,” Fluid Phase Equilibria, vol. 555, p. 113346, Apr. 2022, doi: 10.1016/j.fluid.2021.113346.
    143. F. Kempter, L. Lantella, N. Stutzig, J. Fehr, and T. Siebert, “Role of Rotated Head Postures on Volunteer Kinematics and Muscle Activity in Braking Scenarios Performed on a Driving Simulator,” Annals of Biomedical Engineering, vol. 51, no. 4, Art. no. 4, 2022, doi: 10.1007/s10439-022-03087-9.
    144. T. van Westen, M. Hammer, B. Hafskjold, A. Aasen, J. Gross, and Ø. Wilhelmsen, “Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid,” The Journal of Chemical Physics, vol. 156, no. 10, Art. no. 10, Mar. 2022, doi: 10.1063/5.0082690.
    145. M. S. Walczak, H. Erfani, N. K. Karadimitriou, I. Zarikos, S. M. Hassanizadeh, and V. Niasar, “Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion,” Water Resources Research, vol. 58, no. 6, Art. no. 6, Jun. 2022, doi: 10.1029/2021wr030426.
    146. D. Holzmüller and I. Steinwart, “Training two-layer ReLU networks with gradient descent is inconsistent,” Journal of Machine Learning Research, vol. 23, no. 181, Art. no. 181, 2022, [Online]. Available: http://jmlr.org/papers/v23/20-830.html
    147. P. Rehner, T. van Westen, and J. Gross, “Equation of state and Helmholtz energy functional for fused heterosegmented hard chains,” Physical Review E, Mar. 2022, doi: 10.1103/PhysRevE.105.034110.
    148. E. de Botton et al., “An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method,” Applied Mathematical Modelling, vol. 104, pp. 486–498, 2022, doi: 10.1016/j.apm.2021.12.001.
    149. J. Range et al., “EnzymeML—a data exchange format for biocatalysis and enzymology,” The FEBS Journal, vol. 289, no. 19, Art. no. 19, Oct. 2022, doi: https://doi.org/10.1111/febs.16318.
    150. C. A. Rösinger and C. W. Scherer, “Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings,” Oct. 2022.
    151. H. Mandler and B. Weigand, “A realizable and scale-consistent data-driven non-linear eddy viscosity modeling framework for arbitrary regression algorithms,” International Journal of Heat and Fluid Flow, vol. 97, p. 109018, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109018.
    152. V. Zaverkin, D. Holzmüller, R. Schuldt, and J. Kästner, “Predicting properties of periodic systems from cluster data: A case study of liquid water,” The Journal of Chemical Physics, vol. 156, no. 11, Art. no. 11, 2022, doi: 10.1063/5.0078983.
    153. V. Zaverkin, J. Netz, F. Zills, A. Köhn, and J. Kästner, “Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments,” Journal of Chemical Theory and Computation, vol. 18, pp. 1–12, 2022, doi: 10.1021/acs.jctc.1c00853.
  6. 2021

    1. F. Grioui and T. Blascheck, Study of Heart Rate Visualizations on a Virtual Smartwatch. in Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology. ACM, 2021. doi: https://doi.org/10.1145/3489849.3489913.
    2. A. Baier, Z. Boukhers, and S. Staab, “Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction,” 2021. [Online]. Available: http://arxiv.org/abs/2103.06727
    3. V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments.” 2021. doi: 10.18419/darus-2136.
    4. I. Banerjee, “Replication Data for: Overcoming the model-data-fit problem in porous media: A quantitative method to compare invasion-percolation models to high-resolution data : modeling data and Post-processing codes for the manuscript.” 2021. doi: 10.18419/darus-1776.
    5. H. Eschmann, “A Data Set for Research on Data-based Methods for an Omnidirectional Mobile Robot.” 2021. doi: 10.18419/darus-1845.
    6. P. Kharitenko, “Coupling Julia-based Simulations via preCICE.” Oct. 2021.
    7. A. Gonzalez-Nicolas Alvarez, “Sampling Strategies of the Regime-and-memory model (RMM).” 2021. doi: 10.18419/darus-2035.
    8. A. Schlaich, “Simulation input scripts for ‘Electronic screening using a virtual Thomas-Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces.’” 2021. doi: 10.18419/darus-2115.
    9. D. Holzmüller, “Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression.” 2021. doi: 10.18419/darus-1771.
    10. T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf, “NMTVis - Neural Machine Translation Visualization System.” 2021. doi: 10.18419/darus-1849.
    11. T. Wenzel, G. Santin, and B. Haasdonk, “Analysis of target data-dependent greedy kernel algorithms: Convergence rates for $f$-, $f P$- and $f/P$-greedy.” arXiv, 2021. doi: 10.48550/ARXIV.2105.07411.
    12. G. Tkachev, “Replication Data for: ‘S4: Self-Supervised learning of Spatiotemporal Similarity.’” 2021. doi: 10.18419/darus-2174.
    13. A. Gonzalez-Nicolas Alvarez, “Regime-and-memory model (RMM) Code.” 2021. doi: 10.18419/darus-2034.
    14. S. Schulz, C. Bringedal, and S. Ackermann, “Code for relative permeabilities for two-phase flow between parallel plates with slip conditions.” 2021. doi: 10.18419/darus-2241.
    15. T. Munz, R. Garcia, and D. Weiskopf, “Visual Analytics System for Hidden States in Recurrent Neural Networks.” DaRUS, 2021. doi: 10.18419/DARUS-2052.
    16. H.-F. Hsueh, “Code of the tBME method.” 2021. doi: 10.18419/darus-1836.
    17. T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf, “NMTVis - Trained Models for our Visual Analytics System.” DaRUS, 2021. doi: 10.18419/DARUS-1850.
    18. C. Fiedler, C. W. Scherer, and S. Trimpe, “Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression,” in Proceedings of the AAAI Conference on Artificial Intelligence, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35. 2021, pp. 7439–7447. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/16912
    19. T. Munz, D. Väth, P. Kuznecov, T. Vu, and D. Weiskopf, “Visual-Interactive Neural Machine Translation,” in Graphics Interface 2021, in Graphics Interface 2021. 2021. [Online]. Available: https://openreview.net/forum?id=DQHaCvN9xd
    20. F. Kempter, C. Kleinbach, M. Staudenmeyer, and J. C. Fehr, “An Active Female Human Body Model for Simulation of Rear-End Impact Scenarios,” in 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), in 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM). Wiley, 2021, p. e202000068. doi: 10.1002/pamm.202000068.
    21. T. Praditia, M. Karlbauer, S. Otte, S. Oladyshkin, M. Butz, and W. Nowak, “Finite Volume Neural Network: Modeling Subsurface Contaminant Transport,” in Deep Learning for Simulation ICLR Workshop 2021, in Deep Learning for Simulation ICLR Workshop 2021. 2021. [Online]. Available: https://simdl.github.io/files/33.pdf
    22. T. Praditia, S. Oladyshkin, and W. Nowak, “Physics Informed Neural Network for porous media modelling,” Stuttgart, Germany: InterPore German Chapter Meeting 2021, Feb. 2021.
    23. S. Jöns, C. Müller, J. Zeifang, and C.-D. Munz, “Recent Advances and Complex Applications of the Compressible Ghost-Fl uid Method,” in Recent Advances in Numerical Methods for Hyperbolic PDE Systems, M. L. Muñoz-Ruiz, C. Parés, and G. Russo, Eds., in Recent Advances in Numerical Methods for Hyperbolic PDE Systems. Cham: Springer International Publishing, 2021, pp. 155--176.
    24. B. Haasdonk, T. Wenzel, G. Santin, and S. Schmitt, “Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods,” in Numerical Mathematics and Advanced Applications ENUMATH 2019, F. J. Vermolen and C. Vuik, Eds., in Numerical Mathematics and Advanced Applications ENUMATH 2019. Cham: Springer International Publishing, 2021, pp. 499--508.
    25. M. Ibach et al., “Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions,” in International Conference on Liquid Atomization and Spray Systems (ICLASS), in International Conference on Liquid Atomization and Spray Systems (ICLASS), vol. 1. 2021. doi: 10.2218/iclass.2021.5815.
    26. J. Veenman, C. W. Scherer, C. Ardura, S. Bennani, V. Preda, and B. Girouart, “IQClab: A new IQC based toolbox for robustness analysis and control design,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 54. 2021, pp. 69--74. doi: 10.1016/j.ifacol.2021.08.583.
    27. C. Fiedler, C. W. Scherer, and S. Trimpe, “Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees,” in 60th IEEE Conference Decision and Control, in 60th IEEE Conference Decision and Control. 2021.
    28. R. Diestelkämper, S. Lee, M. Herschel, and B. Glavic, “To not miss the forest for the trees - A holistic approach for explaining missing answers over nested data,” in In Proceedings of the ACM SIG Conference on the Management of Data (SIGMOD), in In Proceedings of the ACM SIG Conference on the Management of Data (SIGMOD). 2021.
    29. R. Strässer, J. Berberich, and F. Allgöwer, “Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics,” in Proc. 60th IEEE Conf. Decision and Control (CDC), in Proc. 60th IEEE Conf. Decision and Control (CDC). Austin, TX, USA, 2021, pp. 4344–4351. doi: 10.1109/CDC45484.2021.9683211.
    30. D. Holzmüller and D. Pflüger, “Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework,” in Sparse Grids and Applications - Munich 2018, H.-J. Bungartz, J. Garcke, and D. Pflüger, Eds., in Sparse Grids and Applications - Munich 2018. Cham: Springer International Publishing, 2021, pp. 69--100.
    31. J. Kühnert, D. Göddeke, and M. Herschel, “Provenance-integrated parameter selection and optimization in numerical simulations,” in International Workshop on the Theory and Practice of Provenance (TAPP), in International Workshop on the Theory and Practice of Provenance (TAPP). USENIX Association, 2021.
    32. A. Alanwar, A. Koch, F. Allgöwer, and K. H. Johansson, “Data-Driven Reachability Analysis Using Matrix Zonotopes,” in Proceedings of the 3rd Conference on Learning for Dynamics and Control, in Proceedings of the 3rd Conference on Learning for Dynamics and Control, vol. 144. 2021, pp. 163--175.
    33. J. Schmalfuss, C. Riethmüller, M. Altenbernd, K. Weishaupt, and D. Göddeke, “Partitioned coupling vs. monolithic block-preconditioning approaches for solving Stokes-Darcy systems,” in Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS), in Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS). 2021. doi: 10.23967/coupled.2021.043.
    34. J. Steigerwald, M. Ibach, J. Reutzsch, and B. Weigand, “Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions,” in High Performance Computing in Science and Engineering ’20, in High Performance Computing in Science and Engineering ’20. Springer, 2021, pp. 261--279. doi: 10.1007/978-3-030-80602-6_17.
    35. T. Holicki and C. W. Scherer, “Algorithm Design and Extremum Control: Convex Synthesis due to Plant Multiplier Commutation,” in Proc. 60th IEEE Conf. Decision and Control, in Proc. 60th IEEE Conf. Decision and Control. 2021, pp. 3249–3256. doi: 10.1109/CDC45484.2021.9683012.
    36. F. Kempter, L. Lantella, N. Stutzig, J. Fehr, and T. Siebert, “Potential to Volunteer Testing Using a Driving Simulator with Motion Capture and EMG Data Acquisition,” in Proceedings of the IRCOBI Conference, in Proceedings of the IRCOBI Conference. Munich, Germany, 2021. [Online]. Available: http://www.ircobi.org/wordpress/downloads/irc21/pdf-files/2175.pdf
    37. H. Gadirov, G. Tkachev, T. Ertl, and S. Frey, “Evaluation and Selection of Autoencoders for Expressive Dimensionality Reduction of Spatial Ensembles,” in International Symposium on Visual Computing, in International Symposium on Visual Computing. Springer, 2021, pp. 222--234.
    38. T. Praditia, S. Oladyshkin, and W. Nowak, “Universal Differential Equation for Diffusion-Sorption Problem in Porous Media Flow,” online: EGU General Assembly 2021, Apr. 2021.
    39. N. Wieler, J. Berberich, A. Koch, and F. Allgöwer, “Data-Driven Controller Design via Finite-Horizon Dissipativity,” in Proceedings of the 3rd Conference on Learning for Dynamics and Control, in Proceedings of the 3rd Conference on Learning for Dynamics and Control, vol. 144. PMLR, 2021, pp. 287--298.
    40. S. Schlor, M. Hertneck, S. Wildhagen, and F. Allgöwer, “Multi-party computation enables secure polynomial control based solely on secret-sharing,” in Proc. 60th IEEE Conf. Decision and Control (CDC), in Proc. 60th IEEE Conf. Decision and Control (CDC). Austin, TX, USA, 2021, pp. 4882–4887. doi: 10.1109/CDC45484.2021.9683026.
    41. D. Holzmüller, “On the Universality of the Double Descent Peak in Ridgeless Regression,” in International Conference on Learning Representations, in International Conference on Learning Representations. 2021. [Online]. Available: https://openreview.net/forum?id=0IO5VdnSAaH
    42. P. Buchfink and B. Haasdonk, “Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem,” in Numerical Mathematics and Advanced Applications ENUMATH 2019, F. J. Vermolen and C. Vuik, Eds., in Numerical Mathematics and Advanced Applications ENUMATH 2019, vol. 139. Springer International Publishing, 2021. doi: 10.1007/978-3-030-55874-1.
    43. A. Beck et al., “Increasing the Flexibility of the High Order Discontinuous Galerkin Framework FLEXI Towards Large Scale Industrial Applications,” in High Performance Computing in Science and Engineering’20, in High Performance Computing in Science and Engineering’20. , Springer, 2021, pp. 343--358. doi: 10.1007/978-3-030-80602-6_22.
    44. A. Straub, G. K. Karch, F. Sadlo, and T. Ertl, “Implicit Visualization of 2D Vector Field Topology for Periodic Orbit Detection,” in Topological Methods in Data Analysis and Visualization VI, I. Hotz, T. Bin Masood, F. Sadlo, and J. Tierny, Eds., in Topological Methods in Data Analysis and Visualization VI. , Springer International Publishing, 2021, pp. 159–180. doi: 10.1007/978-3-030-83500-2_9.
    45. A. Arad, D. Katoshevski, V. Vaikuntanathan, M. Ibach, J. B. Greenberg, and B. Weigand, “Longitudinal and Lateral Grouping in Droplet Streams using the Eulerian-Lagrangian Approach,” Dec. 2021.
    46. S. Flaig, T. Praditia, A. Kissinger, U. Lang, S. Oladyshkin, and W. Nowak, “Prognosis of water levels in a moor groundwater system influenced by hydrology and water extraction using an artificial neural network,” in EGU General Assembly 2021, in EGU General Assembly 2021. 2021.
    47. S. M. Seyedpour, I. Valizadeh, P. Kirmizakis, R. Doherty, and T. Ricken, “Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method,” Water, vol. 13, no. 3, Art. no. 3, 2021, doi: 10.3390/w13030383.
    48. Y. Chen et al., “Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging,” Science Advances, vol. 7, no. 52, Art. no. 52, 2021, doi: 10.1126/sciadv.abj0960.
    49. A. Armiti-Juber and T. Ricken, “Model order reduction for deformable porous materials in thin domains via asymptotic analysis,” Archive of Applied Mechanics, 2021, doi: 10.1007/s00419-021-01907-3.
    50. N. Krishna Moorthy et al., “Low-Level Endothelial TRAIL-Receptor Expression Obstructs the CNS-Delivery of Angiopep-2 Functionalised TRAIL-Receptor Agonists for the Treatment of Glioblastoma,” Molecules, vol. 26, no. 24, Art. no. 24, Dec. 2021, doi: 10.3390/MOLECULES26247582.
    51. V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments,” Journal of Chemical Theory and Computation, vol. 17, no. 10, Art. no. 10, 2021, doi: 10.1021/acs.jctc.1c00527.
    52. S. Michalowsky, C. Scherer, and C. Ebenbauer, “Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach,” International Journal of Control, vol. 94, no. 11, Art. no. 11, 2021, doi: 10.1080/00207179.2020.1745286.
    53. R. Garcia, T. Munz, and D. Weiskopf, “Visual analytics tool for the interpretation of hidden states in recurrent neural networks,” Visual Computing for Industry, Biomedicine, and Art, vol. 4, no. 24, Art. no. 24, Sep. 2021, doi: 10.1186/s42492-021-00090-0.
    54. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer,” Water Resources Research, vol. 57, no. 6, Art. no. 6, 2021, doi: 10.1029/2020WR028572.
    55. M. Brunn, N. Himthani, G. Biros, M. Mehl, and A. Mang, “Fast GPU 3D diffeomorphic image registration,” Journal of Parallel and Distributed Computing, vol. 149, pp. 149--162, Mar. 2021, doi: 10.1016/j.jpdc.2020.11.006.
    56. S. Nirupama Sriram, E. Polukhov, and M.-A. Keip, “Transient stability analysis of composite hydrogel structures based on a minimization-type variational formulation,” International Journal of Solids and Structures, vol. 230–231, p. 111080, 2021, doi: https://doi.org/10.1016/j.ijsolstr.2021.111080.
    57. C. Rohde and H. Tang, “On a stochastic Camassa-Holm type equation with higher order nonlinearities,” J. Dynam. Differential Equations, vol. 33, pp. 1823–1852, 2021, doi: https://doi.org/10.1007/s10884-020-09872-1.
    58. B. Rodenberg, I. Desai, R. Hertrich, A. Jaust, and B. Uekermann, “FEniCS–preCICE: Coupling FEniCS to other simulation software,” SoftwareX, vol. 16, p. 100807, Dec. 2021, doi: 10.1016/j.softx.2021.100807.
    59. L. J. Smith, W. F. van Gunsteren, B. Stankiewicz, and N. Hansen, “On the use of 3J-coupling NMR data to derive structural information on proteins,” Journal of Biomolecular NMR, vol. 75, no. 1, Art. no. 1, Jan. 2021, doi: 10.1007/s10858-020-00355-5.
    60. S. Konangi, N. K. Palakurthi, N. K. Karadimitriou, K. Comer, and U. Ghia, “Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions,” Advances in Water Resources, vol. 147, p. 103792, 2021, doi: 10.1016/j.advwatres.2020.103792.
    61. J. Eller and J. Gross, “Free-Energy-Averaged Potentials for Adsorption in Heterogeneous Slit Pores Using PC-SAFT Classical Density Functional Theory,” Langmuir, vol. 37, no. 12, Art. no. 12, Mar. 2021, doi: 10.1021/acs.langmuir.0c03287.
    62. C. Keßler, J. Eller, J. Groß, and N. Hansen, “Adsorption of light gases in covalent organic frameworks : comparison of classical density functional theory and grand canonical Monte Carlo simulations,” Microporous and mesoporous materials, vol. 324, no. September, Art. no. September, 2021, doi: 10.1016/j.micromeso.2021.111263.
    63. S. M. Seyedpour et al., “Application of Magnetic Resonance Imaging in Liver Biomechanics: A Systematic Review,” Frontiers in Physiology, vol. 12, Sep. 2021, doi: 10.3389/fphys.2021.733393.
    64. M. I. Müller, A. Koch, F. Allgöwer, and C. R. Rojas, “Data-Driven Input-Passivity Estimation Using Power Iterations,” IFAC-PapersOnLine, vol. 54, no. 7, Art. no. 7, 2021, doi: https://doi.org/10.1016/j.ifacol.2021.08.429.
    65. S. Reuschen, A. Guthke, and W. Nowak, “The Four Ways to Consider Measurement Noise in Bayesian Model Selection - And Which One to Choose,” Water Resources Research, vol. 57, no. 11, Art. no. 11, 2021.
    66. M. Suditsch, P. Schröder, L. Lambers, T. Ricken, W. Ehlers, and A. Wagner, “Modelling basal-cell carcinoma behaviour in avascular skin,” PAMM, vol. 20, no. 1, Art. no. 1, Jan. 2021, doi: 10.1002/pamm.202000283.
    67. F. Bertrand, L. Lambers, and T. Ricken, “Least Squares Finite Element Method for Hepatic Sinusoidal Blood Flow,” PAMM, vol. 20, no. 1, Art. no. 1, Jan. 2021, doi: 10.1002/pamm.202000306.
    68. K. Cheng, Z. Lu, S. Xiao, S. Oladyshkin, and W. Nowak, “Unified Bayesian inference framework for surrogate modelling: connection between existing techniques and their common fundamentals,” submitted to Reliability Engineering and System Safety, 2021.
    69. H. Gao, A. Tatomir, N. Karadimitriou, H. Steeb, and M. Sauter, “Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes,” Advances in Water Resources, vol. 157, p. 104044, 2021, doi: 10.1016/j.advwatres.2021.104044.
    70. C. Boccellato et al., “Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist,” Cell Death & Disease, vol. 12, no. 7, Art. no. 7, Jul. 2021, doi: 10.1038/s41419-021-03927-x.
    71. L. Zhuang, S. M. Hassanizadeh, D. Bhatt, and C. van Duijn, “Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling,” Transport in Porous Media, vol. 139, no. 2, Art. no. 2, 2021, doi: 10.1007/s11242-021-01670-7.
    72. J. Zeman, S. Kondrat, and C. Holm, “Ionic screening in bulk and under confinement,” The Journal of Chemical Physics, vol. 155, no. 20, Art. no. 20, 2021, doi: 10.1063/5.0069340.
    73. L. Lambers, M. Suditsch, A. Wagner, and T. Ricken, “A Multiscale and Multiphase Model of Function-Perfusion Growth Processes in the Human Liver,” PAMM, vol. 20, no. 1, Art. no. 1, Jan. 2021, doi: 10.1002/pamm.202000290.
    74. J. Eller, T. Matzerath, T. van Westen, and J. Gross, “Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state,” The Journal of Chemical Physics, Jun. 2021, doi: 10.1063/5.0051201.
    75. B. Christ et al., “Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function,” Frontiers in Physiology, vol. 12, Nov. 2021, doi: 10.3389/fphys.2021.733868.
    76. I. Banerjee, A. Guthke, C. J. C. Van de Ven, K. G. Mumford, and W. Nowak, “Overcoming the model-data-fit problem in porous media: A quantitative method to compare invasion-percolation models to high-resolution data,” Water Resources Research, vol. 57, no. 7, Art. no. 7, 2021, doi: 10.1029/2021WR029986.
    77. J. Kneifl, D. Grunert, and J. Fehr, “A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning,” International Journal for Numerical Methods in Engineering, Apr. 2021, doi: 10.1002/nme.6712.
    78. V. Zaverkin and J. Kästner, “Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design,” Machine Learning: Science and Technology, vol. 2, no. 3, Art. no. 3, 2021.
    79. T. Holicki, C. W. Scherer, and S. Trimpe, “Controller Design via Experimental Exploration with Robustness Guarantees,” IEEE Control Systems Letters, vol. 5, no. 2, Art. no. 2, 2021, doi: 10.1109/LCSYS.2020.3004506.
    80. A. Czeszumski et al., “Coordinating With a Robot Partner Affects Neural Processing Related to Action Monitoring,” Frontiers in Neurorobotics, vol. 15, Aug. 2021, doi: 10.3389/fnbot.2021.686010.
    81. K. Schatz et al., “2019 IEEE Scientific Visualization Contest Winner: Visual Analysis of Structure Formation in Cosmic Evolution,” IEEE Computer Graphics and Applications, vol. 41, no. 6, Art. no. 6, 2021, doi: 10.1109/MCG.2020.3004613.
    82. M. Heinemann, S. Frey, G. Tkachev, A. Straub, F. Sadlo, and T. Ertl, “Visual analysis of droplet dynamics in large-scale multiphase spray simulations,” Journal of Visualization, vol. 24, no. 5, Art. no. 5, May 2021, doi: 10.1007/s12650-021-00750-6.
    83. T. Hitz, S. Jöns, M. Heinen, J. Vrabec, and C.-D. Munz, “Comparison of macro- and microscopic solutions of the Riemann problem II. Two-phase shock tube,” Journal of Computational Physics, vol. 429, p. 110027, Mar. 2021, doi: 10.1016/j.jcp.2020.110027.
    84. H. Carvalho, V. Ferrario, and J. Pleiss, “The molecular mechanism of methanol inhibition in CALB-catalyzed alcoholysis: analyzing molecular dynamics simulations by a Markov state model,” J Chem Theory Comput, vol. 17, pp. 6570–6582, 2021, doi: https://doi.org/10.1021/acs.jctc.1c00559.
    85. S. Xiao, T. Praditia, S. Oladyshkin, and W. Nowak, “Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis,” Applied Energy, vol. 285, p. 116456, 2021.
    86. E. Polukhov and M.-A. Keip, “Multiscale stability analysis of periodic magnetorheological elastomers,” Mechanics of Materials, vol. 159, p. 103699, 2021, doi: https://doi.org/10.1016/j.mechmat.2020.103699.
    87. T. van Westen and J. Gross, “Accurate first-order perturbation theory for fluids: uf-theory,” The Journal of Chemical Physics, Jan. 2021, doi: 10.1063/5.0031545.
    88. V. Wagner and N. Radde, “SiCaSMA: An Alternative Stochastic Description via Concatenation of Markov Processes for a Class of Catalytic Systems,” Mathematics, vol. 9, p. 1074, 2021, doi: 10.3390/math9101074.
    89. A. Wagner et al., “Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods,” Transport in Porous Media, vol. 138, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-021-01586-2.
    90. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, Nov. 2021, doi: 10.1038/s41563-021-01121-0.
    91. A. González-Nicolás, M. Schwientek, M. Sinsbeck, and W. Nowak, “Characterization of export regime in discharge-concentration plots via an advanced time-series model and event-based sampling,” Water, vol. 13, p. 1723, 2021, doi: 10.3390/w13131734.
    92. S. Xiao, T. Xu, S. Reuschen, W. Nowak, and H.-J. H. Franssen, “Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: an extension of preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering,” Water Resources Research, vol. 57, p. e2021WR030313, 2021, doi: 10.1029/2021WR030313.
    93. A. Koch, J. Berberich, and F. Allgöwer, “Provably robust verification of dissipativity properties from data,” IEEE Transactions on Automatic Control, vol. 67, no. 8, Art. no. 8, 2021, doi: 10.1109/TAC.2021.3116179.
    94. T. Holicki and C. W. Scherer, “Robust Gain-Scheduled Estimation with Dynamic D-Scalings,” EEE Transactions on Automatic Control, vol. 66, no. 11, Art. no. 11, 2021, doi: 10.1109/TAC.2021.3052751.
    95. A. Koch, J. M. Montenbruck, and F. Allgöwer, “Sampling Strategies for Data-Driven Inference of Input-Output System Properties,” IEEE Transactions On Automatic Control, vol. 66, pp. 1144–1159, 2021, doi: 10.1109/TAC.2020.2994894.
    96. J. Fehr, C. Himpe, S. Rave, and J. Saak, “Sustainable Research Software Hand-Over,” Journal of Open Research Software, vol. 9, no. 5, Art. no. 5, 2021, doi: 10.5334/jors.307.
    97. J. Kneifl and J. Fehr, “Machine Learning Algorithms for Learning Nonlinear Terms of Reduced Mechanical Models in Explicit Structural Dynamics,” Proceedings in Applied Mathematics and Mechanics (PAMM), vol. 20, no. S1, Art. no. S1, Mar. 2021, doi: 10.1002/pamm.202000353.
    98. G. Molpeceres, V. Zaverkin, N. Watanabe, and J. Kästner, “Binding energies and sticking coefficients of H₂ on crystalline and amorphous CO ice,” Astronomy & Astrophysics, vol. 648, p. A84, 2021, doi: 10.1051/0004-6361/202040023.
    99. K. Szuttor, P. Kreissl, and C. Holm, “A numerical investigation of analyte size effects in nanopore sensing systems,” The Journal of Chemical Physics, vol. 155, no. 13, Art. no. 13, 2021, doi: 10.1063/5.0065085.
    100. T. van Westen and J. Gross, “Accurate thermodynamics of simple fluids and chain fluids based on first-order perturbation theory and second virial coefficients: uv-theory,” The Journal of Chemical Physics, Dec. 2021, doi: 10.1063/5.0073572.
    101. D. Markthaler and N. Hansen, “Umbrella sampling and double decoupling data for methanol binding to Candida antarctica lipase B,” Data in Brief, vol. 39, p. 107618, Dec. 2021, doi: 10.1016/j.dib.2021.107618.
    102. W. Ehlers, M. Morrison (Rehm), P. Schröder, D. Stöhr, and A. Wagner, “Multiphasic modelling and computation of metastatic lung-cancer cell proliferation and atrophy in brain tissue based on experimental data,” Biomechanics and Modeling in Mechanobiology, 2021, doi: 10.1007/s10237-021-01535-4.
    103. L. Lambers, A. Mielke, and T. Ricken, “Semi-automated Data-driven FE Mesh Generation and Inverse Parameter Identification for a Multiscale and Multiphase Model of Function-Perfusion Processes in the Liver,” PAMM, vol. 21, no. 1, Art. no. 1, 2021, doi: 10.1002/pamm.202100190.
    104. A. Yiotis, N. Karadimitriou, I. Zarikos, and H. Steeb, “Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains,” Scientific Reports, vol. 11, no. 1, Art. no. 1, 2021, doi: 10.1038/s41598-021-83065-8.
    105. D. Born and J. Kästner, “Geometry Optimization in Internal Coordinates Based on Gaussian Process Regression: Comparison of Two Approaches,” Journal of Chemical Theory and Computation, vol. 17, no. 9, Art. no. 9, 2021, doi: 10.1021/acs.jctc.1c00517.
    106. D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise,” Journal of  Nonlinear Science, vol. 31, p. Paper No. 98, 55, 2021.
    107. C. Rohde and H. Tang, “On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena,” Nonlinear Differential Equations and Applications, vol. 28, no. 1, Art. no. 1, 2021, doi: 10.1007/s00030-020-00661-9.
    108. C. Scherer and C. Ebenbauer, “Convex Synthesis of Accelerated Gradient Algorithms,” SIAM Journal on Control and Optimization, vol. 59, no. 6, Art. no. 6, 2021, doi: 10.1137/21M1398598.
    109. G. Tkachev, S. Frey, and T. Ertl, “S4: Self-Supervised learning of Spatiotemporal Similarity,” IEEE Transactions on Visualization and Computer Graphics, 2021.
    110. S. Scheurer et al., “Surrogate-based Bayesian Comparison of Computationally Expensive Models: Application to Microbially Induced Calcite Precipitation,” Computational Geosciences, vol. 25, pp. 1899–1917, 2021.
    111. X. Xu, P. Binkele, W. Verestek, and S. Schmauder, “Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars,” Molecules, vol. 26, no. 9, Art. no. 9, Apr. 2021, doi: 10.3390/molecules26092606.
    112. J. Pleiss, “Standardized data, scalable documentation, sustainable storage –  EnzymeML as a basis for FAIR data management in biocatalysis,” ChemCatChem, vol. 13, pp. 3909–3913, 2021, doi: https://doi.org/10.1002/cctc.202100822.
    113. A. Koch, J. Berberich, J. Köhler, and F. Allgöwer, “Determining optimal input–output properties: A data-driven approach,” Automatica, vol. 134, p. 109906, 2021, doi: https://doi.org/10.1016/j.automatica.2021.109906.
    114. S. Reuschen, F. Jobst, and W. Nowak, “Efficient discretization-independent Bayesian inversion of high-dimensional multi-Gaussian priors using a hybrid MCMC,” Water Resources Research, vol. 57, no. 8, Art. no. 8, 2021, doi: 10.1029/2021WR030051.
    115. K. Szuttor, F. Weik, J.-N. Grad, and C. Holm, “Modeling the current modulation of bundled DNA structures in nanopores,” The Journal of Chemical Physics, vol. 154, no. 5, Art. no. 5, 2021, doi: 10.1063/5.0038530.
    116. K. Cheng, S. Xiao, X. Zhang, S. Oladyshkin, and W. Nowak, “Resampling method for reliability-based design optimization based on thermodynamic integration and parallel tempering,” Mechanical Systems and Signal Processing, vol. 156, p. 107630, 2021, doi: 10.1016/j.ymssp.2021.107630.
    117. A. Tomalka, S. Weidner, D. Hahn, W. Seiberl, and T. Siebert, “Power Amplification Increases With Contraction Velocity During Stretch-Shortening Cycles of Skinned Muscle Fibers,” Frontiers in Physiology, vol. 12, Mar. 2021, doi: 10.3389/fphys.2021.644981.
    118. P. Rehner, B. Bursik, and J. Gross, “Surfactant Modeling Using Classical Density Functional Theory and a Group Contribution PC-SAFT Approach,” Industrial & Engineering Chemistry Research, vol. 60, no. 19, Art. no. 19, Apr. 2021, doi: 10.1021/acs.iecr.1c00169.
    119. T. Holicki and C. W. Scherer, “Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis,” Int. J. Robust Nonlin., vol. 31, no. 11, Art. no. 11, 2021, doi: 10.1002/rnc.5547.
    120. R. Stierle and J. Gross, “Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence,” The Journal of Chemical Physics, Oct. 2021, doi: 10.1063/5.0060088.
    121. T. Martin and F. Allgöwer, “Dissipativity verification with guarantees for polynomial systems from noisy input-state data,” IEEE Control Systems Letters, vol. 5, no. 4, Art. no. 4, 2021, doi: 10.1109/LCSYS.2020.3037842.
    122. L. J. Smith, W. F. Gunsteren, and N. Hansen, “On the Use of Side-Chain NMR Relaxation Data to Derive Structural and Dynamical Information on Proteins: A Case Study Using Hen Lysozyme,” ChemBioChem, vol. 22, no. 6, Art. no. 6, Dec. 2021, doi: 10.1002/cbic.202000674.
    123. J. M. Riede, C. Holm, S. Schmitt, and D. F. B. Haeufle, “The control effort to steer self-propelled microswimmers depends on their morphology: comparing symmetric spherical versus asymmetric              L              -shaped particles,” Royal Society Open Science, vol. 8, no. 9, Art. no. 9, Sep. 2021, doi: 10.1098/rsos.201839.
    124. M. Kuron, C. Stewart, J. de Graaf, and C. Holm, “An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids,” The European Physical Journal E, vol. 44, no. 1, Art. no. 1, 2021, doi: 10.1140/epje/s10189-020-00005-6.
  7. 2020

    1. B. Flemisch et al., “Umgang mit Forschungssoftware an der Universität Stuttgart,” Universität Stuttgart, 2020. doi: 10.18419/OPUS-11178.
    2. T. Praditia, “Trained ANN Parameters for Physics-inspired Artificial Neural Network for Dynamic System.” 2020. doi: 10.18419/darus-634.
    3. T. Praditia, “Input-Output Dataset for Physics-inspired Artificial Neural Network for Dynamic System.” 2020. doi: 10.18419/darus-633.
    4. J. Kneifl and J. Fehr, “Deformation of a Structural Frame of a Racing Kart Colliding against a Rigid Wall.” 2020. doi: 10.18419/darus-1150.
    5. T. Munz, N. Schäfer, T. Blascheck, K. Kurzhals, E. Zhang, and D. Weiskopf, “Supplemental Material for Comparative Visual Gaze Analysis for Virtual Board Games.” DaRUS, 2020. doi: 10.18419/DARUS-1130.
    6. T. Martin, A. Koch, and F. Allgöwer, “Data-driven surrogate models for LTI systems via saddle-point dynamics,” in Proc. 21st IFAC World Congress, in Proc. 21st IFAC World Congress. Berlin, Germany, 2020, pp. 971–976. doi: 10.1016/j.ifacol.2020.12.1261.
    7. T. Martin and F. Allgöwer, “Iterative data-driven inference of nonlinearity measures via successive graph approximation,” in Proceedings 59th IEEE Conference Decision and Control (CDC), in Proceedings 59th IEEE Conference Decision and Control (CDC). Jeju, South Korea, 2020, pp. 4760–4765. doi: 10.1109/CDC42340.2020.9304285.
    8. T. Holicki and C. W. Scherer, “Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 53. 2020, pp. 7299–7304. doi: 10.1016/j.ifacol.2020.12.981.
    9. R. Diestelkämper and M. Herschel, “Tracing nested data with structural provenance for big data analytics,” in Proceedings of the International Conference on Extending Database Technology (EDBT), in Proceedings of the International Conference on Extending Database Technology (EDBT). 2020, pp. 253–264. doi: 10.5441/002/edbt.2020.23.
    10. T. Munz, N. Schaefer, T. Blascheck, K. Kurzhals, E. Zhang, and D. Weiskopf, “Demo of a Visual Gaze Analysis System for Virtual Board Games,” in ACM Symposium on Eye Tracking Research and Applications, in ACM Symposium on Eye Tracking Research and Applications. Stuttgart, Germany: Association for Computing Machinery, 2020. doi: 10.1145/3379157.3391985.
    11. M. Barreau, C. W. Scherer, F. Gouaisbaut, and A. Seuret, “Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 53. 2020, pp. 7752–7757. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896320321297
    12. C. A. Rösinger and C. W. Scherer, “Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 53. 2020, pp. 7292–7298. doi: 10.1016/j.ifacol.2020.12.570.
    13. F. Heyen et al., “ClaVis: An Interactive Visual Comparison System for Classifiers,” in Proceedings of the International Conference on Advanced Visual Interfaces, in Proceedings of the International Conference on Advanced Visual Interfaces. Salerno, Italy: Association for Computing Machinery, 2020. doi: 10.1145/3399715.3399814.
    14. J. Berberich, A. Koch, C. W. Scherer, and F. Allgower, “Robust data-driven state-feedback design,” in 2020 American Control Conference (ACC), in 2020 American Control Conference (ACC). IEEE, Jul. 2020, pp. 1532–1538. doi: 10.23919/acc45564.2020.9147320.
    15. P. Buchfink, B. Haasdonk, and S. Rave, “PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems,” in Proceedings of the Conference Algoritmy 2020, P. Frolkovič, K. Mikula, and D. Ševčovič, Eds., in Proceedings of the Conference Algoritmy 2020. Vydavateľstvo SPEKTRUM, Aug. 2020, pp. 151--160. [Online]. Available: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
    16. S. Oladyshkin et al., “Uncertainty quantification using Bayesian arbitrary polynomial chaos for computationally demanding environmental modelling: conventional, sparse and adaptive strategy,” in Computational Methods in Water Resources (CMWR), in Computational Methods in Water Resources (CMWR). 2020.
    17. R. Diestelkämper and M. Herschel, “Distributed Tree-Pattern Matching in Big Data Analytics Systems,” in In Proceedings of the Conference on Advances in Databases and Information Systems (ADBIS), in In Proceedings of the Conference on Advances in Databases and Information Systems (ADBIS). Springer, 2020, pp. 171–186. doi: https://doi.org/10.1007/978-3-030-54832-2_14.
    18. D. Persson, A. Koch, and F. Allgöwer, “Probabilistic H2-norm estimation via Gaussian process system identification,” in Proceedings 21st IFAC World Congress, in Proceedings 21st IFAC World Congress. Berlin, Germany, 2020, pp. 431–436. doi: 10.1016/j.ifacol.2020.12.211.
    19. A. Koch, J. Berberich, and F. Allgöwer, “Verifying dissipativity properties from noise-corrupted input-state data,” in Proceedings 59th IEEE Conference on Decision and Control (CDC), in Proceedings 59th IEEE Conference on Decision and Control (CDC). Jeju, South Korea, 2020, pp. 616–621. doi: 10.1109/CDC42340.2020.9304380.
    20. L. Brencher and A. Barth, “Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions,” Finite Volumes for Complex Applications IX : Methods, Theoretical Aspects, Examples, no. 323. in Finite Volumes for Complex Applications IX : Methods, Theoretical Aspects, Examples. Springer, pp. 265–273, 2020. doi: 10.1007/978-3-030-43651-3_23.
    21. S. Oladyshkin, F. Mohammadi, I. Kroeker, and W. Nowak, “Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory,” Entropy, vol. 22, no. 8, Art. no. 8, Aug. 2020, doi: 10.3390/e22080890.
    22. I. Guisandez, J. I. Perez-Diaz, W. Nowak, and J. Haas, “Should environmental constraints be considered in linear programming based water value calculators?,” International Journal of Electrical Power & Energy Systems, vol. 117, no. 105662, Art. no. 105662, May 2020, doi: 10.1016/j.ijepes.2019.105662.
    23. S. Tovey et al., “DFT accurate interatomic potential for molten NaCl from machine learning,” The Journal of Physical Chemistry C, vol. 124, no. 47, Art. no. 47, 2020, doi: 10.1021/acs.jpcc.0c08870.
    24. D. Erdal, S. Xiao, W. Nowak, and O. Cirpka, “Sampling Behavioral Model Parameters for Ensemble-based Sensitivity Analysis using Gaussian Process Emulation and Active Subspaces,” Stochastic Environmental Research and Risk Assessment, vol. 34, pp. 1813–1830, 2020, doi: 10.1007/s00477-020-01867-0.
    25. G. Molpeceres, V. Zaverkin, and J. Kästner, “Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – I. adsorption and desorption,” Mon. Not. R. Astron. Soc., vol. 499, pp. 1373–1384, 2020, doi: 10.1093/mnras/staa2891.
    26. N. Hansen et al., “A Suite of Advanced Tutorials for the GROMOS Biomolecular Simulation Software Article v1.0,” Living Journal of Computational Molecular Science, vol. 2, no. 1, Art. no. 1, 2020, doi: 10.33011/livecoms.2.1.18552.
    27. J. Zeman, S. Kondrat, and C. Holm, “Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations,” Chemical Communications, vol. 56, no. 100, Art. no. 100, 2020, doi: 10.1039/D0CC05023G.
    28. X. Xu, J. Range, G. Gygli, and J. Pleiss, “Analysis of Thermophysical Properties of Deep Eutectic Solvents by Data Integration,” Journal of Chemical & Engineering Data, vol. 65, pp. 1172–1179, 2020, doi: https://doi.org/10.1021/acs.jced.9b00555.
    29. J. Berberich, C. W. Scherer, and F. Allgöwer, “Combining Prior Knowledge and Data for Robust Controller Design,” 2020, [Online]. Available: https://arxiv.org/abs/2009.05253
    30. S. Michalowsky, C. Scherer, and C. Ebenbauer, “Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach,” International Journal of Control, vol. 2020, pp. 1–24, 2020, doi: 10.1080/00207179.2020.1745286.
    31. M. Höge, A. Guthke, and W. Nowak, “Bayesian Model Weighting: The Many Faces of Model Averaging,” Water, vol. 12, no. 2, Art. no. 2, 2020, doi: 10.3390/w12020309.
    32. S. Hasan et al., “Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography,” Proceedings of the National Academy of Sciences, vol. 117, no. 38, Art. no. 38, 2020, doi: 10.1073/pnas.2011716117.
    33. K. Kuritz, D. Stöhr, D. S. Maichl, N. Pollak, M. Rehm, and F. Allgöwer, “Reconstructing temporal and spatial dynamics from single-cell pseudotime using prior knowledge of real scale cell densities,” Scientific Reports, vol. 10, no. 1, Art. no. 1, Dec. 2020, doi: 10.1038/s41598-020-60400-z.
    34. S. Xiao, S. Oladyshkin, and W. Nowak, “Reliability analysis with stratified importance sampling based on adaptive Kriging,” Reliability Engineering & System Safety, vol. 197, p. 106852, May 2020, doi: 10.1016/j.ress.2020.106852.
    35. M. Sinsbeck, M. Höge, and W. Nowak, “Exploratory-phase-free estimation of GP hyperparameters in sequential design methods - at the example of Bayesian inverse problems,” Frontiers in Artificial Intelligence, section AI in Food, Agriculture and Water, vol. 3, no. 52, Art. no. 52, 2020, doi: 10.3389/frai.2020.00052.
    36. L. T. K. Nguyen, M. Rambausek, and M.-A. Keip, “Variational framework for distance-minimizing method in data-driven computational mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 365, p. 112898, 2020, doi: https://doi.org/10.1016/j.cma.2020.112898.
    37. D. Imig, N. Pollak, F. Allgöwer, and M. Rehm, “Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis,” PLOS Computational Biology, vol. 16, no. 6, Art. no. 6, Jun. 2020, doi: 10.1371/journal.pcbi.1007812.
    38. J. Gebhardt, M. Kiesel, S. Riniker, and N. Hansen, “Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients,” Journal of Chemical Information and Modeling, vol. 60, no. 11, Art. no. 11, Aug. 2020, doi: 10.1021/acs.jcim.0c00479.
    39. P. Rehner and J. Gross, “Multiobjective Optimization of PCP-SAFT Parameters for Water and Alcohols Using Surface Tension Data,” Journal of Chemical & Engineering Data, vol. 65, no. 12, Art. no. 12, Sep. 2020, doi: 10.1021/acs.jced.0c00684.
    40. G. Sivaraman et al., “Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide,” npj Computational Materials, vol. 6, no. 1, Art. no. 1, Jul. 2020, doi: 10.1038/s41524-020-00367-7.
    41. S. Adam et al., “DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation,” Nature Communications, vol. 11, no. 1, Art. no. 1, 2020, doi: 10.1038/s41467-020-17531-8.
    42. D. Stöhr et al., “Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids,” Cell Death & Differentiation, no. 27, Art. no. 27, 2020, doi: 10.1038/s41418-020-0559-3.
    43. V. Zaverkin and J. Kästner, “Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials,” Journal of Chemical Theory and Computation, vol. 16, pp. 5410–5421, 2020, doi: 10.1021/acs.jctc.0c00347.
    44. C. Guttà et al., “Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma,” Cell Death & Disease, vol. 11, no. 2, Art. no. 2, Feb. 2020, doi: 10.1038/s41419-020-2309-3.
    45. D. F. B. Häufle, I. Wochner, D. Holzmüller, D. Drieß, M. Günther, and S. Schmitt, “Muscles reduce neuronal information load : quantification of control effort in biological vs. robotic pointing and walking,” Frontiers in Robotics and AI, vol. 7, p. 77, 2020, doi: 10.3389/frobt.2020.00077.
    46. T. Xu, S. Reuschen, W. Nowak, and H.-J. H. Franssen, “Preconditioned Crank-Nicolson Markov chain Monte Carlo coupled with parallel tempering: An efficient method for Bayesian inversion of multi-Gaussian log-hydraulic conductivity fields,” Water Resources Research, vol. 56, no. 8, Art. no. 8, 2020, doi: 10.1029/2020WR027110.
    47. F. Beckers, A. Heredia, M. Noack, W. Nowak, S. Wieprecht, and S. Oladyshkin, “Bayesian Calibration and Validation of a Large-scale and Time-demanding Sediment Transport Model,” Water Resources Research, vol. 56, no. 7, Art. no. 7, 2020, doi: 10.1029/2019WR026966.
    48. D. Stöhr, A. Jeltsch, and M. Rehm, “TRAIL receptor signaling: From the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response.,” Cell Death Regulation in Health and Disease-Part A, p. 57, 2020.
    49. G. Fullstone, T. L. Bauer, C. Guttà, M. Salvucci, J. H. M. Prehn, and M. Rehm, “The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer,” Cell Death & Differentiation, no. 27, Art. no. 27, 2020, doi: 10.1038/s41418-020-0545-9.
    50. A. Tomalka, S. Weidner, D. Hahn, W. Seiberl, and T. Siebert, “Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles,” Frontiers in Physiology, vol. 11, Jul. 2020, doi: 10.3389/fphys.2020.00921.
    51. K. Breitsprecher et al., “How to speed up ion transport in nanopores,” Nature Communications, vol. 11, no. 1, Art. no. 1, Nov. 2020, doi: 10.1038/s41467-020-19903-6.
    52. T. Hitz, J. Keim, C.-D. Munz, and C. Rohde, “A parabolic relaxation model for the Navier-Stokes-Korteweg equations,” Journal of  Computational Physics, vol. 421, p. 109714, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109714.
    53. G. Gygli, X. Xu, and J. Pleiss, “Meta-analysis of viscosity of aqueous deep eutectic solvents and their components,” Scientific Reports, vol. 10, pp. 21395–21395, 2020.
    54. T. Praditia, T. Walser, S. Oladyshkin, and W. Nowak, “Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture,” Energies, vol. 13, no. 15, Art. no. 15, Jul. 2020, doi: 10.3390/en13153873.
    55. E. Polukhov and M.-A. Keip, “Computational homogenization of transient chemo-mechanical processes based on a variational minimization principle,” Advanced Modeling and Simulation in Engineering Sciences, vol. 7, no. 1, Art. no. 1, Jul. 2020, doi: 10.1186/s40323-020-00161-6.
    56. A. Schäfer Rodrigues Silva, A. Guthke, M. Höge, O. A. Cirpka, and W. Nowak, “Strategies for simplifying reactive transport models - a Bayesian model comparison,” Water Resources Research, vol. 56, p. e2020WR028100, 2020, doi: 10.1029/2020WR028100.
    57. A. Naseri, A. Totounferoush, I. González, M. Mehl, and C. D. Pérez-Segarra, “A scalable framework for the partitioned solution of fluid--structure interaction problems,” Computational Mechanics, vol. 66, no. 2, Art. no. 2, Aug. 2020, doi: 10.1007/s00466-020-01860-y.
    58. A. Denzel and J. Kästner, “Hessian Matrix Update Scheme for Transition State Search Based on Gaussian Process Regression,” Journal of Chemical Theory and Computation, vol. 16, no. 8, Art. no. 8, Jul. 2020, doi: 10.1021/acs.jctc.0c00348.
    59. T. Munz, N. Schäfer, T. Blascheck, K. Kurzhals, E. Zhang, and D. Weiskopf, “Comparative Visual Gaze Analysis for Virtual Board Games,” The 13th International Symposium on Visual Information Communication and Interaction (VINCI 2020), 2020, doi: 10.1145/3430036.3430038.
    60. V. Vetma et al., “Convergence of pathway analysis and pattern recognition predicts sensitization to latest generation TRAIL therapeutics by IAP antagonism,” Cell Death & Differentiation, vol. 27, no. 8, Art. no. 8, Feb. 2020, doi: 10.1038/s41418-020-0512-5.
    61. C. A. Rösinger and C. W. Scherer, “A Flexible Synthesis Framework of Structured Controllers for Networked Systems,” IEEE Trans. Control Netw. Syst., vol. 7, no. 1, Art. no. 1, 2020, doi: 10.1109/TCNS.2019.2914411.
    62. D. Stöhr and M. Rehm, “Linking hyperosmotic stress and apoptotic sensitivity,” The FEBS Journal, p. febs.15520, Aug. 2020, doi: 10.1111/febs.15520.
    63. G. Fullstone, C. Guttà, A. Beyer, and M. Rehm, “The FLAME-accelerated signalling tool (FaST) for facile parallelisation of flexible agent-based models of cell signalling,” npj Systems Biology and Applications, vol. 6, no. 1, Art. no. 1, 2020, doi: 10.1038/s41540-020-0128-x.
    64. S. Xiao, S. Oladyshkin, and W. Nowak, “Forward-reverse switch between density-based and regional sensitivity analysis,” Applied Mathematical Modelling, vol. 84, pp. 377–392, 2020.
  8. 2019

    1. R. Diestelkämper, “Research Data Management Project Form.” 2019. doi: 10.18419/darus-507.
    2. T. Munz, “VisME software v1.2.” Zenodo, 2019. doi: 10.5281/ZENODO.3352236.
    3. T. Martin and F. Allgöwer, “Nonlinearity Measures for Data-Driven System Analysis and Control,” in Proc. 58th IEEE Conf. Decision and Control (CDC), in Proc. 58th IEEE Conf. Decision and Control (CDC). Nice, France, 2019, pp. 3605–3610. doi: 10.1109/CDC40024.2019.9029804.
    4. T. Munz, M. Burch, T. van Benthem, Y. Poels, F. Beck, and D. Weiskopf, “Overlap-Free Drawing of Generalized Pythagoras Trees for Hierarchy Visualization,” in 2019 IEEE Visualization Conference (VIS), in 2019 IEEE Visualization Conference (VIS). Oct. 2019, pp. 251–255. doi: 10.1109/VISUAL.2019.8933606.
    5. T. Holicki and C. W. Scherer, “A Homotopy Approach for Robust Output-Feedback Synthesis,” in Proc. 27th. Med. Conf. Control Autom., in Proc. 27th. Med. Conf. Control Autom. 2019, pp. 87–93. doi: 10.1109/MED.2019.8798536.
    6. G. Baggio, S. Zampieri, and C. W. Scherer, “Gramian Optimization with Input-Power Constraints,” in 58th IEEE Conf. Decision and Control, in 58th IEEE Conf. Decision and Control. 2019, pp. 5686–5691. doi: 10.1109/CDC40024.2019.9029169.
    7. C. A. Rösinger and C. W. Scherer, “A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination,” in IFAC-PapersOnLine, in IFAC-PapersOnLine, vol. 52. 2019, pp. 50–57. doi: 10.1016/j.ifacol.2019.12.347.
    8. T. Munz, L. L. Chuang, S. Pannasch, and D. Weiskopf, “VisME: Visual microsaccades explorer,” Journal of Eye Movement Research, vol. 12, no. 6, Art. no. 6, Dec. 2019, doi: 10.16910/jemr.12.6.5.
    9. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty quantification for direct aeroacoustic simulations of cavity flows,” J. Theor. Comput. Acoust., vol. 27, no. 1, Art. no. 1, 2019, doi: https://doi.org/10.1142/S2591728518500445.
    10. F. S. Göküzüm, L. T. K. Nguyen, and M.-A. Keip, “An Artificial Neural Network Based Solution Scheme for Periodic Computational Homogenization of Electrostatic Problems,” Mathematical and Computational Applications, vol. 24, no. 2, Art. no. 2, Apr. 2019, doi: 10.3390/mca24020040.
    11. J. Zeman, C. Holm, and J. Smiatek, “The Effect of Small Organic Cosolutes on Water Structure and Dynamics,” Journal of Chemical & Engineering Data, vol. 65, no. 3, Art. no. 3, Aug. 2019, doi: 10.1021/acs.jced.9b00577.
    12. H. Steeb and J. Renner, “Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables,” Transport in Porous Media, vol. 120, no. 2, Art. no. 2, 2019, doi: 10.1007/s11242-019-01319-6.
    13. A. Tomalka, O. Röhrle, J. C. Han, T. Pham, A. J. Taberner, and T. Siebert, “Extensive eccentric contractions in intact cardiac trabeculae: revealing compelling differences in contractile behaviour compared to skeletal muscles,” Proceedings of the Royal Society B, vol. 286, no. 1903, Art. no. 1903, 2019, doi: 10.1098/rspb.2019.0719.
    14. S. Oladyshkin and W. Nowak, “The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design,” Entropy, vol. 21, no. 11, Art. no. 11, Nov. 2019, doi: 10.3390/e21111081.
    15. L. Lambers, T. Ricken, and M. König, “Model Order Reduction (MOR) of Function--Perfusion--Growth Simulation in the Human Fatty Liver via Artificial Neural Network (ANN),” PAMM, vol. 19, no. 1, Art. no. 1, 2019, doi: 10.1002/pamm.201900429.
    16. S. Xiao, S. Reuschen, G. Köse, S. Oladyshkin, and W. Nowak, “Estimation of small failure probabilities based on thermodynamic integration and parallel tempering,” Mechanical Systems and Signal Processing, vol. 133, p. 106248, Nov. 2019, doi: 10.1016/j.ymssp.2019.106248.
    17. A. Romer, J. Berberich, J. Köhler, and F. Allgöwer, “One-shot verification of dissipativity properties from input-output data,” IEEE Control Systems Letters, vol. 3, pp. 709–714, 2019, doi: 10.1109/LCSYS.2019.2917162.
    18. M. Hopp and J. Gross, “Thermal Conductivity from Entropy Scaling: A Group-Contribution Method,” Industrial & Engineering Chemistry Research, vol. 58, no. 44, Art. no. 44, Oct. 2019, doi: 10.1021/acs.iecr.9b04289.
    19. A. Denzel, B. Haasdonk, and J. Kästner, “Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search,” The Journal of Physical Chemistry A, vol. 123, no. 44, Art. no. 44, 2019, doi: 10.1021/acs.jpca.9b08239.
    20. R. Roddan et al., “The acceptance and kinetic resolution of alpha-methyl substituted aldehydes by norcoclaurine synthases.,” ACS Catalysis, vol. 9, pp. 9640–9649, 2019.
    21. G. Tkachev, S. Frey, and T. Ertl, “Local Prediction Models for Spatiotemporal Volume Visualization,” IEEE Transactions on Visualization and Computer Graphics, 2019, doi: 10.1109/TVCG.2019.2961893.
    22. I. Tabiai et al., “Hybrid image processing approach for autonomous crack area detection and tracking using local digital image correlation results applied to single-fiber interfacial debonding,” Engineering Fracture Mechanics, vol. 216, p. 106485, 2019, doi: 10.1016/j.engfracmech.2019.106485.
    23. T. Holicki and C. W. Scherer, “Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings,” Nonlinear Analysis: Hybrid Systems, vol. 34, pp. 179–208, 2019, doi: https://doi.org/10.1016/j.nahs.2019.06.003.

Published software EXC 2075

  1. 2024

    1. J. Pelzer, “Models and Prepared Datasets for the First Stage : based on the Single Heat Pump Simulation Datasets.” 2024. doi: 10.18419/darus-3690.
    2. R. R. Herkert, “Replication Code for: Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data.” 2024. doi: 10.18419/darus-4227.
    3. T. Munz-Körner and D. Weiskopf, “Visual Analysis System to Explore the Visual Quality of Multidimensional Time Series Projections.” DaRUS, 2024. doi: 10.18419/DARUS-3553.
    4. J. Pelzer, “Models and Prepared Datasets for the Second Stage : based on the Two Heat Pumps Simulation Datasets.” 2024. doi: 10.18419/darus-3689.
    5. P. Stärk and A. Schlaich, “Supporting Information: Chemical Potential Differences in Nanoscopic Teflon/Kapton Capillaries.” 2024. doi: 10.18419/darus-3149.
    6. M. Alvarez Chaves, H. Gupta, U. Ehret, and A. Guthke, “Replication Data for: On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data.” 2024. doi: 10.18419/darus-4087.
    7. P. L. Reiser, J. E. Aguilar, A. Guthke, and P.-C. Bürkner, “Replication Code for: Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference.” 2024. doi: 10.18419/darus-4093.
    8. C. Homs Pons and R. Lautenschlager, “Replication Data for: Coupled Simulations and Parameter Inversion for Neural System and Electrophysiological Muscle Models.” 2024. doi: 10.18419/darus-4031.
    9. S. Roy, F. Wang, and D. Gläser, “Harvester-Curator, a tool to elevate metadata provision in data and/or software repositories.” 2024. doi: 10.18419/darus-3785.
    10. T. Munz-Körner and D. Weiskopf, “Supplemental Material for ‘Exploring Visual Quality of Multidimensional Time Series Projections.’” DaRUS, 2024. doi: 10.18419/DARUS-3965.
    11. R. R. Herkert, “Replication Code for: Error Analysis of Randomized Symplectic Model Order Reduction for Hamiltonian systems.” 2024. doi: 10.18419/darus-4185.
  2. 2023

    1. A. Baier and D. Frank, “deepsysid: System Identification Toolkit for Multistep Prediction using Deep Learning.” 2023. doi: 10.18419/darus-3455.
    2. P. F. Santana Chacon, M. Hammer, I. Wochner, J. R. Walter, and S. Schmitt, “Replication Data for: A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers.” 2023. doi: 10.18419/darus-3796.
    3. D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart, “Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression arXiv v3.” 2023. doi: 10.18419/darus-3394.
    4. P. Rodegast, S. Maier, J. Kneifl, and J. C. Fehr, “Simulation Data from Motorcycle Sensors in Operational and Crash Scenarios.” 2023. doi: 10.18419/darus-3301.
    5. A. Baier, D. Aspandi Latif, and S. Staab, “Supplements for ‘ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks’".” 2023. doi: 10.18419/darus-3457.
    6. F. Kempter, L. Lantella, N. Stutzig, J. C. Fehr, and T. Siebert, “Neck Reflex Behavior in Driving Simulator Experiments - Academic-Scale Simulator at ITM.” 2023. doi: 10.18419/darus-3000.
    7. J. Kneifl, D. Rosin, O. Avci, O. Röhrle, and J. C. Fehr, “Continuum-mechanical Forward Simulation Results of a Human Upper-limb Model Under Varying Muscle Activations.” 2023. doi: 10.18419/darus-3302.
    8. M. Schmitt, “Replication Code for: Meta-Uncertainty in Bayesian Model Comparison.” 2023. doi: 10.18419/darus-3514.
    9. J. Kneifl and J. C. Fehr, “Crash Simulations of a Racing Kart’s Structural Frame Colliding against a Rigid Wall.” 2023. doi: 10.18419/darus-3789.
    10. R. S. Skukies, “2023 CCN Time Window Project Code.” 2023. doi: 10.18419/darus-3635.
    11. J. Rettberg, D. Wittwar, and R. R. Herkert, “Softwarepackage CCMOR2 : Certified Coupled Model Order Reduction - part 2.” 2023. doi: 10.18419/darus-3839.
    12. R. R. Herkert, “Replication Code for: Randomized Symplectic Model Order Reduction for Hamiltonian Systems.” 2023. doi: 10.18419/darus-3519.
    13. R. Kohlhaas, I. Kröker, S. Oladyshkin, and W. Nowak, “Gaussian active learning on multi-resolution arbitrary polynomial chaos emulator : Data and Software.” 2023. doi: 10.18419/darus-2829.
    14. N. Schäfer et al., “Visual Analysis System for Scene-Graph-Based Visual Question Answering.” 2023. doi: 10.18419/darus-3589.
  3. 2022

    1. T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf, “NMTVis - Extended Neural Machine Translation Visualization System.” 2022. doi: 10.18419/darus-2124.
    2. D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart, “Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression arXiv v2.” 2022. doi: 10.18419/darus-3110.
    3. D. Holzmüller, “Replication Data for: Fast Sparse Grid Operations using the Unidirectional Principle: A Generalized and Unified Framework.” 2022. doi: 10.18419/darus-1779.
    4. J. Kneifl, J. Hay, and J. Fehr, “Human Occupant Motion in Pre-Crash Scenario.” 2022. doi: 10.18419/darus-2471.
    5. K. Davis and M. Schulte, “Replication Data for: Geothermal-ML - predicting thermal plume from groundwater heat pumps.” 2022. doi: 10.18419/darus-3184.
    6. M. Alkämper and J. M. Magiera, “Interface Preserving Moving Mesh (Code).” 2022. doi: 10.18419/darus-1671.
    7. S. Schmitt, “demoa-base: a biophysics simulator for muscle-driven motion.” 2022. doi: 10.18419/darus-2550.
    8. G. Tkachev, “PyPlant: A Python Framework for Cached Function Pipelines.” 2022. doi: 10.18419/darus-2249.
    9. I. Wochner and S. Schmitt, “MPC/OC Code for: Learning with Muscles: Benefits for Data-Efficiency and Robustness in Anthropomorphic Tasks.” 2022. doi: 10.18419/darus-3268.
    10. K. Davis and M. Schulte, “Replication Data for: Radial basis function interpolation with partition of unity for PyRBF.” 2022. doi: 10.18419/darus-3183.
    11. D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart, “Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression arXiv v1.” 2022. doi: 10.18419/darus-2615.
    12. K. Davis and M. Schulte, “COM-4 model to replicate simulation results for the GEO.KW project.” 2022. doi: 10.18419/darus-3185.
    13. K. Davis and M. Schulte, “REG-30 model to replicate simulation results for the GEO.KW project.” 2022. doi: 10.18419/darus-3195.
  4. 2021

    1. V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments.” 2021. doi: 10.18419/darus-2136.
    2. D. Holzmüller, “Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression.” 2021. doi: 10.18419/darus-1771.
    3. T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf, “NMTVis - Neural Machine Translation Visualization System.” 2021. doi: 10.18419/darus-1849.
    4. G. Tkachev, “Replication Data for: ‘S4: Self-Supervised learning of Spatiotemporal Similarity.’” 2021. doi: 10.18419/darus-2174.
    5. A. Gonzalez-Nicolas Alvarez, “Regime-and-memory model (RMM) Code.” 2021. doi: 10.18419/darus-2034.
    6. T. Munz, R. Garcia, and D. Weiskopf, “Visual Analytics System for Hidden States in Recurrent Neural Networks.” DaRUS, 2021. doi: 10.18419/DARUS-2052.
  5. 2020

    1. J. Kneifl and J. Fehr, “Deformation of a Structural Frame of a Racing Kart Colliding against a Rigid Wall.” 2020. doi: 10.18419/darus-1150.
  6. 2019

    1. T. Munz, “VisME software v1.2.” Zenodo, 2019. doi: 10.5281/ZENODO.3352236.

Published data EXC 2075

  1. 2024

    1. F. Bechler, “Simulation Results from the Descriptive Graph-based Model of two Example Driving Scenarios.” 2024. doi: 10.18419/darus-4116.
    2. J. Pelzer, “Raw Simulation Datasets for Extending Heat Plumes.” 2024. doi: 10.18419/darus-4133.
    3. L. Keim and H. Class, “Replication Code for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures.” 2024. doi: 10.18419/darus-4089.
    4. B. Röder, H. Ebel, and P. Eberhard, “Motion and Motor-Current Data of a Four-Bar Linkage.” 2024. doi: 10.18419/darus-4152.
    5. L. Keim and H. Class, “Replication Data for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures.” 2024. doi: 10.18419/darus-4143.
    6. J. M. Magiera, “Replication Data for: Constraint-aware neural networks for Riemann problems.” 2024. doi: 10.18419/darus-3869.
  2. 2023

    1. J. Potyka, K. Schulte, and C. Planchette, “Simulation and Experimental data on liquid distribution after the head-on separation of immiscible liquid droplet collisions.” 2023. doi: 10.18419/darus-3594.
    2. J. Rettberg et al., “Replication Data for: Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar.” 2023. doi: 10.18419/darus-3248.
    3. A. Schlaich, “Material for the paper ‘The possible role of lipid bilayer properties in the evolutionary disappearance of betaine lipids in seed plants.’” 2023. doi: 10.18419/darus-2360.
    4. V. Zaverkin, D. Holzmüller, L. Bonfirraro, and J. Kästner, “Pre-trained and fine-tuned ANI models for: Transfer learning for chemically accurate interatomic neural network potentials.” 2023. doi: 10.18419/darus-3299.
    5. J. Pelzer, “Dataset: Two Heat Pumps Simulation - Raw, 100 Data Points.” 2023. doi: 10.18419/darus-3651.
    6. J. Potyka and K. Schulte, “Setups for and Outcomes of Immiscible Liquid Droplet Collision Simulations.” 2023. doi: 10.18419/darus-3557.
    7. J. Pelzer, “Dataset: Single Heat Pump Simulation - Raw, 100 Data Points.” 2023. doi: 10.18419/darus-3649.
    8. J. Pelzer, “Dataset: Two Heat Pumps Simulation - Raw, 1000 Data Points.” 2023. doi: 10.18419/darus-3652.
    9. T. Munz-Körner, S. Künzel, and D. Weiskopf, “Supplemental Material for ‘Visual-Explainable AI: The Use Case of Language Models.’” 2023. doi: 10.18419/darus-3456.
    10. N. Schäfer et al., “Model Parameters and Evaluation Data for our Visual Analysis System for Scene-Graph-Based Visual Question Answering.” 2023. doi: 10.18419/darus-3597.
    11. J. Pelzer, “Dataset: Single Heat Pump Simulation - Raw, 1000 Data Points.” 2023. doi: 10.18419/darus-3650.
    12. M. Steffen, “Registered Cars and Motorized Two- and Three-wheelers in Worldwide Countries.” 2023. doi: 10.18419/darus-3378.
    13. M. Degen et al., “Supplementary material for ‘Structural basis for ninjurin-1 mediated plasma membrane rupture in lytic cell death.’” 2023. doi: 10.18419/darus-3373.
    14. M. Rosenfelder, H. Ebel, and P. Eberhard, “Experiment Videos of the Force-Based Non-Prehensile Cooperative Transportation of Objects with Mobile Robots.” 2023. doi: 10.18419/darus-3331.
    15. M. Rosenfelder, H. Ebel, and P. Eberhard, “Experiment Videos of a Force-Based Organization and Control Scheme for the Non-Prehensile Cooperative Transportation of Objects.” 2023. doi: 10.18419/darus-3611.
    16. J. Wachlmayr, G. Fläschner, K. Pluhackova, W. Sandtner, C. Siligan, and A. Horner, “Supplementary Material for ‘Entropic barrier of water permeation through single-file channels.’” 2023. doi: 10.18419/darus-3390.
    17. X. Xu, “Replication Data for: Strong impact of spin fluctuations on the antiphase boundaries of weak itinerant ferromagnetic Ni3Al.” 2023. doi: 10.18419/darus-3579.
    18. J. Pelzer, “Dataset: Single Heat Pump Simulation - Prepared ‘Learn Params’, 100 Data Points.” 2023. doi: 10.18419/darus-3653.
    19. F. Huber, P.-C. Bürkner, D. Göddeke, and M. Schulte, “Experimental Data and Models for ‘Knowledge-Based Modeling of Simulation Behavior for Bayesian Optimization.’” 2023. doi: 10.18419/darus-3550.
    20. M. Kelm, C. Bringedal, and B. Flemisch, “Replication Data for phase-field contributions in level-set comparison study.” 2023. doi: 10.18419/darus-3359.
  3. 2022

    1. S. Hermann, “Case Study Database for: Documenting Research Software in Engineering Science.” 2022. doi: 10.18419/darus-2681.
    2. T. Praditia, M. Karlbauer, S. Otte, S. Oladyshkin, M. V. Butz, and W. Nowak, “Replication Data for: Learning Groundwater Contaminant Diffusion-Sorption Processes with a Finite Volume Neural Network.” 2022. doi: 10.18419/darus-3249.
    3. I. Banerjee and P. Walter, “Replication Data for: The Method of Forced Probabilities: a Computation Trick for Bayesian Model Evidence : MFP implementation codes on SIP.” 2022. doi: 10.18419/darus-2815.
    4. M. Takamoto et al., “PDEBench Pretrained Models : Pretrained models for ‘PDEBench: An Extensive Benchmark for Scientific Machine Learning.’” 2022. doi: 10.18419/darus-2987.
    5. L. Nölle et al., “EHTM Code and Manual.” 2022. doi: 10.18419/darus-1144.
    6. M. Hammer, J. M. Riede, L. Meszaros-Beller, and S. Schmitt, “gspine: A Human Spine Model Built Using Literature Data : a human spine model built using literature data.” 2022. doi: 10.18419/darus-2814.
    7. M. Takamoto et al., “PDEBench Datasets : Data for ‘PDEBench: An Extensive Benchmark for Scientific Machine Learning.’” 2022. doi: 10.18419/darus-2986.
    8. A. Baier and S. Staab, “A Simulated 4-DOF Ship Motion Dataset for System Identification under Environmental Disturbances.” 2022. doi: 10.18419/darus-2905.
    9. C. Keßler et al., “Supplementary material for ‘Influence of Layer Slipping on Adsorption of Light Gases in Covalent Organic Frameworks: A Combined Experimental and Computational Study.’” 2022. doi: 10.18419/darus-2308.
  4. 2021

    1. I. Banerjee, “Replication Data for: Overcoming the model-data-fit problem in porous media: A quantitative method to compare invasion-percolation models to high-resolution data : modeling data and Post-processing codes for the manuscript.” 2021. doi: 10.18419/darus-1776.
    2. H. Eschmann, “A Data Set for Research on Data-based Methods for an Omnidirectional Mobile Robot.” 2021. doi: 10.18419/darus-1845.
    3. A. Gonzalez-Nicolas Alvarez, “Sampling Strategies of the Regime-and-memory model (RMM).” 2021. doi: 10.18419/darus-2035.
    4. A. Schlaich, “Simulation input scripts for ‘Electronic screening using a virtual Thomas-Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces.’” 2021. doi: 10.18419/darus-2115.
    5. S. Schulz, C. Bringedal, and S. Ackermann, “Code for relative permeabilities for two-phase flow between parallel plates with slip conditions.” 2021. doi: 10.18419/darus-2241.
    6. H.-F. Hsueh, “Code of the tBME method.” 2021. doi: 10.18419/darus-1836.
    7. T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf, “NMTVis - Trained Models for our Visual Analytics System.” DaRUS, 2021. doi: 10.18419/DARUS-1850.
  5. 2020

    1. T. Praditia, “Trained ANN Parameters for Physics-inspired Artificial Neural Network for Dynamic System.” 2020. doi: 10.18419/darus-634.
    2. T. Praditia, “Input-Output Dataset for Physics-inspired Artificial Neural Network for Dynamic System.” 2020. doi: 10.18419/darus-633.
    3. T. Munz, N. Schäfer, T. Blascheck, K. Kurzhals, E. Zhang, and D. Weiskopf, “Supplemental Material for Comparative Visual Gaze Analysis for Virtual Board Games.” DaRUS, 2020. doi: 10.18419/DARUS-1130.
  6. 2019

    1. R. Diestelkämper, “Research Data Management Project Form.” 2019. doi: 10.18419/darus-507.

Publications of EXC 310

  1. 2023

    1. J. Rettberg et al., “Replication Data for: Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar.” 2023. doi: 10.18419/darus-3248.
    2. J. Rettberg et al., “Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar,” Mathematical and Computer Modelling of Dynamical Systems, vol. 29, no. 1, Art. no. 1, 2023, doi: 10.1080/13873954.2023.2173238.
    3. N. Fahse, M. Millard, F. Kempter, S. Maier, M. Roller, and J. Fehr, “Dynamic Human Body Models in Vehicle Safety: An Overview,” GAMM-Mitteilungen, vol. 46, no. 2, Art. no. 2, 2023, doi: 10.1002/gamm.202300007.
    4. C. Dibak, W. Nowak, F. Dürr, and K. Rothermel, “Using Surrogate Models and Data Assimilation for Efficient Mobile Simulations,” IEEE Transactions on Mobile Computing, vol. 22, no. 3, Art. no. 3, 2023, doi: 10.1109/TMC.2021.3108750.
  2. 2021

    1. T. Koch et al., “DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling,” Computers & Mathematics with Applications, vol. 81, pp. 423–443, 2021, doi: 10.1016/j.camwa.2020.02.012.
  3. 2020

    1. C. S. Sarap, M. H. Putra, and M. Fyta, “Domain-size effect on the electronic properties of two-dimensional $MoS_2/WS_2$,” Phys. Rev. B, vol. 101, no. 7, Art. no. 7, Feb. 2020, doi: 10.1103/PhysRevB.101.075129.
    2. C. Rohde and H. Tang, “On a stochastic Camassa--Holm type equation with higher order nonlinearities,” Journal of Dynamics and Differential Equations, vol. 33, pp. 1823–1852, 2020, doi: 10.1007/s10884-020-09872-1.
    3. T. Koch, B. Flemisch, R. Helmig, R. Wiest, and D. Obrist, “A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data,” International Journal for Numerical Methods in Biomedical Engineering, vol. 36, no. 2, Art. no. 2, 2020, doi: 10.1002/cnm.3298.
    4. B. Hilder, “Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law,” Journal of Differential Equations, vol. 269, no. 5, Art. no. 5, Aug. 2020, doi: 10.1016/j.jde.2020.03.033.
  4. 2019

    1. R. Weeber, F. Nestler, F. Weik, M. Pippig, D. Potts, and C. Holm, “Accelerating the calculation of dipolar interactions in particle based simulations with open boundary conditions by means of the P2NFFT method,” Journal of Computational Physics, vol. 391, pp. 243--258, Aug. 2019, doi: 10.1016/j.jcp.2019.01.044.
    2. T. Ricken and L. Lambers, “On computational approaches of liver lobule function and perfusion simulation,” GAMM-Mitteilungen, vol. 9, no. 3, Art. no. 3, 2019, doi: 10.1002/gamm.201900016.
    3. P. Partovi-Azar, C. S. Sarap, and M. Fyta, “In silico Complexes of Amino Acids and Diamondoids,” ChemPhysChem, vol. 20, no. 17, Art. no. 17, Jul. 2019, doi: 10.1002/cphc.201900394.
    4. J. Meisner, I. Kamp, W.-F. Thi, and J. Kästner, “The role of atom tunneling in gas-phase reactions in planet-forming disks,” Astron. Astrophys., vol. 627, p. A45, 2019, doi: 10.1051/0004-6361/201834974.
    5. M. N. Markmeyer, T. Lamberts, J. Meisner, and J. Kästner, “HOCO formation in astrochemical environments by radical-induced H-abstraction from formic acid,” Mon. Not. R. Astron. Soc., vol. 482, no. 1, Art. no. 1, 2019, doi: 10.1093/mnras/sty2620.
    6. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” Computational Geosciences, vol. 23, no. 2, Art. no. 2, Apr. 2019, doi: 10.1007/s10596-018-9785-x.
    7. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” Computational Geosciences, vol. 23, pp. 339–354, 2019, doi: 10.1007/s10596-018-9785-x.
    8. D. Gläser, B. Flemisch, R. Helmig, and H. Class, “A hybrid-dimensional discrete fracture model for non-isothermal two-phase flow in fractured porous media,” GEM - International Journal on Geomathematics, vol. 10, no. 1, Art. no. 1, 2019, doi: 10.1007/s13137-019-0116-8.
    9. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-driven time parallelism via forecasting,” SIAM Journal on Scientific Computing, vol. 41, no. 3, Art. no. 3, 2019, doi: 10.1137/18M1174362.
    10. D. Brodbeck et al., “Asymmetric Carboxycyanation of Aldehydes by Cooperative AlF-/Onium Salt Catalysts: from Cyanoformate to KCN as Cyanide Source,” Chem. Eur. J., vol. 25, pp. 1515–1524, 2019, doi: 10.1002/chem.201804388.
    11. L. Bilke, B. Flemisch, T. Kalbacher, O. Kolditz, R. Helmig, and T. Nagel, “Development of Open-Source Porous Media Simulators: Principles and Experiences,” Transport in Porous Media, vol. 130, no. 1, Art. no. 1, Oct. 2019, doi: 10.1007/s11242-019-01310-1.
    12. J. Baz, C. Held, J. Pleiss, and N. Hansen, “Thermophysical properties of glyceline–water mixtures investigated by molecular modelling,” Phys. Chem. Chem. Phys., vol. 21, no. 12, Art. no. 12, 2019, doi: 10.1039/C9CP00036D.
  5. 2018

    1. C. W. Scherer and T. Holicki, “An IQC theorem for relations: Towards stability analysis of data-integrated systems,” in IFAC-PapersOnLine, in IFAC-PapersOnLine, vol. 51. 2018, pp. 390–395. doi: 10.1016/j.ifacol.2018.11.138.
    2. A. Romer, J. M. Montenbruck, and F. Allgöwer, “Some ideas on sampling strategies for data-driven inference of passivity properties for MIMO systems,” in 2018 Annual American Control Conference (ACC), in 2018 Annual American Control Conference (ACC). IEEE, 2018, pp. 6094--6100.
    3. J. Kaufmann et al., “Direct numerical simulations of one- and two-component droplet wall-film interactions within the crown-type splashing regime,” in ID 266, ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems, in ID 266, ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems. Chicago, USA: University of Illinois, Jul. 2018.
    4. T. Holicki and C. W. Scherer, “Output-Feedback Gain-Scheduling Synthesis for a Class of Switched Systems via Dynamic Resetting $D$-Scalings,” in 2018 IEEE Conference on Decision and Control (CDC), in 2018 IEEE Conference on Decision and Control (CDC). Dec. 2018, pp. 6440–6445. doi: 10.1109/CDC.2018.8619128.
    5. T. Holicki and C. W. Scherer, “A Swapping Lemma for Switched Systems,” in IFAC-PapersOnLine, in IFAC-PapersOnLine, vol. 51. 2018, pp. 346–352. doi: 10.1016/j.ifacol.2018.11.131.
    6. Y. Guo and C. W. Scherer, “Robust Gain-Scheduled Controller Design with a Hierarchical Structure,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 51. 2018, pp. 228–233. doi: 10.1016/j.ifacol.2018.11.110.
    7. D. Driess et al., “Learning to control redundant musculoskeletal systems with neural networks and SQP: exploiting muscle properties,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 6461--6468.
    8. T. Ricken, N. Waschinsky, and D. Werner, “Simulation of steatosis zonation in liver lobule—a continuummechanical bi-scale, tri-phasic, multi-component approach,” in Biomedical technology, in Biomedical technology. , Springer, 2018, pp. 15--33.
    9. D. Wittwar and B. Haasdonk, Greedy Algorithms for Matrix-Valued Kernels. 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
    10. P. Tempel, F. Trautwein, and A. Pott, Experimental Validation of Cable Strain Dynamics Models of UHMWPE Dyneema Fibers for Improving Cable Tension Control Strategies. Springer Verlag; Springer International Publishing, 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1959
    11. P. Tempel, D. Lee, and A. Pott, Elastic-Flexible Cable Models with Time-Varying Length for Cable-Driven Parallel Robots - A Rayleigh-Ritz Approach. IEEE, 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1960
    12. M. Köppel, V. Martin, and J. E. Roberts, A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures. 2018. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01761591
    13. M. Köppel, V. Martin, J. Jaffre, and J. E. Roberts, A Lagrange multiplier method for a discrete fracture model for flow in porous media. 2018. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01700663
    14. J. Köhler, M. A. Müller, and F. Allgöwer, A nonlinear tracking model predictive control scheme using reference generic terminal ingredients. 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1970
    15. S. Haesaert, S. Weiland, and C. W. Scherer, A separation theorem for guaranteed $H_2$ performance through matrix inequalities. Automatica, 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1954
    16. C. Bradley et al., Towards realistic HPC models of the neuromuscular system. 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1772
    17. H. Zong, G. Pilania, X. Ding, G. J. Ackland, and T. Lookman, “Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning,” npj Computational Materials, vol. 4, no. 1, Art. no. 1, 2018.
    18. G. Yang, B. Weigand, A. Terzis, K. Weishaupt, and R. Helmig, “Numerical Simulation of Turbulent Flow and Heat Transfer in a Three-Dimensional Channel Coupled with Flow Through Porous Structures,” Transport In Porous Media, vol. 122, no. 1, Art. no. 1, 2018, doi: 10.1007/s11242-017-0995-9.
    19. A. Weyman, M. Bier, C. Holm, and J. Smiatek, “Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study,” The Journal of Chemical Physics, vol. 148, no. 19, Art. no. 19, May 2018, doi: 10.1063/1.5016814.
    20. R. Weeber, M. Hermes, A. M. Schmidt, and C. Holm, “Polymer architecture of magnetic gels: a review,” Journal of Physics: Condensed Matter, vol. 30, no. 6, Art. no. 6, Jan. 2018, doi: 10.1088/1361-648x/aaa344.
    21. C. Waibel, R. Stierle, and J. Gross, “Transferability of cross-interaction pair potentials: Vapor-liquid phase equilibria of n-alkane/nitrogen mixtures using the TAMie force field,” Fluid Phase Equilibria, vol. 456, pp. 124--130, 2018, doi: 10.1016/j.fluid.2017.09.024.
    22. C. Waibel and J. Gross, “Modification of the Wolf Method and Evaluation for Molecular Simulation of Vapor-Liquid Equilibria,” Journal of Chemical Theory and Computation, vol. 14, no. 4, Art. no. 4, 2018, doi: 10.1021/acs.jctc.7b01190.
    23. J. Valentin, M. Sprenger, D. Pflüger, and O. Röhrle, “Gradient-Based Optimization with B-Splines on Sparse Grids for Solving Forward-Dynamics Simulations of Three-Dimensional, Continuum-Mechanical Musculoskeletal System Models,” International Journal for Numerical Methods in Biomedical Engineering, 2018, doi: 10.1002/cnm.2965.
    24. J. Valentin and D. Pflüger, “Fundamental Splines on Sparse Grids and Their Application to Gradient-Based Optimization,” Sparse Grids and Applications - Miami 2016, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1867
    25. F. Uhlig, J. Zeman, J. Smiatek, and C. Holm, “First-Principles Parametrization of Polarizable Coarse-Grained Force Fields for Ionic Liquids,” Journal of Chemical Theory and Computation, vol. 14, no. 3, Art. no. 3, Jan. 2018, doi: 10.1021/acs.jctc.7b00903.
    26. R. Soloperto, M. A. Müller, S. Trimpe, and F. Allgöwer, “Learning-based robust model predictive control with state-dependent uncertainty,” IFAC-PapersOnLine, vol. 51, no. 20, Art. no. 20, 2018.
    27. M. Schneider, T. Koeppl, R. Helmig, R. Steinle, and R. Hilfer, “Stable Propagation of Saturation Overshoots for Two-Phase Flow in Porous Media,” Transport in Porous Media, vol. 121, pp. 621--641, 2018, doi: 10.1007/s11242-017-0977-y.
    28. M. Schneider, B. Flemisch, R. Helmig, K. Terekhov, and H. Tchelepi, “Monotone nonlinear finite-volume method for challenging grids,” Computational Geosciences, 2018, doi: 10.1007/s10596-017-9710-8.
    29. A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback control for dynamical systems,” MathMod 2018, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1766
    30. C. W. Scherer and J. Veenman, “Stability analysis by dynamic dissipation inequalities: On merging frequency-domain techniques with time-domain conditions,” Syst. Contr. Letters, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1958
    31. G. Santin, D. Wittwar, and B. Haasdonk, “Greedy regularized kernel interpolation,” arXiv preprint arXiv:1807.09575, 2018.
    32. A. Romer, J. M. Montenbruck, and F. Allgöwer, “Data-driven inference of conic relations via saddle-point dynamics,” IFAC-PapersOnLine, vol. 51, no. 25, Art. no. 25, 2018.
    33. P. Rehner and J. Gross, “Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory,” THE JOURNAL OF CHEMICAL PHYSICS, vol. 148, p. 164703, 2018, doi: 10.1063/1.5020421.
    34. D. Pfander, G. Daiß, D. Pflüger, D. Marcello, and H. Kaiser, “Accelerating Octo-Tiger: Stellar Mergers on Intel Knights Landing with HPX,” Proceedings of the 6th International Workshop on OpenCL, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1893
    35. D. Pfander, M. Brunn, and D. Pflüger, “AutoTuneTMP: Auto-Tuning in C++ With Runtime Template Metaprogramming,” 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1892
    36. K. Nguyen and M.-A. Keip, “A data-driven approach to nonlinear elasticity,” Computers & Structures, vol. 194, pp. 97--115, 2018, doi: 10.1016/j.compstruc.2017.07.031.
    37. A. Nateghi, H. Dal, M.-A. Keip, and C. Miehe, “An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers,” Continuum Mechanics and Thermodynamics, pp. 1--23, 2018, doi: 10.1007/s00161-017-0612-8.
    38. A. Narayanan Krishnamoorthy, C. Holm, and J. Smiatek, “Specific ion effects for polyelectrolytes in aqueous and non-aqueous media: the importance of the ion solvation behavior,” Soft Matter, vol. 14, no. 30, Art. no. 30, 2018, doi: 10.1039/C8SM00600H.
    39. J. Michalowsky, J. Zeman, C. Holm, and J. Smiatek, “A polarizable MARTINI model for monovalent ions in aqueous solution,” The Journal of Chemical Physics, vol. 149, no. 16, Art. no. 16, Oct. 2018, doi: 10.1063/1.5028354.
    40. J. Meisner, J. Karwounopoulos, P. Walther, J. Kästner, and S. Naumann, “The Lewis Pair Polymerization of Lactones Using Metal Halides and N-Heterocyclic Olefins: Theoretical Insights,” Molecules, vol. 23, no. 2, Art. no. 2, 2018, doi: 10.3390/molecules23020432.
    41. M. Lotti, J. Pleiss, F. Valero, and P. Ferrer, “Enzymatic production of biodiesel: strategies to overcome methanol inactivation,” Biotechnol J, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1809
    42. S. Linsenmayer, H. Ishii, and F. Allgöwer, “Containability With Event-Based Sampling for Scalar Systems With Time-Varying Delay and Uncertainty,” IEEE Control Systems Letters, 2018, doi: 10.1109/LCSYS.2018.2847449.
    43. J. Köhler, M. A. Müller, and F. Allgöwer, “Nonlinear reference tracking: An economic model predictive control perspective,” IEEE Transactions on Automatic Control, 2018, doi: 10.1109/TAC.2018.2800789.
    44. K. Kuritz, W. Halter, and F. Allgöwer, “Passivity-based ensemble control for cell cycle synchronization,” Lecture Notes in Control and Information Sciences - Proceedings, 2018, [Online]. Available: http://www.springer.com/de/book/9783319670676
    45. A. N. Krishnamoorthy, C. Holm, and J. Smiatek, “Influence of Cosolutes on Chemical Equilibrium: a Kirkwood–Buff Theory for Ion Pair Association–Dissociation Processes in Ternary Electrolyte Solutions,” The Journal of Physical Chemistry C, vol. 122, no. 19, Art. no. 19, Apr. 2018, doi: 10.1021/acs.jpcc.7b12255.
    46. B. Kane, R. Kloefkorn, and A. Dedner, “Adaptive Discontinuous Galerkin Methods for flow in porous media,” Proceedings of ENUMATH 2017, the 12th European conference on numerical mathematics and advanced applications, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1928
    47. S. Hocker, H. Lipp, E. Eisfeld, S. Schmauder, and J. Roth, “Precipitation strengthening in Cu--Ni--Si alloys modeled with ab initio based interatomic potentials,” The Journal of chemical physics, vol. 149, no. 2, Art. no. 2, 2018.
    48. D. F. Haeufle, B. Schmortte, H. Geyer, R. Müller, and S. Schmitt, “The benefit of combining neuronal feedback and feed-forward control for robustness in step down perturbations of simulated human walking depends on the muscle function,” Frontiers in computational neuroscience, vol. 12, p. 80, 2018.
    49. C. Y. Guo, “Robust Gain-Scheduled Controller Design with a Hierarchical Structure,” 9th IFAC Symposium on Robust Control Design, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1953
    50. B. Flemisch et al., “Benchmarks for single-phase flow in fractured porous media,” Advances in Water Resources, vol. 111, pp. 239--258, 2018, doi: 10.1016/j.advwatres.2017.10.036.
    51. D. Fink, A. Wagner, and W. Ehlers, “Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue,” JOURNAL OF COMPUTATIONAL SCIENCE, vol. 24, pp. 101–115, Jan. 2018, doi: 10.1016/j.jocs.2017.10.002.
    52. V. Ferrario, N. Hansen, and J. Pleiss, “Interpretation of cytochrome P450 monooxygenase kinetics by modeling of thermodynamic activity,” J Inorg Biochem, vol. 183, pp. 172–178, 2018, doi: https://doi.org/10.1016/j.jinorgbio.2018.02.016.
    53. J. Fehr, D. Grunert, A. Bhatt, and B. Haasdonk, “A sensitivity study of error estimation in reduced elastic multibody systems,” Proceedings of MATHMOD 2018, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1920
    54. C. Dibak, B. Haasdonk, A. Schmidt, F. Dürr, and K. Rothermel, “Enabling Interactive Mobile Simulations Through Distributed Reduced Models,” Pervasive and Mobile Computing, 2018, doi: 10.1016/j.pmcj.2018.02.002.
    55. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-driven time parallelism via forecasting,” SIAM J. of Sci. Comp., 2018, [Online]. Available: http://arxiv.org/abs/1610.09049
    56. F. D. Brunner, D. Antunes, and F. Allgöwer, “Stochastic Thresholds in Event-Triggered Control: A Consistent Policy for Quadratic Control,” Automatica, vol. 89, pp. 376--381, 2018, doi: 10.1016/j.automatica.2017.12.043.
    57. A. Bhatt, J. Fehr, and B. Haasdonk, “Model order reduction of an elastic body under large rigid motion,” Proceedings of ENUMATH 2017, 2018, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1919
    58. B. Becker, B. Guo, K. Bandilla, M. A. Celia, B. Flemisch, and R. Helmig, “An Adaptive Multiphysics Model Coupling Vertical Equilibrium and Full Multidimensions for Multiphase Flow in Porous Media,” Water Resources Research, vol. 54, no. 7, Art. no. 7, 2018, doi: 10.1029/2017wr022303.
    59. F. Bayer, M. A. Müller, and F. Allgöwer, “On optimal system operation in robust economic MPC,” Automatica, vol. 88, pp. 98--106, 2018, doi: 10.1016/j.automatica.2017.11.007.
  6. 2017

    1. M. Fetzer, “From classical absolute stability tests towards a comprehensive robustness analysis,” Dissertation, University of Stuttgart, Stuttgart, 2017. doi: 10.18419/opus-9726.
    2. M. Schneider, D. Gläser, B. Flemisch, and R. Helmig, “Nonlinear Finite-Volume Scheme for Complex Flow Processes on Corner-Point Grids,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, C. Cancès and P. Omnes, Eds., in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems. Cham: Springer International Publishing, 2017, pp. 417–425.
    3. C. A. Rösinger and C. W. Scherer, “Structured Controller Design With Applications to Networked Systems,” in Proc. 56th IEEE Conf. Decision and Control, in Proc. 56th IEEE Conf. Decision and Control. 2017. doi: 10.1109/CDC.2017.8264365.
    4. A. Romer, J. M. Montenbruck, and F. Allgöwer, “Sampling strategies for data-driven inference of passivity properties,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), in 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017, pp. 6389--6394.
    5. M. Fetzer and C. W. Scherer, “Absolute stability analysis of discrete time feedback interconnections,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 50. 2017, pp. 8447–8453. doi: 10.1016/j.ifacol.2017.08.757.
    6. P. Schröder, A. Wagner, D. Stöhr, M. Rehm, and W. Ehlers, “Variation of different growth descriptions in a metastatic proliferation model,” in Proceedings of the 7th GACM Colloquium on Computational Mechanics, M. von Scheven, M.-A. Keip, and N. Karajan, Eds., in Proceedings of the 7th GACM Colloquium on Computational Mechanics. , Stuttgart, 2017, pp. 259–262.
    7. L. Danish, D. Stöhr, P. Scheurich, and N. Pollak, “TRAIL-R3/R4 and Inhibition of TRAIL Signalling in Cancer,” in TRAIL, Fas Ligand, TNF and TLR3 in Cancer, O. Micheau, Ed., in TRAIL, Fas Ligand, TNF and TLR3 in Cancer. , Cham: Springer International Publishing, 2017, pp. 27--57. doi: 10.1007/978-3-319-56805-8_2.
    8. P. Thomann, I. Steinwart, I. Blaschzyk, and M. Meister, Spatial Decompositions for Large Scale SVMs. 2017. [Online]. Available: https://arxiv.org/abs/1612.00374
    9. I. Steinwart and J. Ziegel, Strictly proper kernel scores and characteristic kernels on compact spaces. 2017. [Online]. Available: https://arxiv.org/abs/1712.05279
    10. I. Steinwart and P. Thomann, liquidSVM: A Fast and Versatile SVM package. 2017. [Online]. Available: https://arxiv.org/abs/1702.06899
    11. I. Steinwart, B. Sriperumbudur, and P. Thomann, Adaptive Clustering Using Kernel Density Estimators. 2017. [Online]. Available: https://arxiv.org/pdf/1708.05254.pdf
    12. M. A. Müller, Additional material to the paper “Nonlinear moving horizon estimation in the presence of bounded disturbances.” 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1508
    13. F. Meyer, J. Giesselmann, and C. Rohde, A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method. 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1719
    14. M. Köppel et al., Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. 2017. [Online]. Available: https://arxiv.org/abs/1802.03064
    15. T. Koeppl, M. Fedoseyev, and R. Helmig, Simulation of surge reduction systems using dimensionally reduced models. 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1715
    16. H. Hang and I. Steinwart, A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning. 2017. [Online]. Available: https://arxiv.org/abs/1501.03059v1
    17. M. Greis, H. Schuff, M. Kleiner, N. Henze, and A. Schmidt, Input Controls for Entering Uncertain Data: Probability Distribution Sliders. 2017. doi: 10.1145/3095805.
    18. S. Fischer and I. Steinwart, Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm. 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1931
    19. A. Alla, A. Schmidt, and B. Haasdonk, Model Order Reduction Approaches for Infinite Horizon Optimal Control Problems via the HJB Equation. Springer International Publishing, 2017. doi: 10.1007/978-3-319-58786-8_21.
    20. S. Zeng, J. M. Montenbruck, and F. Allgöwer, “Periodic Signal Compressors,” Proc. 20th IFAC World Congress, pp. 6649--6654, 2017, doi: 10.1016/j.ifacol.2017.08.1042.
    21. S. Zeng and F. Allgöwer, “Structured optimal feedback in multi-agent systems: A static output feedback perspective,” Automatica, vol. 76, pp. 214--221, 2017, doi: 10.1016/j.automatica.2016.10.021.
    22. J. Zeman, F. Uhlig, J. Smiatek, and C. Holm, “A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate,” Journal of Physics: Condensed Matter, 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1751
    23. I. Zderic et al., “Bone cement allocation analysis in artificial cancellous bone structures,” Journal of Orthopaedic Translation, vol. 8, pp. 40--48, 2017, doi: 10.1016/j.jot.2016.09.002.
    24. D. Wittwar, A. Schmidt, and B. Haasdonk, “Reduced Basis Approximation for the Discrete-time Parametric Algebraic Riccati Equation,” SIAM Journal on Matrix Analysis and Applications, 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1572
    25. D. Wirtz and W. Nowak, “The rocky road to universal scientific simulation frameworks,” Environmental Software and Modeling, vol. 93, pp. 180--192, 2017, doi: 10.1016/j.envsoft.2016.10.003.
    26. W. F. van Gunsteren et al., “Validation of Molecular Simulation: An Overview of Issues,” Angewandte Chemie International Edition, 2017, doi: 10.1002/anie.201702945.
    27. G. Tkachev, S. Frey, C. Mu?ller, V. Bruder, and T. Ertl, “Prediction of Distributed Volume Visualization Performance to Support Render Hardware Acquisition,” Eurographics Symposium on Parallel Graphics and Visualization, 2017, doi: 10.2312/pgv.20171089.
    28. C. Thomaseth, K. Kuritz, F. Allgöwer, and N. Radde, “The circuit-breaking algorithm for monotone systems,” Mathematical Biosciences, vol. 284, pp. 80--91, 2017, doi: 10.1016/j.mbs.2016.09.002.
    29. A. Terzis et al., “Heat release at the wetting front during capillary filling of cellulosic micro-substrates,” Journal of Colloid and Interface Science, vol. 504, pp. 751--757, 2017, doi: 10.1016/j.jcis.2017.06.027.
    30. P. Tempel, A. Schmidt, B. Haasdonk, and A. Pott, “Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots,” Computational Kinematics, 2017, doi: 10.1007/978-3-319-60867-9_23.
    31. S. Teichtmeister, D. Kienle, F. Aldakheel, and M.-A. Keip, “Phase Field Modeling of Fracture in Anisotropic Brittle Solids,” International Journal of Non-Linear Mechanics, vol. 97, pp. 1--21, 2017, doi: 10.1016/j.ijnonlinmec.2017.06.018.
    32. M. Sonntag and C.-D. Munz, “Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells,” Journal of Scientific Computing, vol. 70, pp. 1262--1289, 2017, doi: 10.1007/s10915-016-0287-5.
    33. L. J. Smith, W. F. van Gunsteren, and N. Hansen, “Using Complementary NMR Data Sets To Detect Inconsistencies and Model Flaws in the Structure Determination of Human Interleukin-4,” The Journal of Physical Chemistry B, vol. 121, pp. 7055--7063, 2017, doi: 10.1021/acs.jpcb.7b03647.
    34. L. J. Smith, R. Athill, W. F. van Gunsteren, and N. Hansen, “Interpretation of Seemingly Contradictory Data: Low NMR S 2 Order Parameters Observed in Helices and High NMR S 2 Order Parameters in Disordered Loops of the Protein hGH at Low pH,” Chemistry - A European Journal, vol. 23, pp. 9585--9591, 2017, doi: 10.1002/chem.201700896.
    35. M. Sinsbeck and W. Nowak, “Sequential Design of Computer Experiments for the Solution of Bayesian Inverse Problems,” SIAM/ASA J. Uncertainty Quantification, vol. 5, no. 1, Art. no. 1, 2017, doi: 10.1137/15M1047659.
    36. M. Schneider, B. Flemisch, and R. Helmig, “Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media,” International Journal for Numerical Methods in Fluids, 2017, doi: 10.1002/fld.4352.
    37. M. Schneider, L. Agelas, G. Enchery, and B. Flemisch, “Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion    on general meshes,” Journal of Computational Physics, 2017, doi: 10.1016/j.jcp.2017.09.003.
    38. A. Schmidt and B. Haasdonk, “Reduced Basis Approximation of Large Scale Algebraic Riccati Equations,” ESAIM: COCV, 2017, doi: 10.1051/cocv/2017011.
    39. K. Scheufel and M. Mehl, “Robust multi-secant Quasi- Newton variants for parallel fluid-structure simulations -- and other multiphysics applications,” SIAM Journal on Scientific Computing, vol. 39, pp. 404--433, 2017, doi: 10.1137/16M1082020.
    40. C. W. Scherer and C. Roesinger, “Structured Controller Design With Applications to Networked Systems,” 56th IEEE Conf. Decision and Control, pp. 4771--4776, 2017, doi: 10.1109/CDC.2017.8264365.
    41. K. Scharnowski, S. Frey, B. Raffin, and T. Ertl, “Spline-based Decomposition of Streamed Particle Trajectories for Efficient Transfer and Analysis Conversion,” EuroVis 2017, Short Paper, 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1845
    42. G. Santin and B. Haasdonk, “Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation,” Dolomites Research Notes on Approximation, vol. 10, no. 06/2017, Art. no. 06/2017, 2017, doi: 10.14658/pupj-drna-2017-Special_Issue-9.
    43. O. Sander, T. Koch, N. Schröder, and B. Flemisch, “The Dune FoamGrid implementation for surface and network grids,” Archive of Numerical Software, vol. 5, no. 1, Art. no. 1, 2017, doi: 10.11588/ans.2017.1.28490.
    44. A. Romer, J. M. Montenbruck, and F. Allgöwer, “Determining dissipation inequalities from input-output samples,” IFAC-PapersOnLine, vol. 50, no. 1, Art. no. 1, 2017.
    45. D. Pedroso, Y. Zhang, and W. Ehlers, “Solution of Liquid-Gas-Solid Coupled Equations for Porous Media Considering Dynamics and Hysteretic Retention Behavior,” Journal of Engineering Mechanics, vol. 143, p. 04017021, 2017, doi: 10.1061/(ASCE)EM.1943-7889.0001208.
    46. N. Neupert, H. Gomaa, F. Joos, and B. Weigand, “Investigation and modeling of two phase flow through a compressor stage: Analysis of film breakup,” European Journal of Mechanics-B/Fluids, vol. 61, pp. 279--288, 2017.
    47. A. Namhata, L. Zhang, R. M. Dilmore, S. Oladyshkin, and D. V. Nakles, “Modeling Pressure Changes due to Migration of Fluids into the Above Zone Monitoring interval of a Geologic Carbon Storage Site,” International Journal of Greenhouse Gas Control, vol. 56, pp. 30--42, 2017, doi: 10.1016/j.ijggc.2016.11.012.
    48. S. M. Najmabadi et al., “Analyzing the Effect and Performance of Lossy Compression on Aeroacoustic Simulation of Gas Injector,” Computation, vol. 5, 2017, doi: 10.3390/computation5020024.
    49. M. Mordhorst, T. Strecker, D. Wirtz, T. Heidlauf, and O. Röhrle, “POD-DEIM reduction of computational EMG models,” Journal of Computational Science, vol. 19, pp. 86--96, 2017, doi: 10.1016/j.jocs.2017.01.009.
    50. J. M. Montenbruck, D. Zelazo, and F. Allgöwer, “Fekete Points, Formation Control, and the Balancing Problem,” IEEE Trans. Automat. Control, vol. 62, pp. 5069--5081, 2017, doi: 10.1109/TAC.2017.2679073.
    51. J. M. Montenbruck and F. Allgöwer, “An Input-Output Framework for Submanifold Stabilization,” IEEE Trans. Automat. Control, vol. 62, pp. 5170--5184, 2017, doi: 10.1109/TAC.2017.2679480.
    52. J. M. Montenbruck and F. Allgöwer, “Separable matrices and minimum complexity controllers,” Proc. 56th IEEE Conf. Decision and Control (CDC), pp. 4187--4192, 2017, doi: 10.1109/CDC.2017.8264275.
    53. J. Meisner, M. N. Markmeyer, M. U. Bohner, and J. Kästner, “Comparison of classical reaction paths and tunneling paths studied with the semiclassical instanton theory,” Phys. Chem. Chem. Phys., vol. 19, pp. 23085--23094, 2017, doi: 10.1039/C7CP03722H.
    54. J. Meisner, T. Lamberts, and J. Kästner, “Atom Tunneling in the Water Formation Reaction H2 + OH -> H2O + H on an Ice Surface,” ACS Earth and Space Chemistry, vol. 1, no. 7, Art. no. 7, 2017, doi: 10.1021/acsearthspacechem.7b00052.
    55. J. Mehne and W. Nowak, “Improving temperature predictions for Li-ion batteries: data assimilation with a stochastic extension of a physically-based, thermo-electrochemical model,” Journal of Energy Storage, vol. 12, pp. 288--296, 2017, doi: 10.1016/j.est.2017.05.013.
    56. D. Markthaler, J. Zeman, J. Baz, J. Smiatek, and N. Hansen, “Validation of Trimethylamine-N-Oxide (TMAO) Force Fields Based on Thermophysical Properties of Aqueous TMAO Solutions,” The Journal of Physical Chemistry B, 2017, doi: 10.1021/acs.jpcb.7b07774.
    57. D. Markthaler, J. Gebhardt, S. Jakobtorweihen, and N. Hansen, “Molecular Simulations of Thermodynamic Properties for the System alpha-Cyclodextrin/Alcohol in Aqueous Solution,” Chemie Ingenieur Technik, 2017, doi: 10.1002/cite.201700057.
    58. M. Lorenzen, M. A. Müller, and F. Allgöwer, “Stabilizing Stochastic MPC without Terminal Constraints,” Proceedings of the American Control Conference, pp. 5636--5641, 2017, doi: 10.23919/ACC.2017.7963832.
    59. M. Lorenzen, M. A. Müller, and F. Allgöwer, “Stochastic Model Predictive Control without Terminal Constraints,” International Journal of Robust and Nonlinear Control, 2017, doi: 10.1002/rnc.3912.
    60. M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer, “Stochastic MPC with offline uncertainty sampling,” Automatica, vol. 81, pp. 176--183, 2017, doi: 10.1016/j.automatica.2017.03.031.
    61. M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer, “Constraint-Tightening and Stability in Stochastic Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 62, pp. 3165--3177, 2017, doi: 10.1109/TAC.2016.2625048.
    62. M. Lorenzen, F. Allgöwer, and M. Cannon, “Adaptive Model Predictive Control with Robust Constraint Satisfaction,” Proceedings of the IFAC World Congress, vol. 50, no. 1, Art. no. 1, 2017, doi: 10.1016/j.ifacol.2017.08.512.
    63. S. Linsenmayer, D. V. Dimarogonas, and F. Allgöwer, “Event-Based Vehicle Coordination Using Nonlinear Unidirectional Controllers,” IEEE Transactions on Control of Network Systems, 2017, doi: 10.1109/TCNS.2017.2733959.
    64. S. Linsenmayer, R. Blind, and F. Allgöwer, “Delay-dependent data rate bounds for containability of scalar systems,” Proceedings of the 20th IFAC World Congress, pp. 7875--7880, 2017, doi: 10.1016/j.ifacol.2017.08.742.
    65. S. Linsenmayer and F. Allgöwer, “Stabilization of Networked Control Systems with weakly hard real-time dropout description,” Proceedings of the 56th IEEE Conference on Decision and Control (CDC), pp. 4765--4770, 2017, doi: 10.1109/CDC.2017.8264364.
    66. M. Leuschner and F. Fritzen, “Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces,” Mechanics of Materials, vol. 104, pp. 121--138, 2017, doi: 10.1016/j.mechmat.2016.10.008.
    67. A. Langer, “Automated Parameter Selection in the $L^1$-$L^2$-$TV$ Model for Removing Gaussian Plus Impulse Noise,” Inverse Problems, vol. 33, 2017, doi: 10.1088/1361-6420/33/7/074002.
    68. A. Langer, “Automated Parameter Selection for Total Variation Minimization in Image Restoration,” Journal of Mathematical Imaging and Vision, vol. 57, pp. 239--268, 2017, doi: 10.1007/s10851-016-0676-2.
    69. M. Köppel, I. Kröker, and C. Rohde, “Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media,” Computational Geosciences, vol. 21, no. 4, Art. no. 4, 2017, doi: 10.1007/s10596-017-9662-z.
    70. P. N. Köhler, M. A. Müller, J. Pannek, and F. Allgöwer, “On Exploitation of Supply Chain Properties by Sequential Distributed MPC,” Proceedings of the 20th IFAC World Congress, vol. 50, no. 1, Art. no. 1, 2017, doi: 10.1016/j.ifacol.2017.08.706.
    71. J. Köhler, M. A. Müller, N. Li, and F. Allgöwer, “Real Time Economic Dispatch for Power Networks: A Distributed Economic Model Predictive Control Approach,” Proceedings of 56th Annual Conference on Decision and Control (CDC), pp. 6340--6345, 2017, doi: 10.1109/CDC.2017.8264615.
    72. K. Kuritz, D. Stöhr, N. Pollak, and F. Allgöwer, “On the relationship between cell cycle analysis with ergodic principles and age-structured cell population models,” Journal of Theoretical Biology, vol. 414, pp. 91--102, 2017, doi: 10.1016/j.jtbi.2016.11.024.
    73. M. Koy et al., “High Oxidation State Molybdenum N-Heterocyclic Carbene Alkylidyne Complexes: Synthesis, Mechanistic Studies, and Reactivity,” Chemistry – A European Journal, vol. 23, no. 61, Art. no. 61, 2017, doi: 10.1002/chem.201703313.
    74. B. Kolb, L. C. Lentz, and A. M. Kolpak, “Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods,” Scientific reports, vol. 7, no. 1, Art. no. 1, 2017.
    75. C. Kleinbach, O. Martynenko, J. Promies, D. F. B. Haeufle, J. Fehr, and S. Schmitt, “Implementation and validation of the extended Hill-type muscle model with robust routing capabilities in LS-DYNA for active human body models,” BioMedical Engineering OnLine, vol. 16:109, p. 28, 2017, doi: 10.1186/s12938-017-0399-7.
    76. M.-A. Keip and M. Rambausek, “Computational and analytical investigations of shape effects in the experimental characterization of magnetorheological elastomers,” International Journal of Solids and Structures, 2017, doi: 10.1016/j.ijsolstr.2017.04.012.
    77. M.-A. Keip and O. Nadgir, “An electro-elastic phase-field model for nematic liquid crystal elastomers based on Landau-de-Gennes theory,” GAMM-Mitteilungen, vol. 40, pp. 102--124, 2017, doi: 10.1002/gamm.201720003.
    78. G. Karch et al., “Visual analysis of inclusion dynamics in two-phase flow,” IEEE Transactions on Visualization and Computer Graphics, 2017, doi: 10.1109/TVCG.2017.2692781.
    79. A. Jensch, C. Thomaseth, and N. Radde, “Sampling-based Bayesian approaches reveal the importance of quasi-bistable behavior in cellular decision processes on the example of the MAPK signaling pathway in PC-12 cell lines,” BMC Systems Biology, vol. 11:11, 2017, [Online]. Available: http://www.readcube.com/articles/10.1186/s12918-017-0392-6?author_access_token=3q2RtuUMp5dlIzB5NpjbjG_BpE1tBhCbnbw3BuzI2RPEVP0plXI3AmBWlYn1oe56surdtpVt-iFfK94LGqtHxsstNsxlIxhNROc2bzH9YXfOK9VlviFhtLKBEKqXf5iiseQTVDcQopAF6zHM6VSseg%3D%3D
    80. A. Hofmann and M. Hanss, “Fuzzy arithmetical controller design for active road vehicle suspension in the presence of uncertainties,” 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 582--587, 2017, doi: 10.1109/MMAR.2017.8046893.
    81. S. Hocker, D. Rapp, and S. Schmauder, “Molecular dynamics simulations of strengthening due to silver precipitates in copper matrix,” physica status solidi (b), 2017, doi: 10.1002/pssb.201600479.
    82. S. Hirschmann, M. Brunn, M. Lahnert, M. Mehl, C. W. Glass, and D. Pflüger, “Load balancing with p4est for Short-Range Molecular Dynamics with ESPResSo,” Advances in Parallel Computing, vol. 32, pp. 455--464, 2017, doi: 10.3233/978-1-61499-843-3-455.
    83. M. Hintermüller, C. N. Rautenberg, T. Wu, and A. Langer, “Optimal Selection of the Regularization Function in a Weighted Total Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests,” Journal of Mathematical Imaging and Vision, vol. 59, pp. 515--533, 2017, doi: 10.1007/s10851-017-0736-2.
    84. A. Hessenthaler, O. Röhrle, and D. Nordsletten, “Validation of a non-conforming monolithic fluid-structure interaction method using phase-contrast MRI,” International Journal for Numerical Methods in Biomedical Engineering, vol. 33, 2017, doi: 10.1002/cnm.2845.
    85. A. Hessenthaler, N. Gaddum, O. Holub, R. Sinkus, O. Röhrle, and D. Nordsletten, “Experiment for validation of fluid-structure interaction models and algorithms,” International Journal for Numerical Methods in Biomedical Engineering, vol. 33, 2017, doi: 10.1002/cnm.2848.
    86. M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey on provenance: What for? What form? What from?,” International Journal on Very Large Data Bases, vol. 26, no. 6, Art. no. 6, 2017, doi: 10.1007/s00778-017-0486-1.
    87. F. Hempert et al., “Simulation of real gas effects in supersonic methane jets using a tabulated equation of state with a discontinuous Galerkin spectral element method,” Computers & Fluids, vol. 145, pp. 167--179, 2017, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0045793016304078
    88. D. Hamann, N.-P. Walz, A. Fischer, M. Hanss, and P. Eberhard, “Fuzzy arithmetical stability analysis of uncertain machining systems,” Mechanical Systems and Signal Processing, vol. 98, no. 1, Art. no. 1, 2017, doi: 10.1016/j.ymssp.2017.05.012.
    89. W. Halter, J. M. Montenbruck, and F. Allgöwer, “Systems with integral resource consumption,” Proc. 56th IEEE Conf. Decision and Control (CDC), pp. 2667--2673, 2017, doi: 10.1109/CDC.2017.8264046.
    90. M. Hahn, U. Breitenbücher, F. Leymann, and A. Weiß, “TraDE - A Transparent Data Exchange Middleware for Service Choreographies,” Lecture Notes in Computer Science (LNCS), vol. 10573, pp. 252--270, 2017, doi: 10.1007/978-3-319-69462-7_16.
    91. M. Hahn, U. Breitenbücher, O. Kopp, and F. Leymann, “Modeling and execution of data-aware choreographies: an overview,” Computer Science - Research and Development, 2017, doi: 10.1007/s00450-017-0387-y.
    92. B. Haasdonk and G. Santin, “Greedy Kernel Approximation for Sparse Surrogate Modelling,” Reduced-Order Modeling (ROM) for Simulation and Oprimization, 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1613
    93. J. Haas et al., “Challenges and trends of energy storage expansion planning for flexibility provision in power systems - a review,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 603–619, 2017, doi: 10.1016/j.rser.2017.05.201.
    94. F. S. Göküzüm and M.-A. Keip, “An Algorithmically Consistent Macroscopic Tangent Operator for FFT-based Computational Homogenization,” International Journal for Numerical Methods in Engineering, 2017, doi: 10.1002/nme.5627.
    95. A. Guthke, “Defensible Model Complexity: A Call for Data-Based and Goal-Oriented Model Choice,” Groundwater, vol. 55, pp. 646--650, 2017, doi: 10.1111/gwat.12554.
    96. G. Goebel and F. Allgöwer, “Semi-explicit MPC based on subspace clustering,” Automatica, vol. 83, pp. 309--316, 2017, doi: 10.1016/j.automatica.2017.06.036.
    97. G. Goebel and F. Allgöwer, “New results on semi-explicit and almost explicit MPC algorithms,” at-Automatisierungstechnik, vol. 65, pp. 245--259, 2017, doi: 10.1515/auto-2017-0006.
    98. D. Gläser, R. Helmig, B. Flemisch, and H. Class, “A discrete fracture model for two-phase flow in fractured porous media,” Advances in Water Resources, vol. 110, pp. 335--348, 2017, doi: 10.1016/j.advwatres.2017.10.031.
    99. A. Gholami, A. Mang, K. Scheufele, C. Davatzikos, M. Mehl, and G. Biros, “A Framework for Scalable Biophysics-based Image Analysis,” Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis SC17, pp. 19:1--19:13, 2017, doi: 10.1145/3126908.3126930.
    100. F. Fritzen and M. Hassani, “Space-time model order reduction for nonlinear viscoelastic systems subjected to long-term loading,” Meccanica, vol. 52, no. 276, Art. no. 276, 2017, doi: 10.1007/s11012-017-0734-x.
    101. S. Frey and T. Ertl, “Fast Flow-based Distance Quantification and Interpolation for High-Resolution Density Distributions,” EuroGraphics 2017, Short Paper, 2017, doi: 10.2312/egsh.20171009.
    102. S. Frey and T. Ertl, “Progressive Direct Volume-to-Volume Transformation,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, pp. 921--930, 2017, doi: 10.1109/TVCG.2016.2599042.
    103. S. Frey, “Sampling and Estimation of Pairwise Similarity in Spatio-Temporal Data Based on Neural Networks,” Informatics, 2017, doi: 10.3390/informatics4030027.
    104. T. Fetzer, J. Vanderborght, K. Mosthaf, K. M. Smits, and R. Helmig, “Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis,” WATER RESOURCES RESEARCH, vol. 53, no. 2, Art. no. 2, Feb. 2017, doi: 10.1002/2016WR019983.
    105. T. Fetzer, C. Grüninger, B. Flemisch, and R. Helmig, “On the Conditions for Coupling Free Flow and Porous-Medium Flow in a Finite Volume Framework,” Finite Volumes for Complex Applications VIII, pp. 347--356, 2017, doi: 10.1007/978-3-319-57394-6_37.
    106. M. Fetzer, C. W. Scherer, and J. Veenman, “Invariance with Dynamic Multipliers,” IEE T. Automat. Contr., 2017, doi: 10.1109/TAC.2017.2762764.
    107. M. Fetzer and C. W. Scherer, “Full-block multipliers for repeated, slope restricted scalar nonlinearities,” Int. J. Robust Nonlin., vol. 27, no. 17, Art. no. 17, 2017, doi: 10.1002/rnc.3751.
    108. M. Fetzer and C. W. Scherer, “Zames-Falb Multipliers for Invariance,” IEEE Control Syst. Lett., vol. 1, no. 2, Art. no. 2, 2017, doi: 10.1109/LCSYS.2017.2718556.
    109. O. Fernandes, S. Frey, and T. Ertl, “Transportation-based Visualization of Energy Conversion,” IVAPP, p. 12, 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1537
    110. J. Fehr and C. Kleinbach, “Optimal Deceleration of Surrogate Models in a Generic Side Impact Setup. International Journal of Crashworthiness,” International Journal of Crashworthiness, 2017, doi: 10.1080/13588265.2017.1287525.
    111. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with phase    transition and surface tension,” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 336, pp. 347–374, May 2017, doi: 10.1016/j.jcp.2017.02.001.
    112. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension,” Computers & Fluids, 2017, [Online]. Available: https://doi.org/10.1016/j.compfluid.2017.03.026
    113. M. P. Englert, “Learning Manipulation Skills from a Single Demonstration,” International Journal of Robotics Research, 2017, [Online]. Available: https://ipvs.informatik.uni-stuttgart.de/mlr/papers/17-englert-IJRRa.pdf
    114. W. Ehlers and C. Luo, “A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing,” Computer Methods in Applied Mechanics and Engineering, vol. 315, pp. 348--368, 2017, doi: 10.1016/j.cma.2016.10.045.
    115. H. Ebel, E. Sharafian Ardakani, and P. Eberhard, “Comparison of Distributed Model Predictive Control Approaches for Transporting a Load by a Formation of Mobile Robots,” Proceedings of the 8th ECCOMAS Thematic Conference on Multibody Dynamics, 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1717
    116. H. Ebel, E. Sharafian Ardakani, and P. Eberhard, “Distributed Model Predictive Formation Control with Discretization-Free Path Planning for Transporting a Load. Robotics and Autonomous Systems,” Robotics and Autonomous Systems, vol. 96, pp. 211--223, 2017, doi: 10.1016/j.robot.2017.07.007.
    117. C. Dibak, A. Schmidt, F. Dürr, B. Haasdonk, and K. Rothermel, “Server-Assisted Interactive Mobile Simulations for Pervasive Applications,” Proceesings of the 15th IEEE International Conference on Pervasive Computing and Communications, 2017, doi: 10.1109/PERCOM.2017.7917857.
    118. C. Dibak, F. Dürr, and K. Rothermel, “Demo: Server-assisted interactive mobile simulations for pervasive applications,” Proceesings of the 15th IEEE International Conference on Pervasive Computing and Communications Workshops, 2017, doi: 10.1109/PERCOMW.2017.7917525.
    119. W.-P. Düll, B. Hilder, and G. Schneider, “Analysis of the embedded cell method in 2D for the numerical homogenization of metal-ceramic composite materials.,” European J. Appl. Math., 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1670
    120. S. Copplestone, P. Ortwein, and C.-D. Munz, “Complex-Frequency Shifted PMLs for Maxwell"s Equations With Hyperbolic Divergence Cleaning and Their Application in Particle-in-Cell Codes,” IEEE Transactions on Plasma Science, vol. 45, pp. 2--14, 2017, doi: 10.1109/TPS.2016.2637061.
    121. B. Christ et al., “Computational Modeling in Liver Surgery,” Frontiers in Physiology, vol. 8, p. 906, 2017, doi: 10.3389/fphys.2017.00906.
    122. C. Chalons, C. Rohde, and M. Wiebe, “A Finite Volume Method for Undercompressive Shock Waves in Two Space Dimensions,” ESAIM Math. Model. Numer. Anal., 2017, [Online]. Available: https://www.esaim-m2an.org/component/article?access=doi&doi=10.1051/m2an/2017027
    123. C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow,” Springer Proc. Math. Stat., 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1721
    124. B. W. Carabelli, R. Blind, F. Dürr, and K. Rothermel, “State-dependent priority scheduling for networked control systems,” Proceedings of the American Control Conference (ACC), pp. 1003--1010, 2017, doi: 10.23919/ACC.2017.7963084.
    125. R. Bürger and I. Kröker, “Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected Lighthill-Whitham-Richards Traffic Model,” Springer Proceedings in Mathematics & Statistics, vol. 200, pp. 189--197, 2017, doi: 10.1007/978-3-319-57394-6_21.
    126. L. Böger, M.-A. Keip, and C. Miehe, “Minimization and Saddle-Point Principles for the Phase-Field Modeling of Fracture in Hydrogels,” Computational Materials Science, vol. 138, pp. 474--485, 2017, doi: 10.1016/j.commatsci.2017.06.010.
    127. M. Bußler et al., “Visualization of fracture progression in peridynamics,” Computers & Graphics, vol. 67, pp. 45--57, 2017, doi: 10.1016/j.cag.2017.05.003.
    128. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” Numerical Mathematics and Advanced Applications - ENUMATH 2017, 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
    129. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Event-triggered MPC With Guaranteed Asymptotic Bound and Average Sampling Rate,” IEEE Transactions on Automatic Control, 2017, doi: 10.1109/TAC.2017.2702646.
    130. V. Bruder, S. Frey, and T. Ertl, “Prediction-Based Load Balancing and Resolution Tuning for Interactive Volume Raycasting,” Visual Informatics, 2017, doi: 10.1016/j.visinf.2017.09.001.
    131. M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich, “A GPU-accelerated Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation of Nonlinear Signal Propagation in Multimode Fibers,” Journal of Lightwave Technology, vol. 35, pp. 3622--3628, 2017, doi: 10.1109/JLT.2017.2715358.
    132. C. Bradley et al., “Towards realistic HPC models of the neuromuscular system,” Frontiers in Physiology, 2017, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1772
    133. J. Behler, “First principles neural network potentials for reactive simulations of large molecular and condensed systems,” Angewandte Chemie International Edition, vol. 56, no. 42, Art. no. 42, 2017.
    134. B. Becker, B. Guo, K. Bandilla, M. A. Celia, B. Flemisch, and R. Helmig, “A Pseudo-Vertical Equilibrium Model for Slow Gravity Drainage Dynamics,” Water Resources Research, vol. 53, no. 12, Art. no. 12, 2017, doi: 10.1002/2017WR021644.
    135. A. Bayer, S. Schmitt, M. Günther, and D. Haeufle, “The influence of biophysical muscle properties on simulating fast human arm movements,” Computer methods in biomechanics and biomedical engineering, vol. 20, no. 8, Art. no. 8, 2017.
    136. P. U. Baur, “Comparison of methods for parametric model order reduction of instationary problem,” Chapter in P. Benner, A. Cohen, M. Ohlberger, K. Willcox (Eds.): Model Reduction and Approximation: Theory and Algorithms, pp. 377--407, 2017, doi: 10.1137/1.9781611974829.ch9.
    137. B. Baumann, D. Hamann, and P. Eberhard, “Time-dependent Parametric Model Order Reduction for Material-Removal Simulations,” Modeling, Simulation and Applications, vol. 17, 2017, doi: 10.1007/978-3-319-58786-8_30.
    138. A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Levy processes,” Stochastic and Partial Differential Equations, 2017, doi: 10.1007/s40072-017-0109-2.
    139. A. Barth and F. G. Fuchs, “Uncertainty quantification for linear hyperbolic equations  with stochastic process or random field coefficients,” Appl. Numer. Math., vol. 121, pp. 38--51, 2017, doi: 10.1016/j.apnum.2017.06.009.
    140. SS. Agada, S. Geiger, A. ElSheikh, and S. Oladyshkin, “Data-driven surrogates for rapid simulation and optimization of WAG injection in fractured carbonate reservoirs,” Petroleum Geoscience, vol. 23, pp. 270--283, 2017, doi: 10.1144/petgeo2016-068.
  7. 2016

    1. J. Veenman, M. Lahr, and C. W. Scherer, “Robust controller synthesis with unstable weights,” in 55th IEEE Conf. Decision and Control, in 55th IEEE Conf. Decision and Control. 2016, pp. 2390–2395. doi: 10.1109/CDC.2016.7798620.
    2. J. M. Montenbruck and F. Allgöwer, “Some problems arising in controller design from big data via input-output methods,” in 2016 IEEE 55th Conference on Decision and Control (CDC), in 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016, pp. 6525--6530.
    3. T. Holicki and C. W. Scherer, “Controller Synthesis for Distributed Systems over Undirected Graphs,” in 55th IEEE Conf. Decision and Control, in 55th IEEE Conf. Decision and Control. 2016, pp. 5238–5244. doi: 10.1109/CDC.2016.7799071.
    4. M. Fetzer and C. W. Scherer, “Stability and Performance Analysis on Sobolev Spaces,” in 55th IEEE Conf. Decision and Control, in 55th IEEE Conf. Decision and Control. 2016, pp. 7264–7269. doi: 10.1109/CDC.2016.7799390.
    5. A. Barth, C. Schwab, and J. Sukys, “Multilevel Monte Carlo Simulation of Statistical Solutions to the Navier--Stokes Equations,” in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, R. Cools and D. Nuyens, Eds., in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. , Cham: Springer International Publishing, 2016, pp. 209--227. doi: 10.1007/978-3-319-33507-0_8.
    6. S. M. Najmabadi, Z. Wang, Y. Baroud, and S. Simon, A self-adaptive dynamic partial reconfigurable architecture for online data stream compression. 2016. doi: 10.1109/FPGA4GPC.2016.7518529.
    7. S. M. Najmabadi, Z. Wang, Y. Baroud, and S. Simon, Online bandwidth reduction using dynamic partial reconfiguration. 2016. doi: 10.1109/FCCM.2016.49.
    8. L. Feller, C. Kleinbach, J. Fehr, and S. Schmitt, Incorporating Muscle Activation Dynamics into the Global Human Body Model. 2016. [Online]. Available: http://www.ircobi.org/wordpress/downloads/irc16/pdf-files/71.pdf
    9. P. Bastian et al., Hardware-Based Efficiency Advances in the EXA-DUNE Project in “Software for Exascale Computing -- SPPEXA 2013--2015.” Springer, 2016. doi: 10.1007/978-3-319-40528-5_1.
    10. P. Bastian et al., Advances Concerning Multiscale Methods and Uncertainty Quantification in “EXA-DUNE in Software for Exascale Computing -- SPPEXA 2013--2015.” Springer, 2016. doi: 10.1007/978-3-319-40528-5_2.
    11. Y. Zhang, D. M. Pedroso, and W. Ehlers, “One-dimensional dynamics of saturated incompressible porous media: analytical solutions and influence of inertia terms,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 40, pp. 2489--2513, 2016, doi: 10.1002/nag.2541.
    12. Y. Zhang, Y. Liu, G. Pau, S. Oladyshkin, and S. Finsterle, “Evaluation of multiple reduced-order models to enhance confidence in global sensitivity analyses,” International Journal of Greenhouse Gas Control, vol. 49, pp. 217--226, 2016, doi: 10.1016/j.ijggc.2016.03.003.
    13. S. Zeng, S. Waldherr, C. Ebenbauer, and F. Allgöwer, “Ensemble Observability of Linear Systems,” IEEE Transactions on Automatic Control, vol. 61, p. 14, 2016, doi: 10.1109/TAC.2015.2463631.
    14. S. Zeng, H. Ishii, and F. Allgöwer, “Sampled Observability of Discrete Heterogeneous Ensembles from Anonymized Output Measurements,” Proceedings of the 54th IEEE Conference on Decision and Control, p. 6, 2016, doi: 10.1109/CDC.2015.7403111.
    15. L. Xia, F. Fritzen, and P. Breitkopf, “Evolutionary topology optimization of elastoplastic structures,” Structural and Multidisciplinary Optimization, 2016, doi: 10.1007/s00158-016-1523-1.
    16. H.-J. Wunderlich, C. Braun, and A. Schöll, “Pushing the Limits: How Fault Tolerance Extends the Scope of Approximate Computing,” Proceedings of the 22nd IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 133--136, 2016, doi: 10.1109/IOLTS.2016.7604686.
    17. J. Wu, A. Elser, S. Zeng, and F. Allgöwer, “Consensus-based distributed Kalman-Bucy filter for continuous-time systems,” IFAC-PapersOnLine, vol. 49, no. 22, Art. no. 22, 2016, doi: 10.1016/j.ifacol.2016.10.417.
    18. J. Wu and F. Allgöwer, “Verteilte Ausgangsregelung von Multiagentensystemen mit gekoppelten Messgrößen,” at-Automatisierungstechnik, vol. 64, no. 8, Art. no. 8, 2016, doi: 10.1515/auto-2016-0041.
    19. D. Weidler and A. Gross, “Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Aldehydes, Ketones, and Small Cyclic Alkanes,” I&EC research, vol. 55, pp. 12123--12132, 2016, doi: 10.1021/acs.iecr.6b02182.
    20. K. Vukojevic-Haupt, F. Haupt, and F. Leymann, “On-demand provisioning of workflow middleware and services into the cloud: an overview,” Computing, 2016, doi: 10.1007/s00607-016-0521-x.
    21. J. Veenman, C. W. Scherer, and H. Köroglu, “Robust stability and performance analysis with integral quadratic constraints,” Eur. J. Control, vol. 31, pp. 1–32, 2016, doi: 10.1016/j.ejcon.2016.04.004.
    22. J. Veenman, C. W. Scherer, and H. Koroglu, “Robust stability and performance analysis with integral quadratic constraints,” EJC, vol. 31, pp. 1--32, 2016, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0947358016300097
    23. W. F. van?Gunsteren et al., “Deriving Structural Information from Experimentally Measured Data on Biomolecules,” Angewandte Chemie International Edition, vol. 55, pp. 15990--16010, 2016, doi: 10.1002/anie.201601828.
    24. E. J. Trottemant, C. W. Scherer, and M. Mazo, “Optimality of robust disturbance-feedback strategies,” Int. J. Robust Nonlin., vol. 26, no. 7, Art. no. 7, 2016, doi: 10.1002/rnc.3360.
    25. E. J. Trottemant, M. Mazo, and C. W. Scherer, “Synthesis of Robust Piecewise Affine Output-Feedback Strategies,” J. Guid. Control Dynam., vol. 39, no. 7, Art. no. 7, 2016, doi: 10.2514/1.G001343.
    26. H. N. Tien, C. W. Scherer, J. M. A. Scherpen, and V. Muller, “Linear Parameter Varying Control of Doubly Fed Induction Machines.,” IEEE Trans. Industrial Electronics, vol. 63, no. 1, Art. no. 1, 2016, [Online]. Available: http://dblp.uni-trier.de/db/journals/tie/tie63.html#TienSSM16
    27. C. Thomaseth and N. Radde, “Normalization of Western blot data affects the statistics of estimators,” IFAC-PapersOnLine, vol. 49, no. 26, Art. no. 26, 2016, doi: 10.1016/j.ifacol.2016.12.103.
    28. P. Tempel, A. Verl, and A. Pott, “On the Dynamics and Emergency Stop Behavior of Cable-Driven Parallel Robots,” ROMANSY 21 Robot Design, Dynamics and Control, vol. 569, pp. 431--438, 2016, doi: 10.1007/978-3-319-33714-2_48.
    29. P. Tempel and A. Pott, “Parallele Seilroboter in Theorie und Praxis - Leichtbau, Energieeffizienz und Hohe Dynamiken als Potential, Elastizität als Hauptherausforderung,” wt Werkstattstechnik online Jahrgang 106 (2016), vol. 9, pp. 643--647, 2016, [Online]. Available: http://www.werkstattstechnik.de/wt/get_article.php?dataarticle_id=86418
    30. P. Tempel, “Improved Modeling of Cables for Kinematics and Dynamics of Lightweight Robots (iCaMDyRo),” Im Blickpunkt 2016, 2016, [Online]. Available: http://www.isw.uni-stuttgart.de/files/institut/Blickpunkt-ISW-2016.pdf
    31. A. Sridhar, M.-A. Keip, and C. Miehe, “Homogenization in micro-magneto-mechanics,” Computational Mechanics, vol. 58, pp. 151--169, 2016, doi: 10.1007/s00466-016-1286-y.
    32. L. Smith, W. F. van Gunsteren, and N. Hansen, “On the use of time-averaging restraints when deriving biomolecular structure from 3J-coupling values obtained from NMR experiments,” Journal of Biomolecular NMR, vol. 66, pp. 69--83, 2016, doi: 10.1007/s10858-016-0058-5.
    33. A. V. Shapeev, “Moment tensor potentials: A class of systematically improvable interatomic potentials,” Multiscale Modeling & Simulation, vol. 14, no. 3, Art. no. 3, 2016.
    34. A. Schöll, C. Braun, and H.-J. Wunderlich, “Applying Efficient Fault Tolerance to Enable the Preconditioned Conjugate Gradient Solver on Approximate Computing Hardware,” Proceedings of the International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), pp. 21--26, 2016, doi: 10.1109/DFT.2016.7684063.
    35. A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Efficient Algorithm-Based Fault Tolerance for Sparse Matrix Operations,” Proceedings of the 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 251--262, 2016, doi: 10.1109/DSN.2016.31.
    36. DO. Schulte, W. Rühaak, S. Oladyshkin, B. Welsch, and I. Sass, “Optimization of Medium Deep Borehole Thermal Energy Storages,” Energy Technology, vol. 4, pp. 104--113, 2016, doi: 10.1002/ente.201500254.
    37. P. Schröder, A. Wagner, and W. Ehlers, “Multi-component modelling and simulation of metastases proliferation within brain tissue,” PAMM, vol. 15, pp. 101--102, 2016, [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/pamm.201610039/full
    38. M. Schneider, B. Flemisch, and R. Helmig, “Monotone nonlinear finite‐volume method for nonisothermal two‐phase two‐component flow in porous media,” International Journal for Numerical Methods in Fluids, vol. 84, no. 6, Art. no. 6, 2016, doi: 10.1002/fld.4352.
    39. A. Schmidt and B. Haasdonk, “Reduced basis method for H2 optimal feedback control problems,” Proceedings of CPDE2016, vol. 49, pp. 327--332, 2016, doi: 10.1016/j.ifacol.2016.07.462.
    40. C. W. Scherer, “Lossless $H_ınfty$-synthesis for 2D systems (special issue JCW),” Syst. Control Lett., vol. 95, pp. 25–35, 2016, doi: 10.1016/j.sysconle.2016.02.011.
    41. C. W. Scherer, “Lossless H?-synthesis for 2D systems (special issue JCW),” Syst. Contr. Letters, vol. 35, pp. 25--35, 2016, doi: 10.1016/j.sysconle.2016.02.011.
    42. M. Schenke and W. Ehlers, “Numerical investigation of vacuum-assisted resin transfer moulding (VARTM) within deformable fibre fabrics,” PAMM, vol. 16, pp. 479--480, 2016, doi: 10.1002/pamm.201610228.
    43. O. Röhrle, M. Sprenger, and S. Schmitt, “A two-muscle, continuum-mechanical forward simulation of the upper limb,” Biomechanics and Modeling in Mechanobiology, 2016, doi: 10.1007/s10237-016-0850-x.
    44. O. Röhrle, V. Neumann, and T. Heidlauf, “The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study,” Computational and Mathematical Methods in Medicine, 2016, doi: 10.1155/2016/3180205.
    45. M. Redeker, C. Rohde, and I. S. Pop, “Upscaling of a tri-phase phase-field model for precipitation in porous    media,” IMA JOURNAL OF APPLIED MATHEMATICS, vol. 81, no. 5, Art. no. 5, Oct. 2016, doi: 10.1093/imamat/hxw023.
    46. M. Rambausek, M.-A. Keip, and C. Miehe, “A multiscale view on shape effects in the computational characterization of magnetorheological elastomers,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 383--384, 2016, doi: 10.1002/pamm.201610180.
    47. C. Rahmann, V. Vittal, J. Ascui, and J. Haas, “Mitigation Control against Partial Shading Effects in Large-scale PV Power Plants,” IEEE Transactions on Sustainable Energy, vol. 7, no. 1, Art. no. 1, 2016, doi: 10.1109/TSTE.2015.2484261.
    48. D. Paul and N. Radde, “Robustness and filtering properties of ubiquitous signaling network motifs,” IFAC-PapersOnLine, vol. 49, no. 26, Art. no. 26, 2016, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2405896316327768
    49. W. Nowak and A. Guthke, “Entropy-based experimental design for optimal model discrimination in the geosciences,” Entropy, vol. 18, no. 11, Art. no. 11, 2016, doi: 10.3390/e18110409.
    50. I. Notarnicola, F. Bayer, G. Notarstefano, and F. Allgöwer, “Final-State Constrained Optimal Control via a Projection Operator Approach,” European Control Conference (ECC), pp. 148--153, 2016, doi: 10.1109/ECC.2016.7810278.
    51. A. Namhata, S. Oladyshkin, RM. Dilmore, L. Zhang, and DV. Nakles, “Probabilistic Assessment of Above Zone Pressure Predictions at a Geologic Carbon Storage Site,” Scientific Reports, vol. 6, p. 39536, 2016, doi: 10.1038/srep39536.
    52. O. Nadgir, M.-A. Keip, and C. Miehe, “An anisotropic phase-field model for transversely isotropic barium titanate with bounded moduli,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 467--468, 2016, doi: 10.1002/pamm.201610222.
    53. S. Most, B. Bijeljic, and W. Nowak, “Evolution and persistence of cross-directional statistical dependence during finite-Pu00e9clet transport through a real porous medium,” Water Resources Research, vol. 52, pp. 8920--8937, 2016, doi: 10.1002/2016WR018969.
    54. J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Compensating Drift Vector Fields with Gradient Vector Fields for Asymptotic Submanifold Stabilization,” IEEE Transactions on Automatic Control, vol. 61, 2016, doi: 10.1109/TAC.2015.2434032.
    55. J. M. Montenbruck and F. Allgöwer, “Asymptotic Stabilization of Submanifolds Embedded in Riemannian Manifolds,” Automatica, vol. 74, pp. 349--359, 2016, doi: 10.1016/j.automatica.2016.07.026.
    56. J. Meisner and J. Kästner, “Atom-Tunneling in Chemistry,” Angewandte Chemie International Edition, vol. 55, pp. 5400--5413, 2016, doi: 10.1002/anie.201511028.
    57. J. Meisner and J. Kästner, “Reaction rates and kinetic isotope effects of H2 + OH ? H2O + H,” The Journal of Chemical Physics, vol. 144, p. 174303, 2016, doi: 10.1063/1.4948319.
    58. S. Mauthe and C. Miehe, “Hydraulic fracture in poro-hydro-elastic media,” Mechanics Research Communications, 2016, doi: 10.1016/j.mechrescom.2016.09.009.
    59. O. Lötgering-Lin, A. Schöniger, W. Nowak, and J. Gross, “Bayesian Model Selection Helps To Choose Objectively between Thermodynamic Models: A Demonstration of Selecting a Viscosity Model Based on Entropy Scaling,” Industrial & Engineering Chemistry Research, vol. 55, pp. 10191--10207, 2016, doi: 10.1021/acs.iecr.6b02671.
    60. C. Luo and W. Ehlers, “A three-dimensional model of hydraulic fracturing,” PAMM, vol. 16, pp. 465--466, 2016, doi: 10.1002/pamm.201610221.
    61. S. Linsenmayer, D. V. Dimarogonas, and F. Allgöwer, “A non-monotonic approach to periodic event-triggered control with packet loss,” Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pp. 507--512, 2016, doi: 10.1109/CDC.2016.7798319.
    62. P. N. Köhler, M. A. Müller, and F. Allgöwer, “A distributed economic MPC scheme for coordination of self-interested systems,” Proceedings of the American Control Conference, pp. 889--894, 2016, doi: 10.1109/ACC.2016.7525027.
    63. A. N. Krishnamoorthy, J. Zeman, C. Holm, and J. Smiatek, “Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions,” PCCP, vol. 18, pp. 31312--31322, 2016, doi: 10.1039/C6CP05909K.
    64. T. Koeppl, E. Vidotto, and B. Wohlmuth, “A local error estimate for the Poisson equation with a line source term,” Numerical Mathematics and Advanced Applications ENUMATH 2015, pp. 421--429, 2016, [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-39929-4_40
    65. J. Koch and W. Nowak, “Identification of contaminant source architectures - A statistical inversion that emulates multi-phase physics in a computationally practicable manner,” Water Resources Research, vol. 52, pp. 1009--1025, 2016, doi: 10.1002/2015WR017894.
    66. J. Kirch, C. Thomaseth, A. Jensch, and N. Radde, “The effect of model rescaling and normalization on sensitivity analysis on an example of a MAPK pathway model,” EPJ Nonlinear Biomedical Physics, vol. 4:3, 2016, doi: 10.1140/epjnbp/s40366-016-0030-z.
    67. S. Jamei, P. Asgharzadeh, and W. Ehlers, “Partitioned treatment of surface-coupled problems with application to the fluid-porous-media interaction,” PAMM, vol. 16, pp. 507--508, 2016, doi: 10.1002/pamm.201610242.
    68. M.-T. Hütt and N. Radde, “The Physics behind Systems Biology,” Eur Phys J Nonlin Biomed Phys, vol. 4, no. 1, Art. no. 1, 2016, doi: 10.1140/epjnbp/s40366-016-0034-8.
    69. A. Hofmann, N.-P. Walz, and M. Hanss, “An Approach to Feed-Forward Controller Design for Underactuated Multibody Systems in the Presence of Uncertainty,” Proceedings in Applied Mathematics and Mechanics, vol. 16http://onli, no. 1, Art. no. 1, 2016, doi: 10.1002/pamm.201610018.
    70. F. Hempert, M. Hoffmann, U. Iben, and C.-D. Munz, “On the simulation of industrial gas dynamic applications with the discontinuous Galerkin spectral element method,” Journal of Thermal Science, vol. 25, pp. 250--257, 2016, [Online]. Available: https://link.springer.com/article/10.1007/s11630-016-0857-8
    71. T. Heidlauf et al., “A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin--titin interaction,” Biomechanics and Modeling in Mechanobiology, vol. 15, pp. 1423--1437, 2016, doi: 10.1007/s10237-016-0772-7.
    72. M. Hahn, D. Karastoyanova, and F. Leymann, “Data-Aware Service Choreographies through Transparent Data Exchange,” Lecture Notes in Computer Science (LNCS), vol. 9671, pp. 357--364, 2016, doi: 10.1007/978-3-319-38791-8_20.
    73. M. Hahn, D. Karastoyanova, and F. Leymann, “A Management Life Cycle for Data-Aware Service Choreographies,” Proceedings of the the 23rd International Conference on Web Services (ICWS), pp. 364--371, 2016, doi: 10.1109/ICWS.2016.54.
    74. D. Göddeke and M. Altenbernd, “Soft fault detection and correction for multigrid,” The International Journal of High Performance Computing Applications, 2016, doi: 10.1177/1094342016684006.
    75. D. Grunert and J. Fehr, “Identification of Nonlinear Behavior with Clustering Techniques in Car Crash Simulations for Better Model Reduction,” Advanced Modeling and Simulation in Engineering Sciences, vol. 1, pp. 1--19, 2016, doi: 10.1186/s40323-016-0072-x.
    76. M. Geveler, B. Reuter, V. Ayzinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors -- A case study based on the Haswell and Cortex-A15 microarchitectures,” Computer Science - Research and Development, vol. 31, pp. 225--234, 2016, doi: 10.1007/s00450-016-0324-5.
    77. E.-M. Geissen, J. Hasenauer, S. Heinrich, S. Hauf, F. J. Theis, and N. E. Radde, “MEMO: multi-experiment mixture model analysis of censored data,” Bioinformatics, 2016, doi: 10.1093/bioinformatics/btw190.
    78. J. Gebhardt and N. Hansen, “Calculation of binding affinities for linear alcohols to alpha-cyclodextrin by twin-system enveloping distribution sampling simulations,” Fluid Phase Equilibria, vol. 422, pp. 1--17, 2016, doi: 10.1016/j.fluid.2016.02.001.
    79. F. Fritzen, L. Xia, M. Leuschner, and P. Breitkopf, “Topology optimization of multiscale elastoviscoplastic structures,” International Journal for Numerical Methods in Engineering, vol. 106, pp. 430--453, 2016, doi: 10.1002/nme.5122.
    80. S. Frey and T. Ertl, “Flow-Based Temporal Selection for Interactive Volume Visualization,” Computer Graphics Forum, p. 11, 2016, doi: 10.1111/cgf.13070.
    81. S. Frey and T. Ertl, “Auto-Tuning Intermediate Representations for In Situ Visualization,” New York Scientific Data Summit, 2016, doi: 10.1109/NYSDS.2016.7747807.
    82. H. Frank and C.-D. Munz, “Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror,” Journal of Sound and Vibration, vol. 371, pp. 132--149, 2016, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022460X1600136X
    83. B. Flemisch, JM. Nordbotten, W. Nowak, and A. Raoof, “Special Issue on NUPUS: Non-linearities and Upscaling in Porous Media (Editorial),” Transport in Porous Media, vol. 114, pp. 237--2340, 2016, doi: 10.1007/s11242-016-0735-6.
    84. D. Flad, A. Beck, and C.-D. Munz, “Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method,” Journal of Computational Physics, vol. 313, pp. 1--12, 2016, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002199911500827X
    85. D. Fink and W. Ehlers, “Model reduction for multi-component porous-media models of biological materials using POD-DEIM,” PAMM, vol. 16, pp. 441--442, 2016, doi: 10.1002/pamm.201610209.
    86. T. Fetzer, K. M. Smits, and R. Helmig, “Effect of Turbulence and Roughness on Coupled Porous-Medium/Free-Flow    Exchange Processes,” TRANSPORT IN POROUS MEDIA, vol. 114, no. 2, SI, Art. no. 2, SI, Sep. 2016, doi: 10.1007/s11242-016-0654-6.
    87. M. Fetzer and C. W. Scherer, “A General Integral Quadratic Constraints Theorem with Applications to a Class of Sampled-Data Systems.,” SIAM J. Contr. Optim., vol. 54, no. 3, Art. no. 3, 2016, doi: 10.1137/140985482.
    88. J. Fernandez et al., “Multiscale musculoskeletal modelling, data--model fusion and electromyography-informed modelling,” Interface Focus, vol. 6, 2016, doi: 10.1098/rsfs.2015.0084.
    89. O. Fernandes, S. Frey, and T. Ertl, “Interpolation-Based Extraction of Representative Isosurfaces,” Lecture Notes in Computer Science, 2016, doi: 10.1007/978-3-319-50835-1_37.
    90. J. Fehr, P. Holzwarth, and P. Eberhard, “Interface and Model Reduction for Efficient Explicit Simulations -a Case Study with Nonlinear Vehicle Crash Models,” Mathematical and Computer Modelling of Dynamical Systems, vol. 22, pp. 380--396, 2016, doi: 10.1080/13873954.2016.1198385.
    91. J. Fehr, J. Fuhrer, C. Kleinbach, M. Hanss, and P. Eberhard, “Fuzzy-Based Analysis of a Hill-Type Muscle Model,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 31--34, 2016, doi: 10.1002/pamm.201610009.
    92. L. Eurich, R. Schott, A. Wagner, A. Roth-Nebelsick, and W. Ehlers, “From functional properties of frost-resistant plant tissues towards customised construction materials - A continuum-mechanical approach,” PAMM, vol. 16, pp. 81--82, 2016, doi: 10.1002/pamm.201610029.
    93. K. Eisenschmidt et al., “Direct numerical simulations for multiphase flows: An overview of the multiphase code FS3D.,” Applied Mathematics and Computation, vol. 272, pp. 508–517, 2016, [Online]. Available: http://dblp.uni-trier.de/db/journals/amc/amc272.html#EisenschmidtEGK16
    94. W. Ehlers and K. Häberle, “Interfacial mass transfer during gas-liquid phase change in deformable porous media with heat transfer,” Transport in Porous Media, vol. 114, pp. 525--556, 2016, doi: 10.1007/s11242-016-0674-2.
    95. F. Drunsel and J. Gross, “Theory of model electrolyte solutions: Assessing the short- and long-ranged contributions by molecular simulations,” Fluid Phase Equilibria, vol. 430, pp. 195--206, 2016, doi: 10.1016/j.fluid.2016.09.026.
    96. F. Drunsel and J. Gross, “Chemical potential of model electrolyte solutions consisting of hard sphere ions and hard dipoles from molecular simulations,” Fluid Phase Equilibria, vol. 429, pp. 205--213, 2016, doi: 10.1016/j.fluid.2016.08.039.
    97. S.-Y. Chong and O. Röhrle, “Exploring the Use of Non-Image-Based Ultrasound to Detect the Position of the Residual Femur within a Stump,” PLoS ONE, vol. 11, 2016, doi: 10.1371/journal.pone.0164583.
    98. F. D. Brunner, M. A. Müller, and F. Allgöwer, “Enhancing Output Feedback MPC for Linear Discrete-time Systems with Set-valued Moving Horizon Estimation,” 55th IEEE Conference on Decision and Control (CDC), pp. 2733--2738, 2016, doi: 10.1109/CDC.2016.7798675.
    99. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “γ-invasive event-triggered and self-triggered control for perturbed linear systems,” 55th IEEE Conference on Decision and Control (CDC), pp. 1346--1351, 2016, doi: 10.1109/CDC.2016.7798453.
    100. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Numerical Evaluation of a Robust Self-Triggered MPC Algorithm,” 6th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 151--156, 2016, doi: 10.1016/j.ifacol.2016.10.388.
    101. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Dynamic Thresholds in Robust Event-Triggered Control for Discrete-Time Linear Systems,” Proceedings of the European Control Conference (2016), pp. 983--988, 2016, doi: 10.1109/ECC.2016.7810417.
    102. F. D. Brunner, M. Heemels, and F. Allgöwer, “Robust self-triggered MPC for constrained linear systems: A tube-based approach,” Automatica, vol. 72, pp. 73--83, 2016, doi: 10.1016/j.automatica.2016.05.004.
    103. F. D. Brunner, F. A. Bayer, and F. Allgöwer, “Robust Steady State Optimization for Polytopic Systems,” 55th IEEE Conference on Decision and Control (CDC), pp. 4084--4089, 2016, doi: 10.1109/CDC.2016.7798888.
    104. F. D. Brunner and F. Allgöwer, “A Lyapunov Function Approach to the Event-triggered Stabilization of the Minimal Robust Positively Invariant Set,” 6th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 25--30, 2016, doi: 10.1016/j.ifacol.2016.10.367.
    105. V. Bruder, S. Frey, and T. Ertl, “Real-Time Performance Prediction and Tuning for Interactive Volume Raycasting,” SIGGRAPH ASIA 2016 Symposium on Visualization, vol. 7, 2016, doi: 10.1145/3002151.3002156.
    106. S. Bidier and W. Ehlers, “A homogenisation strategy for micromorphic continua based on particle mechanics,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 515--516, 2016, doi: 10.1002/pamm.201610246.
    107. A. D. Beck, D. G. Flad, C. Tonhäuser, G. Gassner, and C.-D. Munz, “On the Influence of Polynomial De-aliasing on Subgrid Scale Models,” Flow, Turbulence and Combustion, vol. 97, no. 2, Art. no. 2, Sep. 2016, doi: 10.1007/s10494-016-9704-y.
    108. F. Bayer, M. A. Müller, and F. Allgöwer, “Min-max economic model predictive control approaches with guaranteed performance,” 55th IEEE Conference on Decision and Control (CDC), pp. 3210--3215, 2016, doi: 10.1109/CDC.2016.7798751.
    109. F. Bayer, M. Lorenzen, M. A. Müller, and F. Allgöwer, “Robust economic Model Predictive Control using stochastic information,” Automatica, vol. 74, pp. 151--161, 2016, doi: 10.1016/j.automatica.2016.08.008.
    110. F. Bayer, F. D. Brunner, M. Lazar, M. Wijnand, and F. Allgöwer, “A tube-based approach to nonlinear explicit MPC,” 55th IEEE Conference on Decision and Control (CDC), pp. 4059--4064, 2016, doi: 10.1109/CDC.2016.7798884.
    111. A. Barth and T. Stüwe, “Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Levy noise,” Mathematics and Computers in Simulation, 2016, [Online]. Available: http://arxiv.org/abs/1603.02422
    112. A. Barth, S. Moreno-Bromberg, and O. Reichmann, “A Non-Stationary Model of Dividend Distribution in A Stochastic Interest-Rate Setting,” Computational Economics, vol. 47, no. 3, Art. no. 3, 2016, doi: 10.1007/s10614-015-9502-y.
    113. A. Barth and F. Fuchs, “Uncertainty quantification for hyperbolic conservation laws with flux coefficients given by spatiotemporal random fields,” SISC: Meth. and Alg. for Scientific Computing, 2016, [Online]. Available: http://arxiv.org/abs/1402.2156
    114. A. Barth, R. Bürger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener model with several random perturbations: a hybrid stochastic Galerkin approach,” Computers & Chemical Engineering, vol. 89, pp. 11--26, 2016, doi: 10.1016/j.compchemeng.2016.02.016.
    115. K. Baber, B. Flemisch, and R. Helmig, “Modeling drop dynamics at the interface between free and porous-medium    flow using the mortar method,” International Journal of Heat and Mass Transfer, vol. 99, pp. 660–671, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.04.014.
    116. S. Alvarez Barcia, M. Russ, J. Meisner, and J. Kästner, “Atom tunnelling in the reaction NH3+ + H2 --> NH4+ + H and its astrochemical relevance,” Faraday Discuss., 2016, doi: 10.1039/C6FD00096G.
    117. E. Altan, A. Zöllner, O. Avci, and O. Röhrle, “Towards modelling skeletal muscle growth and adaptation,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 921--924, 2016, doi: 10.1002/pamm.201610448.
    118. L. Allerhand, E. Gershon., and U. Shaked, “Robust state-feedback control of stochastic state-multiplicative discrete-time linear switched systems with dwell time,” Int. J. Robust Nonlin., vol. 26, no. 2, Art. no. 2, 2016, doi: 10.1002/rnc.3301.
    119. M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte, “The DUNE-ALUGrid Module,” Archive of Numerical Software, vol. 4, pp. 1--28, 2016, doi: 10.11588/ans.2016.1.23252.
  8. 2015

    1. J. Veenman, “A general framework for robust analysis and control: an integral quadratic constraint based approach,” Dissertation, Logos Verlag, Berlin, 2015. [Online]. Available: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3963&lng=eng&id=
    2. G. Pessot, R. Weeber, C. Holm, H. Löwen, and A. M. Menzel, “Towards a scale-bridging description of ferrogels and magnetic elastomers,” Journal of Physics: Condensed Matter. in Journal of Physics: Condensed Matter. IOP Publishing Ltd, 2015. doi: 10.1088/0953-8984/27/32/325105.
    3. J. Missler, D. Schwarzmann, and L. I. Allerhand, “On the Influence of Filter Choice in Output-Feedback MRAC during Adaptation Transients,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 48. 2015, pp. 505–510. doi: 10.1016/j.ifacol.2015.09.236.
    4. H. Köroglu, C. W. Scherer, and P. Falcone, “Robust Static Output Feedback Synthesis under an Integral Quadratic Constraint on the States,” in Eur. Control Conf., in Eur. Control Conf. 2015, pp. 3203–3208. doi: 10.1109/ECC.2015.7331027.
    5. E. Gershon, U. Shaked, and L. I. Allerhand, “Stochastic Linear Systems: Robust $H_ınfty$ Control via Vertex-dependent Approach,” in 23rd Med. Conf. Control and Automation, in 23rd Med. Conf. Control and Automation. 2015, pp. 638–643. doi: 10.1109/MED.2015.7158818.
    6. E. Gershon, U. Shaked, and L. I. Allerhand, “Stochastic Linear Systems: Robust $H_ınfty$ Control via Vertex-dependent Approach,” in 23rd Med. Conf. Control and Automation, in 23rd Med. Conf. Control and Automation. 2015, pp. 638–643. doi: 10.1109/MED.2015.7158818.
    7. L. I. Allerhand and U. Shaked, “Soft Controller Switching with Guaranteed $H_ınfty$ Performance,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 48. 2015, pp. 848–853. doi: 10.1016/j.ifacol.2015.09.296.
    8. L. I. Allerhand, E. Gershon, and U. Shaked, “State-feedback Control of Stochastic Discrete-time Linear Switched Systems with Dwell Time,” in Eur. Control Conf., in Eur. Control Conf. 2015, pp. 452–457. doi: 10.1109/ECC.2015.7330585.
    9. L. I. Allerhand, “Stability of adaptive control in the presence of input disturbances and $H_ınfty$ performance,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 48. 2015, pp. 76–81. doi: 10.1016/j.ifacol.2015.09.437.
    10. K. Wolf and J. Willaredt t, PickRing: seamless interaction through pick-up detection. 2015. doi: 10.1145/2735711.2735792.
    11. K. Wolf and T. Bäder, Illusion of Surface Changes Induced by Tactile and Visual Touch Feedback. 2015. doi: 10.1145/2702613.2732703.
    12. S. Schmitt and D. Häufle, Mechanics and Thermodynamics of Biological Muscle - A Simple Model Approach. 2015. doi: 10.1007/978-3-662-44506-8_12.
    13. S. Najmabadi, Z. Wang, Y. Baroud, and S. Simon, High throughput hardware architectures for asym- metric numeral systems entropy coding. 2015. doi: 10.1109/ISPA.2015.7306068.
    14. L. Lischke, S. Mayer, K. Wolf, A. Sahami Shirazi, and N. Henze, Subjective and Objective Effects of Tablet’s Pixel Density. 2015. doi: 10.1145/2702123.2702390.
    15. L. Lischke et al., Using Space: Effect of Display Size on Users’ Search Performance. 2015. doi: 10.1145/2702613.2732845.
    16. W. Halter, N. Kress, K. Otte, S. Reich, B. Hauer, and F. Allgöwer, Yield-Analysis of Different Coupling Schemes for Interconnected Bio-Reactors. 2015. doi: 10.1137/1.9781611974072.53.
    17. S. U. Gerbersdorf et al., Anthropogenic Trace Compounds (ATCs) in aquatic habitats - research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management, vol. 79. 2015. doi: 10.1016/j.envint.2015.03.011.
    18. M. Funk, S. Schneegass, M. Behringer, N. Henze, and A. Schmidt, An interactive curtain for media usage in the shower. 2015. doi: 10.1145/2757710.2757713.
    19. Y. Abdelrahman, M. Hassib, M. Marquez, M. Funk, and A. Schmidt, Implicit Engagement Detection for Interactive Museums Using Brain-Computer Interfaces. 2015. doi: 10.1145/2786567.2793709.
    20. S. Zeng, H. Ishii, and F. Allgöwer, “On the state estimation problem for discrete ensembles from discrete-time output snapshots,” Proceedings of the 2015 American Control Conference, p. 6, 2015, doi: 10.1109/ACC.2015.7172092.
    21. S. Zeng and F. Allgöwer, “On the ensemble observability problem for nonlinear systems,” Proceedings of the 54th IEEE Conference on Decision and Control, p. 6, 2015, doi: 10.1109/CDC.2015.7403214.
    22. J. Wu, V. Ugrinovskii, and F. Allgöwer, “Cooperative H-infinity estimation for large-scale interconnected linear systems,” Proc. American Control Conference, pp. 2119--2124, 2015, doi: 10.1109/ACC.2015.7171046.
    23. J. Wu, L. Li, V. Ugrinovskii, and F. Allgöwer, “Distributed filter design for cooperative H-infinity-type estimation,” Proc. IEEE Conference on Control Applications (CCA), pp. 1373--1378, 2015, doi: 10.1109/CCA.2015.7320803.
    24. K. Wolf et al., “TUIs in the Large: Using Paper Tangibles with Mobile Devices,” CHI’15 Extended Abstracts, pp. 1579--1584, 2015, doi: 10.1145/2702613.2732863.
    25. A. Wohlfarth, J. Smiatek, K.-D. Kreuer, S. Takamuku, P. Jannasch, and J. Maier, “Proton Dissociation of Sulfonated Polysulfones: Influence of Molecular Structure and Conformation,” Macromolecules, vol. 48, no. 4, Art. no. 4, 2015, doi: 10.1021/ma502550f.
    26. M. Wieland, H. Schwarz, U. Breitenbücher, and F. Leymann, “Towards Situation-Aware Adaptive Workflows,” Proceedings of the 13th Intl. Conference on Pervasive Computing and Communications Workshops: 11th Workshop on Context and Activity Modeling and Recognition, 2015, [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7133989
    27. W. Weimer-Jehle, “Cross-Impact-Analyse,” Methoden der Experten- und Stakeholdereinbindung in der sozialwissenschaftlichen Forschung, pp. 243--258, 2015, doi: 10.1007/978-3-658-01687-6_12.
    28. R. Weeber, S. Kantorovich, and C. Holm, “Ferrogels cross-linked by magnetic particles: Field-driven deformation and elasticity studied using computer simulations,” 2015, [Online]. Available: http://arxiv.org/abs/1504.04280
    29. R. Weeber, S. Kantorovich, and C. Holm, “Ferrogels cross-linked by magnetic nanoparticles - Deformation mechanisms in two and three dimensions studied by means of computer simulations,” Journal of Magnetism and Magnetic Materials, vol. 383, pp. 262--266, 2015, doi: 10.1016/j.jmmm.2015.01.018.
    30. P. Weber, M. Hornjik, M. A. Olayioye, A. Hausser, and N. Radde, “A first ODE model of molecular interactions at the trans-Golgi network for secretion control,” BMC Syst Biol, vol. 9, 2015, doi: 10.1186/s12918-015-0147-1.
    31. D. Weber, A. Sahami Shirazi, and N. Henze, “Towards Smart Notifications using Research in the Large,” MobileHCI 15 Adjunct, 2015, doi: 10.1145/2786567.2794334.
    32. K. Vukojevic-Haupt, F. Haupt, F. Leymann, and L. Reinfurt, “Bootstrapping Complex Workflow Middleware Systems into the Cloud,” Proceedings of the 11th IEEE International Conference on e-Science, 2015, pp. 126--135, 2015, doi: 10.1109/eScience.2015.69.
    33. K. Vukojevic-Haupt, S. Gómez Su00e1ez, F. Haupt, D. Karastoyanova, and F. Leymann, “A Middleware-centric Optimization Approach for the Automated Provisioning of Services in the Cloud,” Proceedings of the 7th IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2015, doi: 10.1109/CloudCom.2015.86.
    34. M. Vacher, J. Meisner, D. Mendive-Tapia, M. J. Bearpark, and M. A. Robb, “Electronic Control of Initial Nuclear Dynamics Adjacent to a Conical Intersection,” The Journal of Physical Chemistry A, vol. 119, pp. 5165--5172, 2015, doi: 10.1021/jp509774t.
    35. E. J. Trottemant, C. W. Scherer, and M. Mazo Jr, “Optimality of robust disturbance-feedback strategies,” Int. J. Robust Nonlin, 2015, doi: 10.1002/rnc.3360.
    36. P. Tempel, F. Schnelle, A. Pott, and P. Eberhard, “Design and Programming for Cable-Driven Parallel Robots in the German Pavilion at the EXPO 2015,” Machines, vol. 3, pp. 223--241, 2015, doi: 10.3390/machines3030223.
    37. P. Tempel, P. Miermeister, and A. Pott, “Kinematics and Dynamics Modeling for Real-Time Simulation of the Cable-Driven Parallel Robot IPAnema 3,” The 14th IFToMM World Congress, vol. 2, pp. 117--123, 2015, doi: 10.6567/IFToMM.14TH.WC.OS4.020.
    38. P. Tempel, P. Miermeister, A. Lechler, and A. Pott, “Modelling of Kinematics and Dynamics of the IPAnema 3 Cable Robot for Simulative Analysis,” AMM (Applied Mechanics and Materials), vol. 794, pp. 419--426, 2015, doi: 10.4028/www.scientific.net/AMM.794.419.
    39. A. Taudt, A. Arnold, and J. Pleiss, “Simulation of protein association: Kinetic pathways towards crystal contacts,” Physical Review E, vol. 91, p. 033311, 2015, doi: 10.1103/PhysRevE.91.033311.
    40. S. Strauch, V. Andrikopoulos, D. Karastoyanova, and K. Vukojevic-Haupt, “Migrating eScience Applications to the Cloud: Methodology and Evaluation,” Cloud Computing with E-science Applications, 2015, [Online]. Available: https://www.crcpress.com/Cloud-Computing-with-e-Science-Applications/Terzo-Mossucca/9781466591158
    41. L. J. Smith, W. F. van Gunsteren, and N. Hansen, “Characterization of the flexible lip regions in bacteriophage lambda lysozyme using MD simulations,” European Biophysics Journal, vol. 44, pp. 235--247, 2015, doi: 10.1007/s00249-015-1018-9.
    42. M. Skouradaki, K. Görlach, M. Hahn, and F. Leymann, “Application of Sub-Graph Isomorphism to Extract Reoccurring Structures from BPMN 2.0 Process Models,” 9th International IEEE Symposium on Service-Oriented System Engineering (SOSE 2015), pp. 11--20, 2015, doi: 10.1109/SOSE.2015.24.
    43. M. Sinsbeck and D. M. Tartakovsky, “Impact of Data Assimilation on Cost-Accuracy Tradeoff in Multi-Fidelity Models,” SIAM/ASA J. Uncertainty Quantification, vol. 3, no. 1, Art. no. 1, 2015, doi: 10.1137/141001743.
    44. M. Sinsbeck and W. Nowak, “An optimal sampling rule for nonintrusive polynomial chaos expansions of expensive models,” International Journal for Uncertainty Quantification, vol. 5, no. 3, Art. no. 3, 2015, doi: 10.1615/Int.J.UncertaintyQuantification.2015008446.
    45. G. S. Seyboth, D. V. Dimarogonas, K. H. Johansson, P. Frasca, and F. Allgöwer, “On Robust Synchronization of Heterogeneous Linear Multi-Agent Systems with Static Couplings,” Automatica, 2015, doi: 10.1016/j.automatica.2015.01.031.
    46. A. Schöniger, T. Wöhling, and W. Nowak, “A Statistical Concept to Assess the Uncertainty in Bayesian Model Weights and its Impact on Model Ranking and Averaging,” Water Resources Research, 2015, doi: 10.1002/2015WR016918.
    47. A. Schöniger, W. Illman, T. Wöhling, and W. Nowak, “Finding the Right Balance Between Groundwater Model Complexity and Experimental Effort via Bayesian Model Selection,” Journal of Hydrology, vol. 531/1, pp. 96--110, 2015, doi: 10.1016/j.jhydrol.2015.07.047.
    48. A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Low-Overhead Fault-Tolerance for the Preconditioned Conjugate Gradient Solver,” Proceedings of the International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), pp. 60--65, 2015, doi: 10.1109/DFT.2015.7315136.
    49. A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Efficient On-Line Fault-Tolerance for the Preconditioned Conjugate Gradient Method,” IEEE International On-Line Testing Symposium (IOLTS), pp. 95--100, 2015, doi: 10.1109/IOLTS.2015.7229839.
    50. P. Schröder, A. Wagner, and W. Ehlers, “Towards the continuum-mechanical modelling of metastatic tumour growth in the brain,” PAMM, vol. 15, pp. 107--108, 2015, [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/pamm.201510044/full
    51. H. Schmauder, M. Burch, and D. Weiskopf, “Visualizing Dynamic Weighted Digraphs with Partial Links,” Proceedings of the 6th International Conference on Information Visualization Theory and Applications, pp. 123--130, 2015, doi: 10.5220/0005303801230130.
    52. V. Schleper, “A hybrid model for traffic flow and crowd dynamics with random individual properties,” Mathematical Biosciences and Engineering, vol. 12, no. 2, Art. no. 2, 2015, doi: 10.3934/mbe.2015.12.393.
    53. C. W. Scherer, “Gain-Scheduling Control with dynamic Multipliers by Convex Optimization,” SIAM J. Contr. Optim., vol. 53, no. 3, Art. no. 3, 2015, doi: 10.1137/140985871.
    54. D. Scheer, W. Konrad, H. Class, A. Kissinger, S. Knopf, and V. Noack, “Expert involvement in science development: (re-)evaluation of an early screening tool for carbon storage site characterization,” International Journal of Greenhouse Gas Control, vol. 37, pp. 228--236, 2015, doi: 10.1016/j.ijggc.2015.03.023.
    55. D. Scheer, “In silico science for climate policy: How policy-makers process and use carbon storage simulation data,” Environmental Science & Policy, vol. 74, pp. 148--156, 2015, doi: 10.1016/j.envsci.2014.11.008.
    56. V. Schauer and C. Linder, “The reduced basis method in all-electron calculations with finite elements,” Advances in Computational Mathematics, 2015, doi: 10.1007/s10444-014-9374-z.
    57. K. Scharnowski, S. Boblest, and T. Ertl, “Improved Sparse Seeding for 3D Electrostatic Field Lines,” EuroVis 2015 Short Papers, 2015, doi: 10.2312/eurovisshort.20151120.
    58. A. V. Ryzhkov, P. V. Melenev, C. Holm, and Y. L. Raikher, “Coarse-grained molecular dynamics simulation of small ferrogel objects,” Journal of Magnetism and Magnetic Materials, vol. 383, pp. 277--280, 2015, doi: 10.1016/j.jmmm.2014.11.008.
    59. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems,” Computational Geosciences, vol. 19, pp. 299--309, 2015, doi: 10.1007/s10596-015-9469-8.
    60. T. K. Rupp, W. Ehlers, N. Karajan, M. Günther, and S. Schmitt, “A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles,” Biomechanics and Modeling in Mechanobiology, 2015, doi: 10.1007/s10237-015-0656-2.
    61. T. Ricken, D. Werner, H. G. Holzhütter, M. König, U. Dahmen, and O. Dirsch, “Modeling function--perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE--ODE approach,” Biomechanics and Modeling in Mechanobiology, vol. 14, no. 3, Art. no. 3, Jun. 2015, doi: 10.1007/s10237-014-0619-z.
    62. P. Rauschenberger and B. Weigand, “A Volume-of-Fluid method with interface reconstruction for ice growth in supercooled water,” Journal of Computational Physics, vol. 282, pp. 98--112, 2015, doi: 10.1016/j.jcp.2014.10.037.
    63. N. Radde and S. Klaus, “Bifurcation analysis for intracellular regulation networks based on their circuit structure,” 9th IFAC Symp on Biological and Medical Systems, vol. 48, p. 20, 2015, doi: 10.1016/j.ifacol.2015.10.133.
    64. S. Raafatnia, O. A. Hickey, and C. Holm, “Electrophoresis of a Spherical Polyelectrolyte-Grafted Colloid in Monovalent Salt Solutions: Comparison of Molecular Dynamics Simulations with Theory and Numerical Calculations,” Macromolecules, vol. 48, no. 3, Art. no. 3, 2015, doi: 10.1021/ma502238z.
    65. M. Pfeiffer, C.-D. Munz, and S. Fasoulas, “Hyperbolic divergence cleaning, the electrostatic limit, and potential boundary conditions for particle-in-cell codes,” Journal of Computational Physics, vol. 294, pp. 547--561, 2015, doi: 10.1016/j.jcp.2015.04.001.
    66. M. Pfeiffer, A. Mirza, C.-D. Munz, and S. Fasoulas, “Two statistical particle split and merge methods for Particle-in-Cell codes,” Computer Physics Communications, vol. 191, pp. 9--24, 2015, doi: 10.1016/j.cpc.2015.01.010.
    67. MA. Olivares, J. Haas, and R. Palma-Behnke, “A framework to identify Pareto-efficient subdaily environmental flow constraints on hydropower reservoirs using a grid-wide power dispatch model,” Water Resources Research, vol. 51, no. 5, Art. no. 5, 2015, doi: 10.1002/2014WR016215.
    68. J. Neusser, C. Rohde, and V. Schleper, “Relaxation of the Navier-Stokes-Korteweg equations for compressible two-phase flow with phase transition,” International journal for numerical methods in fluids, vol. 79, no. 12, Art. no. 12, 2015, doi: 10.1002/fld.4065.
    69. M. A. Müller, D. Liberzon, and F. Allgöwer, “Norm-controllability of nonlinear systems,” IEEE Transactions on Automatic Control, 2015, doi: 10.1109/TAC.2015.2394953.
    70. M. Mordhorst, T. Heidlauf, and O. Röhrle, “Predicting electromyographic signals under realistic conditions using a multiscale chemo-electro-mechanical finite element model,” Interface Focus, vol. 5, pp. 1--11, 2015, doi: 10.1098/rsfs.2014.0076.
    71. J. M. Montenbruck, G. S. Schmidt, G. S. Seyboth, and F. Allgöwer, “On the Necessity of Diffusive Couplings in Linear Synchronization Problems with Quadratic Cost,” IEEE Transactions on Automatic Control, vol. 60, 2015, doi: 10.1109/TAC.2015.2406971.
    72. J. M. Montenbruck, G. S. Schmidt, A. Kecskemethy, and F. Allgöwer, “Two Gradient-Based Control Laws on SE(3) Derived from Distance Functions,” Interdisciplinary Applications of Kinematics, vol. 2, pp. 31--41, 2015, doi: 10.1007/978-3-319-10723-3_4.
    73. J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Practical Synchronization with Diffusive Couplings,” Automatica, vol. 53, pp. 235--243, 2015, doi: 10.1016/j.automatica.2014.12.024.
    74. J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Synchronization of Diffusively Coupled Systems on Compact Riemannian Manifolds in the Presence of Drift,” Systems & Control Letters, vol. 76, pp. 19--27, 2015, doi: 10.1016/j.sysconle.2014.12.004.
    75. D. Molnar, U. Weber, P. Binkele, D. Rapp, and S. Schmauder, “Prediction of macroscopic damage behaviour of precipitation strengthened steels via multiscale simulations,” GAMM-Mitteilungen, vol. 38, no. 2, Art. no. 2, 2015, doi: 10.1002/gamm.201510013.
    76. C. Miehe, D. Zäh, and D. Vallicotti, “Computational structural and material stability analysis in finite electro-elasto-statics of electro-active materials,” International Journal for Numerical Methods in Engineering, vol. 102, pp. 1605--1637, 2015, doi: 10.1002/nme.4855.
    77. C. Miehe and D. Zäh, “Multiplicative electro-elasticity of electroactive polymers accounting for micromechanically-based network models,” Computer Methods in Applied Mechanics and Engineering, vol. 286, pp. 394--421, 2015, doi: 10.1016/j.cma.2014.12.017.
    78. C. Miehe, S. Mauthe, and S. Teichtmeister, “Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture,” Journal of the Mechanics and Physics of Solids, vol. 82, pp. 186--217, 2015, doi: 10.1016/j.jmps.2015.04.006.
    79. C. Miehe and H. Dal, “Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains,” Computational Mechanics, vol. 55, pp. 303--325, 2015, doi: 10.1007/s00466-014-1102-5.
    80. J. Meisner, M. Vacher, M. J. Bearpark, and M. A. Robb, “Geometric Rotation of the Nuclear Gradient at a Conical Intersection: Extension to Complex Rotation of Diabatic States,” Journal of Chemical Theory and Computation, vol. 11, no. 7, Art. no. 7, 2015, doi: 10.1021/acs.jctc.5b00364.
    81. S. Mayer, K. Wolf, S. Schneegass, and N. Henze, “Modeling Distant Pointing for Compensating Systematic Displacements,” ACM Conference on Human Factors in Computing Systems, vol. 33, pp. 4165--4168, 2015, doi: 10.1145/2702123.2702332.
    82. I. Martini, G. Rozza, and B. Haasdonk, “Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system,” Advances in Computational Mathematics, vol. 41, no. 5, Art. no. 5, 2015, doi: 10.1007/s10444-014-9396-6.
    83. I. Martini and B. Haasdonk, “Output error bounds for the Dirichlet-Neumann reduced basis method,” Lecture Notes in Computational Science and Engineering, vol. 103, pp. 437--445, 2015, doi: 10.1007/978-3-319-10705-9_43.
    84. J. Mabuma, M. Schwarze, C. Hurschler, B. Markert, and W. Ehlers, “Effects of osteoarthritis and pathological walking on contact stresses in femoral cartilage,” Biomechanics and Modeling in Mechanobiology, pp. 1--14, 2015, doi: 10.1007/s10237-015-0663-3.
    85. M. Lorenzen, F. Allgöwer, F. Dabbene, and R. Tempo, “An improved constraint-tightening approach for Stochastic MPC,” Proceedings of the American Control Conference (ACC), pp. 944--949, 2015, doi: 10.1109/ACC.2015.7170855.
    86. M. Lorenzen, F. Allgöwer, F. Dabbene, and R. Tempo, “Scenario-Based Stochastic MPC with Guaranteed Recursive Feasibility,” Proceedings of the IEEE Conference on Decision and Control (CDC), 2015, doi: 10.1109/CDC.2015.7402994.
    87. Y. Liu, A. Fischer, P. Eberhard, and B. Wu, “A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations,” Acta Mechanica Sinica, vol. 31, no. 3, Art. no. 3, 2015, doi: 10.1007/s10409-015-0397-6.
    88. S. Linsenmayer, D. V. Dimarogonas, and F. Allgöwer, “Nonlinear Event-Triggered Platooning Control with Exponential Convergence,” Proceedings of the 5th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 138--143, 2015, doi: 10.1016/j.ifacol.2015.10.320.
    89. V. Lesch, A. Heuer, C. Holm, and J. Smiatek, “Solvent effects of 1-ethyl-3-methylimidazolium acetate: solvation and dynamic behavior of polar and apolar solutes,” Physical Chemistry Chemical Physics, vol. 17, no. 13, Art. no. 13, 2015, doi: 10.1039/c4cp05312e.
    90. H. Köroglu, C. W. Scherer, and P. Falcone, “Robust Static Output Feedback Synthesis under an Integral Quadratic Constraint on the States,” Control Conference (ECC), 2015 European, pp. 3203--3208, 2015, doi: 10.1109/ECC.2015.7331027.
    91. M. Kutter, C. Rohde, and A.-M. Sändig, “Well - Posedness of a Two Scale Model dor Liquid Phase Epitaxy with Elasticity, Contin. Mech. Thermodyn., University of Stuttgart,” Continuum Mechanics and Thermodynamics, pp. 1--28, 2015, doi: 10.1007/s00161-015-0462-1.
    92. M. Kuron and A. Arnold, “Role of geometrical shape in like-charge attraction of DNA,” The European Physical Journal E, vol. 38, pp. 1--6, 2015, doi: 10.1140/epje/i2015-15020-9.
    93. K. Kupczik, H. Stark, R. Mundry, F. T. Neininger, T. Heidlauf, and O. Röhrle, “Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: a combined texture mapping and streamline approach,” Journal of Theoretical Biology, vol. 382, pp. 34--43, 2015, doi: 10.1016/j.jtbi.2015.06.034.
    94. I. Kröker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain and non-linear two-phase flow problems,” Computational Geosciences, vol. 19, Issue 2, pp. 269--284, 2015, doi: 10.1007/s10596-014-9464-5.
    95. K. Kratzer and A. Arnold, “Two-stage crystallization of charged colloids under low supersaturation conditions,” Soft Matter, vol. 11, pp. 2174--2182, 2015, doi: 10.1039/C4SM02365J.
    96. J. Koch and W. Nowak, “Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high-resolution stochastic simulation,” Water Resources Research, vol. 51, no. 2, Art. no. 2, 2015, doi: 10.1002/2014WR015478.
    97. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with a Heterogeneous Multiscale Method: The Multidimensional Case,” MULTISCALE MODELING & SIMULATION, vol. 13, no. 4, Art. no. 4, 2015, doi: 10.1137/120899236.
    98. M.-A. Keip and M. Rambausek, “On the generation of soft magneto-electric effects through Maxwell interactions,” Proceedings in Applied Mathematics and Mechanics, vol. 15, pp. 309--311, 2015, doi: 10.1002/pamm.201510145.
    99. S. Kaulmann, B. Flemisch, B. Haasdonk, K.-A. Lie, and M. Ohlberger, “The Localized Reduced Basis Multiscale method for two-phase flows in porous media,” International Journal for Numerical Methods in Engineering, vol. 102, no. 5, Art. no. 5, 2015, doi: 10.1002/nme.4773.
    100. G. K. Karch, F. Sadlo, D. Weiskopf, and T. Ertl, “Visualization of 2D Unsteady Flow Using Streamline-Based Concepts in Space-Time,” Journal of Visualization, pp. 1--14, 2015, doi: 10.1007/s12650-015-0284-z.
    101. S. Huang et al., “Buckling of paramagnetic chains in soft gels,” 2015, [Online]. Available: http://arxiv.org/abs/1504.03884
    102. M. Hlawatsch, M. Burch, F. Beck, J. Freire, C. Silva, and D. Weiskopf, “Visualizing the Evolution of Module Workflows,” Proceedings of the International Conference on Information Visualisation (IV), 2015, [Online]. Available: http://www.visus.uni-stuttgart.de/uploads/tx_vispublications/IV15_Module_Workflows.pdf
    103. P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher, and F. Leymann, “SitRS - A Situation Recognition Service based on Modeling and Executing Situation Templates,” Proceedings of the 9th Symposium and Summer School On Service-Oriented Computing, 2015, [Online]. Available: http://www.summersoc.eu/wp-content/uploads/2015/07/4.4.SitRS_Presentation_SummerSOC15.pdf
    104. P. Hirmer, P. Reimann, M. Wieland, and B. Mitschang, “Extended Techniques for Flexible Modeling and Execution of Data Mashups,” Proceedings of the 4th International Conference on Data Management Technologies and Applications (DATA), 2015, [Online]. Available: http://mashup.inf.usi.ch/challenge/ICWE_2015_Mashup_Challenge_submission_1.pdf
    105. A. Hemmen, A. Z. Pangiotopoulos, and J. Gross, “Grand Canonical Monte Carlo Simulations Guided by an Analytic Equation of State-Transferable Anisotropic Mie Potentials for Ethers,” The Journal of Phisical Chemistry, vol. 119, pp. 7087--7099, 2015, doi: 10.1021/acs.jpcb.5b01806.
    106. A. Hemmen and J. Gross, “Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n?Alkanes and n?Olefins,” The Journal of Phisical Chemistry, pp. 11695--11701, 2015, doi: 10.1021/acs.jpcb.5b01354.
    107. R. Helmig, T. Koeppl, and B. Wohlmuth, “A multi-scale model for mass transport in arteries and tissue,” Recent Trends in Computational Engineering-CE2014, pp. 197--213, 2015, [Online]. Available: https://link.springer.com/chapter/10.1007%2F978-3-319-22997-3_12
    108. B. Harrach and M. Ullrich, “Local uniqueness for an inverse boundary value problem with partial data,” Proc. Amer. Math. Soc., 2015, [Online]. Available: http://www.ams.org/cgi-bin/mstrack/accepted_papers/proc
    109. B. Harrach and M. Ullrich, “Resolution Guarantees in Electrical Impedance Tomography,” Medical Imaging, vol. 34, no. 7, Art. no. 7, 2015, doi: 10.1109/TMI.2015.2404133.
    110. B. Harrach, E. Lee, and M. Ullrich, “Combining frequency-difference and ultrasound modulated electrical impedance tomography,” Inverse Problems, vol. 31, no. 9, Art. no. 9, 2015, doi: 10.1088/0266-5611/31/9/095003.
    111. J. Haas, MA. Olivares, and R. Palma-Behnke, “Grid-wide subdaily hydrologic alteration under massive wind power penetration in Chile,” Journal of Environmental Management, vol. 154, pp. 183--189, 2015, doi: 10.1016/j.jenvman.2015.02.017.
    112. D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing,” Parallel Computing, vol. 49, pp. 117--135, 2015, doi: 10.1016/j.parco.2015.07.003.
    113. H. Gilbergs, H. Fang, K. Frenner, and W. Osten, “Adaptive state observer and PD control for dynamic perturbations in optical systems,” Optics Express, vol. 23, pp. 4002--4011, 2015, doi: 10.1364/OE.23.004002.
    114. A. Geiges, Y. Rubin, and W. Nowak, “Interactive design of experiments: A priori global versus sequential optimization, revised under changing states of knowledge,” Water Resources Research, vol. 51, no. 10, Art. no. 10, 2015, doi: 10.1002/2015WR017193.
    115. G. Gassner, M. Staudenmaier, F. Hindenlang, M. Atak, and C.-D. Munz, “A space-time adaptive discontinuous Galerkin scheme,” Computers & Fluids, vol. 117, pp. 247--261, 2015, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0045793015001498
    116. S. Frey, F. Sadlo, and T. Ertl, “Balanced Sampling and Compression for Remote Visualization,” SIGGRAPH Asia 2015 Visualization in High Performance Computing, 2015, doi: 10.1145/2818517.2818529.
    117. F. Franzelin, P. Diehl, and D. Pflüger, “Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations,” Meshfree Methods for Partial Differential Equations, vol. 100, pp. 115--143, 2015, doi: 10.1007/978-3-319-06898-5.
    118. O. Fernandes et al., “On In-Situ Visualization for Strongly Coupled Partitioned Fluid-Structure Interaction,” VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, 2015, [Online]. Available: http://www.vis.uni-stuttgart.de/~freysn/papers/coupled.pdf
    119. C. Feller and C. Ebenbauer, “Weight recentered barrier functions and smooth polytopic terminal set formulations for linear model predictive control,” Proccedings of the American Control Conference 2015, pp. 1647--1652, 2015, [Online]. Available: http://www.ist.uni-stuttgart.de/institut/mitarbeiter/PDFs_MA-Seiten/CF/acc2015_fellerEbenbauer_final.pdf
    120. J. Fehr, J. Köhler, and C. Kleinbach, “Optimal Forces for the Deceleration of the ES-2 Dummy,” 10th European LS-DYNA Conference 2015, Würzburg, Germany, 2015, [Online]. Available: https://www.dynamore.de/de/download/papers/2015-ls-dyna-europ/documents/sessions-c-1-4/optimal-forces-for-the-deceleration-of-the-es-2-dummy
    121. J. Fehr and C. Kleinbach, “A Comparison between Finite Element Models and MBS Models in Automotive Safety Applications,” Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, 29.06-02.07 2015, 2015, [Online]. Available: http://www.multibody2015.org/frontal/img/Ebook_Multibody_2015.pdf
    122. J. Fehr and D. Grunert, “Model reduction and clustering techniques for crash simulations,” Proceedings in Applied Mathematics and Mechanics, p. 2, 2015, doi: 10.1002/pamm.201510053.
    123. S. Fechter and C.-D. Munz, “A discontinuous Galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow,” International Journal of Numerical Methods in Fluids, vol. 78, pp. 413--435, 2015, doi: 10.1002/fld.4022.
    124. R. Enzenhöfer, W. Nowak, and P. J. Binning, “STakeholder-Objective Risk Model (STORM): Determining the aggregated risk of multiple contaminant hazards in groundwater well catchments,” Advances in Water Resorces, vol. 83, pp. 165--175, 2015, doi: 10.1016/j.advwatres.2015.05.015.
    125. A. P. Eichenberger, W. F. van Gunsteren, S. Riniker, L. von Ziegler, and N. Hansen, “The key to predicting the stability of protein mutants lies in an accurate description and proper configurational sampling of the folded and denatured states,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1850, pp. 983--995, 2015, doi: 10.1016/j.bbagen.2014.09.014.
    126. W. Ehlers and A. Wagner, “Multi-component modelling of human brain tissue: a contribution to the    constitutive and computational description of deformation, flow and    diffusion processes with application to the invasive drug-delivery    problem,” COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, vol. 18, no. 8, Art. no. 8, Jun. 2015, doi: 10.1080/10255842.2013.853754.
    127. D. Drzisga, R. Helmig, T. Koeppl, U. Pohl, and B. Wohlmuth, “Numerical modeling of compensation mechanisms for peripheral arterial stenoses,” Computers in Biology and Medicine, vol. 70, pp. 190--201, 2015, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0010482516300051
    128. M. Dreyer, W. Konrad, and D. Scheer, “Partizipative Modellierung: Erkenntnisse und Erfahrungen aus einer Methodengenese,” Niederberger, M., Wassermann, S. (Hrsg.): Methoden der Experten- und Stakeholdereinbindung in der sozialwissen-schaftlichen Forschung. Wiesbaden, pp. 261--285, 2015, doi: 10.1007/978-3-658-01687-6.
    129. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by Local Discontinuous Galerkin methods in multiple space dimensions,” Applied Mathematics and Computation, vol. 272, pp. 309--335, 2015, doi: 10.1016/j.amc.2015.09.080.
    130. C. Dibak, F. Dürr, and K. Rothermel, “Numerical Analysis of Complex Physical Systems on Networked Mobile Devices,” Proceedings of the 12th IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS 2015), 2015, doi: 10.1109/MASS.2015.12.
    131. H. Class, A. Kissinger, S. Knopf, W. Konrad, V. Noak, and D. Scheer, “Combined natural and social science approach for regional-scale characterisation of CO2 storage formations and brine migration risks (CO2Brim),” Liebscher, Axel, Münch, Ute (Eds.) Advanced Technologies in Earth Sciences: Geological storage of CO2 - long term security aspects, pp. 209--227, 2015, doi: 10.1007/978-3-319-13930-2.
    132. S.-Y. Chong, B. Dorow, E. Ramasamy, F. Dennerlein, and O. Röhrle, “The use of collision detection to infer multi-camera calibration quality,” Frontiers in Bioengineering and Biotechnology, vol. 3, 2015, doi: 10.3389/fbioe.2015.00065.
    133. M. Bußler, T. Ertl, and F. Sadlo, “Photoelasticity Raycasting,” Computer Graphics Forum, vol. 34, no. 3, Art. no. 3, 2015, doi: 10.1111/cgf.12626.
    134. F. D. Brunner, M. Lazar, and F. Allgöwer, “Stabilizing Linear Model Predictive Control: On the Enlargement of the Terminal Set,” International Journal of Robust and Nonlinear Control, vol. 25, no. 15, Art. no. 15, 2015, doi: 10.1002/rnc.3219.
    135. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Event-Triggered MPC for Constrained Linear Discrete-Time Systems with Guaranteed Average Sampling Rate,” Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (2015), pp. 117--122, 2015, doi: 10.1016/j.ifacol.2015.11.270.
    136. F. D. Brunner, T. M. P. Gommans, W. P. M. H. Heemels, and F. Allgöwer, “Communication Scheduling in Robust Self-Triggered MPC for Linear Discrete-Time Systems,” 5th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 132--137, 2015, doi: 10.1016/j.ifacol.2015.10.319.
    137. F. D. Brunner, T. M. P. Gommans, W. P. M. H. Heemels, and F. Allgöwer, “Resource-aware set-valued estimation for discrete-time linear systems,” 54th IEEE Conference on Decision and Control, pp. 5480--5486, 2015, doi: 10.1109/CDC.2015.7403078.
    138. F. Bode, W. Nowak, and M. Loschko, “Optimization for early-warning monitoring networks in well catchments should be multi-objective, risk-prioritized and robust against uncertainty,” Transport in Porous Media, vol. 114, pp. 261--281, 2015, doi: 10.1007/s11242-015-0586-6.
    139. C. Bleiler et al., “Multiphasic modelling of bone-cement injection into vertebral cancellous bone,” International Journal for Numerical Methods in Biomedical Engineering, vol. 31, pp. 37--57, 2015, doi: 10.1002/cnm.2696.
    140. S. Bidier and W. Ehlers, “Grain-scale-based simulation of granular material,” Proceedings in Applied Mathematics and Mechanics, vol. 15, pp. 449--450, 2015, doi: 10.1002/pamm.201510215.
    141. F. Betancourt and C. Rohde, “Finite-Volume Schemes for Friedrichs Systems with Involutions,” Appl. Math. Comput., vol. 272, pp. 420--439, 2015, doi: 10.1016/j.amc.2015.03.050.
    142. F. Bayer, M. A. Müller, and F. Allgöwer, “Average Constraints in Robust Economic Model Predictive Control,” IFAC-PapersOnLine, vol. 48, no. 8, Art. no. 8, 2015, doi: 10.1016/j.ifacol.2015.08.155.
    143. F. Bayer, M. Lorenzen, M. A. Müller, and F. Allgöwer, “Improving Performance in Robust Economic MPC Using Stochastic Information,” Proc. IFAC Conf. Nonlinear Model Predictive Control (NMPC 15), pp. 411--416, 2015, doi: 10.1016/j.ifacol.2015.11.313.
    144. E. Aydiner, F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Self-Triggered Model Predictive Control for Constrained Discrete-Time LTI Systems based on Homothetic Tubes,” Proceedings of the European Control Conference (2015), pp. 1587--1593, 2015, doi: 10.1109/ECC.2015.7330764.
    145. T. Aven and O. Renn, “An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change: An Evaluation of the IPCC Reports on Climate Change,” Risk Analysis, vol. 35, no. 4, Art. no. 4, 2015, doi: 10.1111/risa.12298.
    146. L. I. Allerhand, “Robust state-feedback control of stochastic state-multiplicative discrete-time linear switched systems with dwell time,” Int. J. Robust Nonlin, 2015, doi: 10.1002/rnc.3301.
    147. L. Allerhand, “Stability of adaptive control in the presence of input disturbances and H?. performance,” Rocond 2015, 2015, doi: 10.1016/j.ifacol.2015.09.437.
    148. Y. Abdelrahman, A. Sahami Shirazi, N. Henze, and A. Schmidt, “Investigation of Material Properties for Thermal Imaging-Based Interaction,” Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2015, doi: 10.1145/2702123.2702290.
  9. 2014

    1. C. W. Scherer, “$H_ınfty$- and $H_2$-synthesis for nested interconnections: A direct state-space approach by linear matrix inequalities,” in 21st Int. Symp. Math. Theory Netw. and Systems, in 21st Int. Symp. Math. Theory Netw. and Systems. 2014. [Online]. Available: http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0141.pdf
    2. R. Helmig, B. Flemisch, M. Wolff, and B. Faigle, “Efficient modelling of flow and transport in porous media using multi-physics and multi-scale approaches,” in Handbook of Geomathematics, 2nd ed., W. Freeden, Z. Nashed, and T. Sonar, Eds., in Handbook of Geomathematics. , Berlin, Heidelberg: Springer, 2014, pp. 1–43. doi: 10.1007/978-3-642-27793-1_15-3.
    3. P. Wo?niak, L. Lischke, B. Schmidt, S. Zhao, and M. Fjeld, Thaddeus: a dual device interaction space for exploring information visualisation. 2014. doi: 10.1145/2639189.2639237.
    4. R. Weeber, Simulation of novel magnetic materials in the field of soft matter. 2014. [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2015/9801/
    5. C. W. Scherer, H?- and H2-synthesis for nested interconnections: A direct state-space approach by linear matrix inequalities. MTNS 2014, 2014. [Online]. Available: http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0141.pdf
    6. R. Rockenfeller, M. Guenther, S. Schmitt, and T. Goetz, Comparing different muscle activation dynamics using sensitivity analysis. 2014. doi: 10.1155/2015/585409.
    7. D. Häufle, M. Günther, G. Wunner, and S. Schmitt, Quantifying control effort of biological and technical movements: an information entropy based approach. 2014. doi: 10.1103/PhysRevE.89.012716.
    8. D. Häufle, M. Günther, A. Bayer, and S. Schmitt, Hill-type muscle model with serial damping and eccentric force-velocity relation. 2014. doi: 10.1016/j.jbiomech.2014.02.009.
    9. M. Funk, A. Sahami Shirazi, N. Henze, and A. Schmidt, Using a touch-sensitive wristband for text entry on smart watches. 2014. doi: 10.1145/2559206.2581143.
    10. M. Funk, R. Boldt, B. Pfleging, M. Pfeiffer, N. Henze, and A. Schmidt, Representing indoor location of objects on wearable computers with head-mounted displays. 2014. doi: 10.1145/2582051.2582069.
    11. S. Zinatbakhsh and W. Ehlers, “Staggered solution of fluid-porous-media interaction using the method of local Lagrange multipliers,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 473--474, 2014, doi: 10.1002/pamm.201410224.
    12. S. Zeng, S. Waldherr, and F. Allgöwer, “An inverse problem of tomographic type in population dynamics,” Decision and Control, pp. 1643--1648, 2014, doi: 10.1109/CDC.2014.7039635.
    13. S. Yu, M. Reble, H. Chen, and F. Allgöwer, “Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control,” Automatica, vol. 50, no. 9, Art. no. 9, 2014, doi: 10.1016/j.automatica.2014.07.014.
    14. J. Wu, V. Ugrinovskii, and F. Allgöwer, “Cooperative estimation for synchronization of heterogeneous multi-agent systems using relative information,” Proc. IFAC World Congress, pp. 4662--4667, 2014, doi: 10.3182/20140824-6-ZA-1003.01938.
    15. K. Worthmann, M. Reble, L. Grüne, and F. Allgöwer, “The Role of Sampling for Stability and Performance in Unconstrained Nonlinear Model Predictive Control,” SIAM Journal on Control and Optimization, vol. 52, no. 1, Art. no. 1, 2014, doi: 10.1137/12086652X.
    16. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A-posteriori error estimation for DEIM reduced nonlinear dynamical systems,” SIAM Journal on Scientific Computing, vol. 36, pp. A311–A338, 2014, doi: 10.1137/120899042.
    17. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,” International Journal for Numerical Methods in Engineering, vol. 101, pp. 1--28, 2014, doi: 10.1002/nme.4767.
    18. A. Weiß, D. Karastoyanova, D. Molnar, and S. Schmauder, “Coupling of Existing Simulations using Bottom-up Modeling of Choreographies,” Workshop on Simulation Technology: Systems for Data Intensive Simulations (SimTech@GI) in Conjunction with INFORMATIK 2014, vol. 101, p. 112, 2014, [Online]. Available: https://www.gi.de/fileadmin/redaktion/2014_LNI/lni-p-232.pdf
    19. A. Weiß and D. Karastoyanova, “A Life Cycle for Coupled Multi-Scale, Multi-Field Experiments Realized through Choreographies,” Proceedings of the 18th IEEE International EDOC Conference, pp. 234--241, 2014, doi: 10.1109/EDOC.2014.39.
    20. A. Weiß and D. Karastoyanova, “Enabling coupled multi-scale, multi-field experiments through choreographies of data-driven scientific simulations,” Computing, pp. 1--29, 2014, doi: 10.1007/s00607-014-0432-7.
    21. A. Wagner and W. Ehlers, “On the multi-component modelling of human brain tissue to survey clinical interventions,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 125--126, 2014, doi: 10.1002/pamm.201410050.
    22. K. Vukojevic-Haupt, F. Haupt, D. Karastoyanova, and F. Leymann, “Service Selection for On-demand Provisioned Services,” Proceedings of the 18th IEEE International EDOC Conference (EDOC 2014), 2014, doi: 10.1109/EDOC.2014.25.
    23. K. Vukojevic-Haupt, F. Haupt, D. Karastoyanova, and F. Leymann, “Replicability of Dynamically Provisioned Scientific Experiments,” Proceedings of the 7th IEEE International Conference on Service Oriented Computing & Applications (SOCA 2014), 2014, doi: 10.1109/SOCA.2014.54.
    24. J. Veenman and C. W. Scherer, “A synthesis framework for robust gain-scheduling controllers,” Automatica, vol. 50, no. 11, Art. no. 11, 2014, doi: 10.1016/j.automatica.2014.10.002.
    25. J. Veenman and C. W. Scherer, “IQC-synthesis with general dynamic multipliers,” Int. J. Robust Nonlin., vol. 24, no. 17, Art. no. 17, 2014, doi: 10.1002/rnc.3042.
    26. Q. Tang and P. Eberhard, “Relative observation for multi-robot collaborative localisation based on multi-source signals,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 26, no. 4, Art. no. 4, 2014, doi: 10.1080/0952813X.2014.930597.
    27. Z. Sun, A. Dadalau, and A. Verl, “Generation of rotation matrix for assembly models with arbitrary angle constraints,” International Journal of Advanced Manufacturing Technology, vol. 74, pp. 563--568, 2014, doi: 10.1007/s00170-014-5907-3.
    28. A. Sorg and M. Bischoff, “Adaptive discrete-continuous modeling of evolving discontinuities,” Engineering Computations, vol. 31, no. 7, Art. no. 7, 2014, doi: 10.1108/EC-03-2013-0072.
    29. J. Smiatek, A. Wohlfarth, and C. Holm, “The solvation and ion condensation properties for sulfonated polyelectrolytes in different solvents-a computational study,” New Journal of Physics, vol. 16, no. 2, Art. no. 2, 2014, doi: 10.1088/1367-2630/16/2/025001.
    30. A. Shirazi, Y. Abdelrahman, N. Henze, S. Schneegass, M. Khalilbeigiy, and A. Schmidt, “Exploiting Thermal Reflection for Interactive Systems,” CHI 14 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3483--3492, 2014, doi: 10.1145/2556288.2557208.
    31. G. S. Seyboth, J. Wu, J. Qin, C. Yu, and F. Allgöwer, “Collective Circular Motion of Unicycle Type Vehicles with Non-identical Constant Velocities,” IEEE Transactions on Control of Network Systems, vol. 1, no. 2, Art. no. 2, 2014, doi: 10.1109/TCNS.2014.2316995.
    32. G. S. Seyboth and F. Allgöwer, “Synchronized model matching: a novel approach to cooperative control of non-linear multi-agent systems,” Proc. 19th IFAC World Congress, pp. 1985--1990, 2014, doi: 10.3182/20140824-6-ZA-1003.00983.
    33. M. Sega, S. S. Kantorovich, C. Holm, and A. Arnold, “Communication: Kinetic and pairing contributions in the dielectric spectra of electrolyte solutions,” The Journal of Chemical Physics, vol. 140, no. 21, Art. no. 21, 2014, doi: 10.1063/1.4880237.
    34. A. Schöniger, T. Wöhling, L. Samaniego, and W. Nowak, “Model selection on solid ground: rigorous comparison of nine ways to evaluate Bayesian evidence,” Water Resources Research, vol. 50, no. 12, Art. no. 12, 2014, doi: 10.1002/2014WR016062.
    35. A. Schöll, C. Braun, M. Daub, G. Schneider, and H.-J. Wunderlich, “Adaptive Parallel Simulation of a Two-Timescale Model for Apoptotic Receptor-Clustering on GPUs,” 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 424--431, 2014, doi: 10.1109/BIBM.2014.6999195.
    36. S. Schneegass, F. Steimle, A. Bulling, F. Alt, and A. Schmidt, “SmudgeSafe: Geometric Image Transformations for Smudge-resistant User Authentication,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014, doi: 10.1145/2632048.2636090.
    37. G. S. Schmidt, C. Ebenbauer, and F. Allgöwer, “Output Regulation for Control Systems on SE(n) : A Separation Principle Based Approach,” Automatic Control, vol. 59, no. 11, Art. no. 11, 2014, doi: 10.1109/TAC.2014.2320310.
    38. G. S. Schmidt, D. Wilson, F. Allgöwer, and J. Moehlis, “Selective averaging with application to phase reduction and neural control,” Nonlinear Theory and Its Applications, IEICE, vol. 5, no. 4, Art. no. 4, 2014, doi: 10.1587/nolta.5.424.
    39. A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic regulator,” Proceedings of MATHMOD 2015, vol. 8, pp. 713--718, 2014, doi: 10.1016/j.ifacol.2015.05.016.
    40. K. S. Schmid, J. Gross, and R. Helmig, “Chemical osmosis in two-phase flow and salinity-dependent capillary pressures in rocks with microporosity,” Water Resources Research, vol. 50, pp. 763--789, 2014, doi: 10.1002/2013WR013848.
    41. M. Schenke and W. Ehlers, “On the simulation of soils under rapid cyclic loading conditions,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 417--418, 2014, doi: 10.1002/pamm.201410196.
    42. D. Scheer and O. Renn, “Public Perception of Geoengineering and Its Consequences for Public Debate,” Climatic Change, vol. 125/3–4, pp. 305--318, 2014, doi: 10.1007/s10584-014-1177-1.
    43. D. Scheer and W. Konrad, “Partizipative Modellierung im Versuchslabor: Das CO2BRIM-Projekt,” DIALOGIK (Hrsg.): Innovativ und partizipativ: Einblicke in die Arbeit von DIALOGIK, Stuttgart, pp. 67--77, 2014, [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2014/9217/pdf/AB030_DIALOGIK.pdf
    44. K. Scharnowski, M. Krone, G. Reina, T. Kulschewski, J. Pleiss, and T. Ertl, “Comparative Visualization of Molecular Surfaces Using Deformable Models,” Computer Graphics Forum, vol. 33, no. 3, Art. no. 3, 2014, doi: 10.1111/cgf.12375.
    45. R. M. Schaich, M. A. Müller, and F. Allgöwer, “A distributed model predictive control scheme for networks with communication failure,” Proc. of the 19th IFAC World Congress, pp. 12004--12009, 2014, doi: 10.3182/20140824-6-ZA-1003.01507.
    46. F. Sadlo, G. K. Karch, and T. Ertl, “Topological Features in Time-Dependent Advection-Diffusion Flow,” Topological Methods in Data Analysis and Visualization III (Proceedings of TopoInVis 2013), 2014, doi: 10.1007/978-3-319-04099-8_14.
    47. D. Rosato and C. Miehe, “Dissipative ferroelectricity at finite strains. Variational principles, constitutive assumptions and algorithms,” International Journal of Engineering Science, vol. 74, pp. 162--189, 2014, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0020722513001262
    48. D. Roehm, S. Kesselheim, and A. Arnold, “Hydrodynamic interactions slow down crystallization of soft colloids,” Soft Matter, vol. 10, no. 30, Art. no. 30, 2014, doi: 10.1039/C4SM00686K.
    49. H. Riedmann, B. Kniesner, M. Frey, and C.-D. Munz, “Modeling of combustion and flow in a single element GH2/GO2 combustor,” CEAS Space Journal, vol. 6, pp. 47--59, 2014, doi: 10.1007/s12567-013-0056-3.
    50. M. Reiter, U. Breitenbücher, O. Kopp, and D. Karastoyanova, “Quality of Data Driven Simulation Workflows,” Journal of Systems Integration, vol. 5, no. 1, Art. no. 1, 2014, [Online]. Available: http://www.si-journal.org/index.php/JSI/article/view/189
    51. P. Reimann, T. Waizenegger, M. Wieland, and H. Schwarz, “Datenmanagement in der Cloud für den Bereich Simulationen und Wissenschaftliches Rechnen,” 2. Workshop Data Management in the Cloud auf der 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 2014, [Online]. Available: http://subs.emis.de/LNI/Proceedings/Proceedings232/article176.html
    52. P. Reimann, H. Schwarz, and B. Mitschang, “Data Patterns to Alleviate the Design of Scientific Workflows Exemplified by a Bone Simulation,” 26th International Conference on Scientific and Statistical Database Management (SSDBM 2014), 2014, doi: 10.1145/2618243.2618279.
    53. P. Reimann, H. Schwarz, and B. Mitschang, “A Pattern Approach to Conquer the Data Complexity in Simulation Workflow Design,” On the Move to Meaningful Internet Systems: OTM 2014 Conferences, pp. 21--38, 2014, doi: 10.1007/978-3-662-45563-0_2.
    54. P. Reimann and H. Schwarz, “Simulation Workflow Design Tailor-Made for Scientists,” 26th International Conference on Scientific and Statistical Database Management (SSDBM 2014), 2014, doi: 10.1145/2618243.2618291.
    55. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” Advances in Computational Mathematics, 2014, doi: 10.1007/s10444-014-9367-y.
    56. B. Poppinga, A. Sahami Shirazi, N. Henze, W. Heuten, and S. Boll, “Understanding shortcut gestures on mobile touch devices,” Proceedings of the 16th international conference on Human-computer interaction with mobile devices & services, 2014, doi: 10.1145/2628363.2628378.
    57. D. Philipp et al., “MapGENIE: Grammar-enhanced Indoor Map Construction from Crowd-sourced Data,” Proceedings of the 12th IEEE International Conference on Pervasive Computing and Communications (PerCom 2014), 2014, doi: 10.1109/PerCom.2014.6813954.
    58. D. Otto and W. Ehlers, “Model reduction of porous-media problems using proper orthogonal decomposition,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 451--452, 2014, doi: 10.1002/pamm.201410213.
    59. B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, and U. Ramachandran, “RECEP: Selection-based Reuse for Distributed Complex Event Processing,” Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems (DEBS 2014), 2014, doi: 10.1145/2611286.2611297.
    60. W. Nowak, F. Bode, and M. Loschko, “A multi-objective optimization concept for risk-based early-warning monitoring networks in well catchments,” Procedia Environmental Sciences, vol. 25, pp. 191--198, 2014, doi: 10.1016/j.proenv.2015.04.026.
    61. S. Neumann, J. Hasenauer, N. Pollak, and P. Scheurich, “Dominant negative effects of TNF-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes,” JBC, vol. 289, no. 23, Art. no. 23, 2014, doi: 10.1074/jbc.M114.559468.
    62. M. A. Müller, D. Angeli, F. Allgöwer, R. Amrit, and J. B. Rawlings, “Convergence in economic model predictive control with average constraints,” Automatica, vol. 50, no. 12, Art. no. 12, 2014, doi: 10.1016/j.automatica.2014.10.059.
    63. M. A. Müller, D. Angeli, and F. Allgöwer, “Performance analysis of economic MPC with self-tuning terminal cost,” Proc. of the American Control Conference (ACC), pp. 2845--2850, 2014, doi: 10.1109/ACC.2014.6858962.
    64. M. A. Müller, D. Angeli, and F. Allgöwer, “On necessity and robustness of dissipativity in economic model predictive control,” IEEE Transactions on Automatic Control, vol. 60, no. 6, Art. no. 6, 2014, doi: 10.1109/TAC.2014.2361193.
    65. M. A. Müller, D. Angeli, and F. Allgöwer, “On the performance of economic model predictive control with self-tuning terminal cost,” Journal of Process Control, vol. 24, no. 8, Art. no. 8, 2014, doi: 10.1016/j.jprocont.2014.05.009.
    66. M. A. Müller, D. Angeli, and F. Allgöwer, “Transient average constraints in economic model predictive control,” Automatica, vol. 50, no. 11, Art. no. 11, 2014, doi: 10.1016/j.automatica.2014.10.024.
    67. M. A. Müller and F. Allgöwer, “Distributed economic MPC: a framework for cooperative control problems,” Proc. of the 19th IFAC World Congress, pp. 1029--1034, 2014, doi: 10.3182/20140824-6-ZA-1003.01177.
    68. M. A. Müller and F. Allgöwer, “Distributed MPC for consensus and synchronization,” J. M. Maestre, R. Negenborn, editors, Distributed MPC Made Easy, pp. 89--100, 2014, doi: 10.1007/978-94-007-7006-5.
    69. F. Mwalongo, M. Krone, G. K. Karch, M. Becher, G. Reina, and T. Ertl, “Visualization of Molecular Structures using State-of-the-Art Techniques in WebGL,” International Conference on 3D Web Technology (Web3D 14), pp. 133--141, 2014, doi: 10.1145/2628588.2628597.
    70. K. Mosthaf, R. Helmig, and D. Or, “Modeling and analysis of evaporation processes from porous media on the REV scale,” Water Resources Research, vol. 50, pp. 1059--1079, 2014, doi: 10.1002/2013WR014442.
    71. J. M. Montenbruck, H.-B. Dürr, C. Ebenbauer, and F. Allgöwer, “Extremum Seeking and Obstacle Avoidance on the Special Orthogonal Group,” Proc. 19th IFAC World Congress, pp. 8229--8234, 2014, doi: 10.3182/20140824-6-ZA-1003.01446.
    72. J. M. Montenbruck and F. Allgöwer, “Pinning Capital Stock and Gross Investment Rate in Competing Rationally Managed Firms,” Proc. 19th IFAC World Congress, pp. 10719--10724, 2014, doi: 10.3182/20140824-6-ZA-1003.01449.
    73. D. Molnar, P. Binkele, A. Mora, R. Mukherjee, B. Nestler, and S. Schmauder, “Molecular Dynamics virtual testing of thermally aged Fe-Cu microstructures obtained from multiscale simulations,” Computational Materials Science, vol. 81, pp. 466--470, 2014, doi: 10.1016/j.commatsci.2013.08.057.
    74. E. Minina and A. Arnold, “Induction of entropic segregation: the first step is the hardest,” Soft Matter, vol. 10, no. 31, Art. no. 31, 2014, doi: 10.1039/C4SM00286E.
    75. C. Miehe, F. Welschinger, and F. Aldakheel, “Variational gradient plasticity at finite strains. Part II: Local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 704--734, 2014, doi: 10.1016/j.cma.2013.07.015.
    76. C. Miehe and L. Schänzel, “Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure,” Journal of the Mechanics and Physics of Solids, vol. 65, pp. 93--113, 2014, doi: 10.1016/j.jmps.2013.06.007.
    77. C. Miehe, S. Mauthe, and H. Ulmer, “Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids,” International Journal for Numerical Methods in Engineering, vol. 99, pp. 737--762, 2014, doi: 10.1002/nme.4700.
    78. C. Miehe, S. Mauthe, and F. E. Hildebrand, “Variational gradient plasticity at finite strains. Part III: Local-global updates and regularization techniques in multiplicative plasticity for single crystals,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 735--762, 2014, doi: 10.1016/j.cma.2013.08.022.
    79. C. Miehe, F. E. Hildebrand, and L. Böger, “Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 470, 2014, doi: 10.1098/rspa.2013.0641.
    80. C. Miehe, “Variational gradient plasticity at finite strains. Part I: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 677--703, 2014, doi: 10.1016/j.cma.2013.03.014.
    81. S. Micciulla et al., “Layer-by-layer formation of oligoelectrolyte multilayers: a combined experimental and computational study,” Soft Materials, vol. 12, p. 1, 2014, doi: 10.1080/1539445X.2014.930046.
    82. I. Maier and B. Haasdonk, “A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems,” Applied Numerical Mathematics, vol. 78, pp. 31--48, 2014, doi: 10.1016/j.apnum.2013.12.001.
    83. M. Löhning, M. Reble, J. Hasenauer, S. Yu, and F. Allgöwer, “Model predictive control using reduced order models: Guaranteed stability for constrained linear systems,” Journal of Process Control, vol. 24, no. 11, Art. no. 11, 2014, doi: 10.1016/j.jprocont.2014.07.006.
    84. C. Linder and A. Raina, “A homogenization approach for nonwoven materials based on fiber undulations and reorientation,” Journal of the Mechanics and Physics of Solids, vol. 65, pp. 12--34, 2014, doi: 10.1016/j.jmps.2013.12.011.
    85. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” Finite Volumes for Complex Applications VII Methods and Theoretical Aspects, vol. 77, pp. 353--361, 2014, doi: 10.1007/978-3-319-05684-5_34.
    86. J. Kästner, “Theory and Simulation of Atom Tunneling in Chemical Reactions,” WIREs Comput. Mol. Sci., vol. 4, p. 158, 2014, doi: 10.1002/wcms.1165.
    87. A. N. Krishnamoorthy, C. Holm, and J. Smiatek, “Local Water Dynamics around Antifreeze Protein Residues in the Presence of Osmolytes: The Importance of Hydroxyl and Disaccharide Groups,” The Journal of Physical Chemistry B, vol. 118, no. 40, Art. no. 40, 2014, doi: 10.1021/jp507062r.
    88. K. Kratzer, J. T. Berryman, A. Taudt, J. Zeman, and A. Arnold, “The Flexible Rare Event Sampling Harness System (FRESHS),” Computer Physics Communications, vol. 185, no. 7, Art. no. 7, 2014, doi: 10.1016/j.cpc.2014.03.013.
    89. A. Kramer, V. Stathopoulus, M. Girolami, and N. Radde, “MCMC_CLIB: An advanced MCMC sampling package for ode models with highly correlated parameters,” Bioinformatics, 2014, doi: 10.1093/bioinformatics/btu429.
    90. A. Kramer, B. Calderhead, and N. Radde, “Hamiltonian Monte Carlo Methods for Efficient Parameter Estimation in Steady State Dynamical Systems,” BMC Bioinformatics, vol. 15, no. 1, Art. no. 1, 2014, doi: 10.1186/1471-2105-15-253.
    91. H. Kosow and C. Leon, “Die Szenariotechnik als Methode der Experten- und Stakeholdereinbindung.,” In: Niederberger M, Wassermann S (Hrsg.): Methoden der Experten- und Stakeholdereinbindung in der sozialwissenschaftlichen Forschung., 2014, doi: 10.1007/978-3-658-01687-6_11.
    92. J. Koch and W. Nowak, “A method for implementing Dirichlet and third-type boundary conditions in PTRW simulations,” Water Resources Research, vol. 50, no. 2, Art. no. 2, 2014, doi: 10.1002/2013WR013796.
    93. D. Koch and W. Ehlers, “Modelling and simulation of heat exchange and transport in a geothermal plant,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 447--448, 2014, doi: 10.1002/pamm.201410211.
    94. A. Kissinger, V. Noack, S. Knopf, D. Scheer, W. Konrad, and H. Class, “Characterization of reservoir conditions for CO2 storage using a dimensionless Gravitational Number applied to the North German Basin,” Sustainable Energy Technologies and Assessments, vol. 7, pp. 209--220, 2014, doi: 10.1016/j.seta.2014.06.003.
    95. J. A. Kieser, M. G. Farland, H. Jack, M. Farella, Y. Wang, and O. Röhrle, “The role of oral soft tissues in swallowing function: what can tongue pressure tell us?,” Australian Dental Journal, vol. 59, pp. 155--161, 2014, doi: 10.1111/adj.12103.
    96. M.-A. Keip, P. Steinmann, and J. Schröder, “Computer Methods in Applied Mechanics and Engineering,” Computer Methods in Applied Mechanics and Engineering, vol. 278, pp. 62--79, 2014, doi: 10.1016/j.cma.2014.04.020.
    97. M.-A. Keip and K. Bhattacharya, “A phase-field approach for the modeling of nematic liquid crystal elastomers,” PAMM, vol. 14, no. 1, Art. no. 1, 2014, doi: 10.1002/pamm.201410276.
    98. G. K. Karch, F. Sadlo, D. Weiskopf, and T. Ertl, “Streamline-Based Concepts for Space-Time Analysis of 2D Time-Dependent Flow,” Proceedings of International Symposium on Flow Visualization (ISFV16), 2014, [Online]. Available: http://www.isfv.org/
    99. N. Karajan, D. Otto, S. Oladyshkin, and W. Ehlers, “Application of the Polynomial Chaos Expansion to Approximate the Homogenised Response of the Intervertebral Disc,” Biomechanics and Modeling in Mechanobiology, vol. 13, pp. 1065--1080, 2014, doi: 10.1007/s10237-014-0555-y.
    100. G. Inci, A. Arnold, A. Kronenburg, and R. Weeber, “Modeling Nanoparticle Agglomeration using Local Interactions,” Aerosol Science and Technology, vol. 48, p. 842, 2014, doi: 10.1080/02786826.2014.932942.
    101. K. Häberle and W. Ehlers, “Constitutive relation for the mass transfer during a gas-liquid phase transition in porous media,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 445--446, 2014, doi: 10.1002/pamm.201410210.
    102. P. Hupp, R. Jacob, M. Heene, D. Pflüger, and M. Hegland, “Global Communication Schemes for the Sparse Grid Combination Technique,” Advances in Parallel Computing, vol. 25, pp. 564--573, 2014, doi: 10.3233/978-1-61499-381-0-564.
    103. M. Hlawatsch, F. Sadlo, H. Jang, and D. Weiskopf, “Pathline Glyphs,” Computer Graphics Forum, vol. 33, no. 2, Art. no. 2, 2014, doi: 10.1111/cgf.12335.
    104. M. Hlawatsch, M. Burch, and D. Weiskopf, “Visual Adjacency Lists for Dynamic Graphs,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 11, Art. no. 11, 2014, doi: 10.1109/TVCG.2014.2322594.
    105. F. Hindenlang, G. Gassner, and C.-D. Munz, “Improving the accuracy of discontinuous Galerkin schemes at boundary layers,” International Journal of Numerical Methods in Fluids, vol. 75, pp. 385--402, 2014, doi: 10.1002/fld.3898.
    106. O. A. Hickey, C. Holm, and J. Smiatek, “Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: The importance of hydrodynamic interactions,” The Journal of Chemical Physics, vol. 140, no. 16, Art. no. 16, 2014, doi: 10.1063/1.4872366.
    107. T. Heidlauf and O. Röhrle, “A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements,” Frontiers in Physiology, vol. 5, no. 498, Art. no. 498, 2014, doi: 10.3389/fphys.2014.00498.
    108. Y. Heider, O. Avci, B. Markert, and W. Ehlers, “The dynamic response of fluid-saturated porous materials with application to seismically induced soil liquefaction,” Soil Dynamics and Earthquake Engineering, vol. 63, pp. 120--137, 2014, doi: 10.1016/j.soildyn.2014.03.017.
    109. M. Heene, C. Kowitz, and D. Pflüger, “Load Balancing for Massively Parallel Computations with the Sparse Grid Combination Technique,” Advances in Parallel Computing, vol. 25, pp. 574--583, 2014, doi: 10.3233/978-1-61499-381-0-574.
    110. F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, and K. Vukojevic-Haupt, “Service Composition for REST,” Proceedings of the 18th IEEE International EDOC Conference (EDOC 2014), 2014, doi: 10.1109/EDOC.2014.24.
    111. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on $C^k-1,1$-manifolds,” Mathematische Nachrichten, vol. 287, pp. 48--69, 2014, doi: 10.1002/mana.201200053.
    112. N. Hansen, F. Heller, N. Schmid, and W. F. van Gunsteren, “Time-averaged order parameter restraints in molecular dynamics simulations,” Journal of Biomolecular NMR, vol. 60, pp. 169--187, 2014, doi: 10.1007/s10858-014-9866-7.
    113. M. Hahn and D. Karastoyanova, “Configurable and Collaborative Scientific Workflows,” Workshop on Simulation Technology: Systems for Data Intensive Simulations (SimTech(at)GI) in Conjunction with INFORMATIK 2014, pp. 125--136, 2014, [Online]. Available: https://www.gi.de/fileadmin/redaktion/2014_LNI/lni-p-232.pdf
    114. M. Hahn, S. Gómez Su00e1ez, V. Andrikopoulos, D. Karastoyanova, and F. Leymann, “SCE^MT: A Multi-tenant Service Composition Engine,” Proceedings of the 7th International Conference on Service-Oriented Computing and Applications (SOCA), pp. 89--96, 2014, doi: 10.1109/SOCA.2014.9.
    115. M. Hahn, S. Gómez Su00e1ez, V. Andrikopoulos, D. Karastoyanova, and F. Leymann, “Development and Evaluation of a Multi-tenant Service Middleware PaaS Solution,” Proceedings of the 7th International Conference on Utility and Cloud Computing (UCC), pp. 278--287, 2014, doi: 10.1109/UCC.2014.37.
    116. L. Grüne et al., “Distributed and Networked Model Predictive Control,” Control Theory of Digitally Networked Dynamic Systems, pp. 111--167, 2014, doi: 10.1007/978-3-319-01131-8_4.
    117. M. Greis, F. Alt, N. Henze, and N. Memarovic, “I can wait a minute: uncovering the optimal delay time for pre-moderated user-generated content on public displays,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014, doi: 10.1145/2556288.2557186.
    118. J. Fuhrmann, M. Ohlberger, and C. Rohde (Eds, “Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems,” FVCA 7, vol. 77/78, 2014, doi: 10.1007/978-3-319-05591-6.
    119. S. Frey, F. Sadlo, K.-L. Ma, and T. Ertl, “Interactive Progressive Visualization with Space-Time Error Control,” IEEE Transactions on Visualization & Computer Graphics, 2014, doi: 10.1109/TVCG.2014.2346319.
    120. A. Fischer and P. Eberhard, “Controlling vibrations of a cutting process using predictive control,” Computational Mechanics, vol. 54, no. 1, Art. no. 1, 2014, doi: 10.1007/s00466-014-1014-4.
    121. O. Fernandes, S. Frey, F. Sadlo, and T. Ertl, “Space-Time Volumetric Depth Images for In-Situ Visualization,” Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on, pp. 59--65, 2014, doi: 10.1109/LDAV.2014.7013205.
    122. C. Feller and C. Ebenbauer, “Continuous-time linear MPC algorithms based on relaxed logarithmic barrier functions,” IFAC Proceedings Volumes, vol. 47, no. 3, Art. no. 3, 2014, doi: 10.3182/20140824-6-ZA-1003.01022.
    123. C. Feller and C. Ebenbauer, “Barrier function based linear model predictive control with polytopic terminal sets,” Conference on Decision and Control, pp. 6683--6688, 2014, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7040438&tag=1
    124. R. Enzenhöfer, T. Bunk, and W. Nowak, “Nine steps to risk-informed wellhead protection and management: A case study,” Ground Water, vol. 52, pp. 161--174, 2014, doi: 10.1111/gwat.12161.
    125. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition Dynamics,” Portugaliae Mathematica, vol. 70, pp. 319--344, 2014, doi: 10.4171/PM/1937.
    126. A. Elsheikh, S. Oladyshkin, W. Nowak, and M. Christie, “Probability of CO2 Leakage Using Rare Event Simulation,” ECMOR XIV-14th, vol. We, p. B25, 2014, doi: 10.3997/2214-4609.20141876.
    127. W. Ehlers, M. Schenke, and B. Markert, “Liquefaction phenomena in fluid-saturated soil based on the Theory of Porous Media and the framework of elasto-plasticity,” Journal of Applied Mathematics and Mechanics, vol. 94, pp. 668--677, 2014, doi: 10.1002/zamm.201200220.
    128. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, p. 559, 2014, doi: 10.1002/zamm.201400559.
    129. W. Ehlers, “Porous Media in the Light of History,” The History of Theoretical, Material and Computational Mechanics, pp. 211--227, 2014, doi: 10.1007/978-3-642-39905-3_13.
    130. P. Eberhard et al., “Particles-bridging the Gap between Solids and Fluids,” Procedia IUTAM, vol. 10, pp. 161--179, 2014, doi: 10.1016/j.piutam.2014.01.016.
    131. C. Dibak and B. Koldehofe, “Towards Quality-aware Simulations on Mobile Devices,” Proceedings of the 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI) (Informatik 2014), 2014, [Online]. Available: ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2014-54/INPROC-2014-54.pdf
    132. A. M. Cooper and J. Kästner, “Averaging techniques for reaction barriers in QM/MM simulations,” ChemPhysChem, vol. 15, p. 3264, 2014, doi: 10.1002/cphc.201402382.
    133. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, pp. 554--579, 2014, doi: 10.1137/120897821.
    134. M. Bürger, G. Notarstefano, and F. Allgöwer, “A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization.,” IEEE Transactions on Automatic Control, vol. 59, no. 2, Art. no. 2, 2014, doi: 10.1109/TAC.2013.2281883.
    135. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” SIAM Journal on Financial Mathematics (SIFIN), 2014, doi: 10.1137/140981216.
    136. M. Burkhardt, R. Seifried, and P. Eber, “Aspects of Symbolic Formulations in Flexible Multibody Systems,” Journal of Computational and Nonlinear Dynamics, vol. 9, no. 4, Art. no. 4, 2014, doi: 10.1115/1.4025897.
    137. F. D. Brunner, M. Lazar, and F. Allgöwer, “Computation of Piecewise Affine Terminal Cost Functions for Model Predictive Control,” Proceedings of the 17th international conference on Hybrid systems: computation and control, pp. 1--10, 2014, doi: 10.1145/2562059.2562108.
    138. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Self-Triggered MPC for Constrained Linear Systems.,” Proceedings of the European Control Conference (2014), pp. 472--477, 2014, doi: 10.1109/ECC.2014.6862397.
    139. F. D. Brunner and F. Allgöwer, “Approximate Predictive Control of Polytopic Systems,” Proceedings of the 19th IFAC World Congress, pp. 11060--11066, 2014, doi: 10.3182/20140824-6-ZA-1003.00546.
    140. K. Breitsprecher, P. Kosovan, and C. Holm, “Coarse-grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge localization,” Journal of Physics: Condensed Matter, vol. 26, no. 28, Art. no. 28, 2014, doi: 10.1088/0953-8984/26/28/284114.
    141. C. Braun, S. Halder, and H.-J. Wunderlich, “A-ABFT: Autonomous Algorithm-Based Fault Tolerance for Matrix Multiplications on Graphics Processing Units,” Proceedings of The 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2014), pp. 443--454, 2014, doi: 10.1109/DSN.2014.48.
    142. M. U. Bohner, J. Zeman, J. Smiatek, A. Arnold, and J. Kästner, “Nudged-elastic band used to find reaction coordinates based on the free energy,” The Journal of Chemical Physics, vol. 140, no. 7, Art. no. 7, 2014, doi: 10.1063/1.4865220.
    143. M. Boger, F. Jaegele, B. Weigand, and C.-D. Munz, “A pressure-based treatment for the direct numerical simulation of compressible multi-phase flow using multiple pressure variables,” Computers & Fluids, vol. 96, pp. 338--349, 2014, doi: 10.1016/j.compfluid.2014.01.029.
    144. M. Boger, F. Jaegele, R. Klein, and C.-D. Munz, “Coupling of compressible and incompressible flow regions using the multiple pressure variables approach,” Mathematical Methods in the Applied Sciences, 2014, doi: 10.1002/mma.3081.
    145. C. Bleiler et al., “Multiphasic Modelling of the Vertebral Bone for Cement-Injection Studies,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 117--118, 2014, doi: 10.1002/pamm.201410046.
    146. T. Blaschek, K. Vukojevic-Haupt, D. Weber, D. Karastoyanova, and T. Ertl, “Towards Automated Analysis of Eye Tracking Studies using the Workflow Technology,” Proceedings of the Workshop on Simulation Technology: Systems for Data Intensive Simulations (INFORMATIK 2014), 2014, [Online]. Available: http://subs.emis.de/LNI/Proceedings/Proceedings232/149.pdf
    147. S. Bidier and W. Ehlers, “Localisation in granular media: Particle approach, homogenisation and continuum modelling,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 575--576, 2014, doi: 10.1002/pamm.201410275.
    148. F. Berg, F. Dürr, and K. Rothermel, “Optimal Predictive Code Offloading,” Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2014, doi: 10.4108/icst.mobiquitous.2014.258023.
    149. F. Berg, F. Dürr, and K. Rothermel, “Increasing the Efficiency and Responsiveness of Mobile Applications with Preemptable Code Offloading,” Proceedings of the 3rd IEEE International Conference on Mobile Services: MS14, 2014, doi: 10.1109/MobServ.2014.20.
    150. A. Benzing, B. Koldehofe, and K. Rothermel, “Bandwidth-Minimized Distribution of Measurements in Global Sensor Networks,” Proceedings of the 14th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS 2014), 2014, doi: 10.1007/978-3-662-43352-2_13.
    151. SP. Benson and J. Pleiss, “Solvent flux method (SFM): a case study of water access to Candida antarctica lipase B,” J Chem Theory Comput, vol. 11, pp. 5206--5214, 2014, doi: 10.1021/ct500791e.
    152. SP. Benson and J. Pleiss, “Molecular dynamics simulations of self-emulsifying drug delivery systems (SEDDS): influence of excipients on droplet nanostructure and drug localization,” Langmuir, vol. 30, pp. 8471--8480, 2014, doi: 10.1021/la501143z.
    153. A. Beck et al., “High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations,” International Journal of Numerical Methods in Fluids, vol. 76, pp. 522--548, 2014, doi: 10.1002/fld.3943.
    154. F. Bayer, M. A. Müller, and F. Allgöwer, “Set-based Disturbance Attenuation in Economic Model Predictive Control,” 19th IFAC World Congress, pp. 1898--1903, 2014, doi: 10.3182/20140824-6-ZA-1003.00951.
    155. F. Bayer, M. A. Müller, and F. Allgöwer, “Tube-based Robust Economic Model Predictive Control,” Journal of Process Control, vol. 24, no. 8, Art. no. 8, 2014, doi: 10.1016/j.jprocont.2014.06.006.
    156. F. Bayer and F. Allgöwer, “Robust Economic Model Predictive Control with Linear Average Constraints,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 6707--6712, 2014, doi: 10.1109/CDC.2014.7040442.
    157. A. Barth and S. Moreno-Bromberg, “Optimal risk and liquidity management with costly refinancing opportunities,” Insurance Math. Econom., vol. 57, pp. 31--45, 2014, doi: 10.1016/j.insmatheco.2014.05.001.
    158. A. Barth and F. E. Benth, “The forward dynamics in energy markets - infinite-dimensional modelling and simulation,” Stochastics, vol. 86, no. 6, Art. no. 6, 2014, doi: 10.1080/17442508.2014.895359.
    159. P. Bader, S. Schneegass, N. Henze, V. Schwind, and K. Wolf, “A mobile see-through 3D display with front- and back-touch,” Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, 2014, doi: 10.1145/2639189.2670276.
    160. K. Baber, B. Flemisch, and R. Helmig, “Modelling drop dynamics at the interface between free and porous-medium flow using the mortar method,” International Journal of Heat and Mass Transfer, 2014, [Online]. Available: http://www.hydrosys.uni-stuttgart.de/institut/hydrosys/publikationen/paper/2014/SimTech_Preprint_Baber2014.pdf
    161. V. Andrikopoulos, S. Gómez Saez, D. Karastoyanova, and A. Weiß, “Collaborative, Dynamic & Complex Systems: Modeling, Provision & Execution,” Proceedings of the Fourth International Conference on Cloud Computing and Service Science, pp. 276--286, 2014, doi: 10.5220/0004852402760286.
    162. S. Alvarez Barcia, J. R. Flores, and J. Kästner, “Tunneling Above the Crossover Temperature,” J. Phys. Chem. A, vol. 118, p. 78, 2014, doi: 10.1021/jp411189m.
  10. 2013

    1. J. Veenman and C. W. Scherer, “Stability analysis with integral Quadratic constraints: A dissipativity based proof,” in 52nd IEEE Conf. Decision and Control, in 52nd IEEE Conf. Decision and Control. 2013, pp. 3770–3775. doi: 10.1109/CDC.2013.6760464.
    2. C. W. Scherer, “Gain-scheduled synthesis with dynamic stable strictly positive real multipliers: A complete solution,” in Eur. Control Conf., in Eur. Control Conf. 2013, pp. 3901–3906. doi: 10.23919/ECC.2013.6669184.
    3. C. W. Scherer, “Gain-scheduled synthesis with dynamic generalized strictly positive real multipliers: A complete solution,” in 52nd IEEE Conf. Decision and Control, in 52nd IEEE Conf. Decision and Control. 2013, pp. 4116–4121. doi: 10.1109/CDC.2013.6760520.
    4. T. Ricken, U. Dahmen, O. Dirsch, and D. Q. Werner, “A Biphasic 3D-FEM model for the remodeling of microcirculation in liver lobes,” in Computer Models in Biomechanics, in Computer Models in Biomechanics. , Springer, 2013, pp. 277--292.
    5. M. Sega, S. S. Kantorovich, A. Arnold, and C. Holm, On the Calculation of the Dielectric Properties of Liquid Ionic Systems. Springer, 2013. doi: 10.1007/978-94-007-5012-8_8.
    6. S. Schmitt, M. Gu?nther, T. Rupp, A. Bayer, and D. Häufle, Theoretical Hill-Type Muscle and Stability: Numerical Model and Application. 2013. doi: 10.1155/2013/570878.
    7. D. Scheer, Computersimulationen in politischen Entscheidungsprozessen: Zur Politikrelevanz von Simulationswissen am Beispiel der CO2-Speicherung. Springer SV, Wiesbaden, 2013. doi: 10.1007/978-3-658-03394-1.
    8. M. Funk, A. Schmidt, and L. E. Holmquist, Antonius: a mobile search engine for the physical world. 2013. doi: 10.1145/2494091.2494149.
    9. Y. Dorozhko, K. Kratzer, Y. Yudin, A. Arnold, C. W. Glass, and M. Resch, Rare Event Sampling using the Science Experimental Grid Laboratory. Civil Comp Press, 2013. doi: 10.4203/ccp.102.207.
    10. A. Arnold et al., Espresso 3.1: Molecular dynamics software for coarse-grained models. Springer, 2013. doi: 10.1007/978-3-642-32979-1_1.
    11. D. Zäh and C. Miehe, “Computational homogenization in dissipative electro-mechanics of functional materials,” Computer Methods in Applied Mechanics and Engineering, vol. 267, pp. 487--510, 2013, doi: 10.1016/j.cma.2013.09.012.
    12. S. Zinatbakhsh and W. Ehlers, “Coupled Multi-field and Multi-rate Problems - Numerical Solution and Stability Analysis,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 241--242, 2013, doi: 10.1002/pamm.201310116.
    13. C. Zhu, M. Ertl, and B. Weigand, “Numerical Investigation on the Primary Breakup of an Inelastic Non-Newtonian Liquid Jet with Inflow Turbulence,” Physics of Fluids, vol. 25, no. 8, Art. no. 8, 2013, doi: 10.1063/1.4818305.
    14. D. Zelazo, M. Bürger, and F. Allgöwer, “A Finite-Time Dual Method for Negotiation between Dynamical Systems,” SIAM Journal of Control and Optimization, vol. 51, pp. 172--194, 2013, doi: 10.1137/100819175.
    15. H.-J. Wunderlich, C. Braun, and S. Halder, “Efficacy and Efficiency of Algorithm-Based Fault-Tolerance on GPUs,” IEEE 19th International  On-Line Testing Symposium (IOLTS), pp. 240--243, 2013, doi: 10.1109/IOLTS.2013.6604090.
    16. J. Wu, J. Qin, C. Yu, and F. Allgöwer, “Leaderless synchronization of linear multi-agent systems under directed switching topologies: An invariance approach,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 6043--6048, 2013, doi: 10.1109/CDC.2013.6760844.
    17. M. Wolff, B. Flemisch, and R. Helmig, “An adaptive multiscale approach for modeling two-phase flow in porous media including capillary pressure,” Water Resources Research, vol. 49, pp. 8139--8159, 2013, doi: 10.1002/2013WR013800.
    18. T. Woehling, A. Geiges, W. Nowak, and S. Gayler, “Towards optimizing experiments for maximum-confidence model selection between different soil-plant models,” Procedia Environmental Sciences, vol. 19, pp. 514--523, 2013, doi: 10.1016/j.proenv.2013.06.058.
    19. D. Wirtz and B. Haasdonk, “A Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Research Notes on Approximation, vol. 6, pp. 83--100, 2013, [Online]. Available: http://www.emis.ams.org/journals/DRNA/papers/2013/WirtzHaasdonk.2013.VKO.pdf
    20. P. Wieland, J. Wu, and F. Allgöwer, “On synchronous steady states and internal models of diffusively coupled systems,” IEEE Transactions on Automatic Control, vol. 58, no. 10, Art. no. 10, 2013, doi: 10.1109/TAC.2013.2266868.
    21. N. Wengert, M. Nefzi, P. Eberhard, and B. Geuppert, “Dynamics in Lithographic Projection Objectives,” Multibody System Dynamics, vol. 30, pp. 233--245, 2013, doi: 10.1007/s11044-013-9344-0.
    22. N. Wengert and P. Eberhard, “Vibration Modification in an Opto-Dynamical Test Setup for Suppressing Aberrations,” Proceedings of the 11th ICOVP, Lisbon, Portugal, 2013, [Online]. Available: http://www.icovp.com/components/com_breezingforms/uploads/405_paper0.pdf
    23. W. Weimer-Jehle, S. Prehofer, and S. Vögele, “Kontextszenarien - Ein Konzept zur Behandlung von Kontextunsicherheit und Kontextkomplexität bei der Entwicklung von Energieszenarien,” Technikfolgenabschätzung - Theorie und Praxis, vol. 22, no. 2, Art. no. 2, 2013, [Online]. Available: http://www.tatup-journal.de/tatup132_weua13a.php
    24. R. Weeber, M. Klinkigt, S. Kantorovich, and C. Holm, “Microstructure and magnetic properties of magnetic fluids consisting of shifted dipole particles under the influence of an external,” Journal of chemical physics, vol. 21, p. 214901, 2013, doi: 10.1063/1.4832239.
    25. L. Walter, P. Binning, and H. Class, “Predicting salt intrusion into freshwater aquifers resulting from CO2 injection - A study on the influence of conservative assumptions,” Advances in Water Resources, vol. 62, pp. 543--554, 2013, doi: 10.1016/j.advwatres.2013.09.017.
    26. T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service Provisioning Approach to Enable Secure Cloud Computing,” Proceedings of the On the Move to Meaningful Internet Systems (OTM) Conferences, 2013, doi: 10.1007/978-3-642-41030-7_26.
    27. A. Wagner et al., “Porous-media simulation of bone-cement spreading during vertebroplasty,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 67--68, 2013, doi: 10.1002/pamm.201310029.
    28. K. Vukojevic-Haupt, D. Karastoyanova, and F. Leymann, “On-demand Provisioning of Infrastructure, Middleware and Services for Simulation Workflows,” Proceedings of the 6th IEEE International Conference on Service Oriented Computing & Applications (SOCA 2013), 2013, doi: 10.1109/SOCA.2013.21.
    29. C. Vehlow et al., “iVUN: Interactive Visualization of Uncertain Biochemical Reaction Networks,” BMC Bioinformatics, vol. 14, p. Suppl 19:S2, 2013, doi: 10.1186/1471-2105-14-S19-S2.
    30. C. Thomaseth, P. Weber, T. Hamm, K. Kashima, and N. Radde, “Modeling sphingomyelin synthase 1 driven reaction at the Golgi apparatus can explain data by inclusion of a positive feedback mechanism,” Journal of Theoretical Biology, vol. 337, pp. 174--180, 2013, doi: 10.1016/j.jtbi.2013.08.022.
    31. M. A. Tariq, B. Koldehofe, and K. Rothermel, “Efficient content-based routing with network topology inference,” Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems (DEBS), 2013, doi: 10.1145/2488222.2488262.
    32. Q. Tang and P. Eberhard, “Mechanical PSO Aided by Extremum Seeking for Swarm Robots Cooperative Search,” Advances in Swarm Intelligence, vol. 7928, pp. 64--71, 2013, doi: 10.1007/978-3-642-38703-6_7.
    33. Q. Tang and P. Eberhard, “Cooperative Search by Combining Simulated and Real Robots in a Swarm under the View of Multibody System Dynamics,” Advances in Mechanical Engineering, vol. 5, no. 284782, Art. no. 284782, 2013, doi: 10.1155/2013/284782.
    34. C. Surulescu and N. Surulescu, “Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems,” Lecture Notes in Mathematics, Nonautonomous Dynamical Systems in the Life Sciences, vol. 2102, pp. 269--307, 2013, doi: 10.1007/978-3-319-03080-7.
    35. Z. Sun, A. Dadalau, and A. Verl, “Component oriented and automatic generation of FE models for parallel kinematics,” Prod. Eng. Res. Devel., vol. 7, pp. 233--237, 2013, doi: 10.1007/s11740-012-0440-4.
    36. S. Strauch, V. Andrikopoulos, T. Bachmann, D. Karastoyanova, S. Passow, and K. Vukojevic-Haupt, “Decision Support for the Migration of the Application Database Layer to the Cloud,” Proceedings of the 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom13), 2013, doi: 10.1109/CloudCom.2013.90.
    37. M. Sprenger, S. Schmitt, and O. Röhrle, “Towards modelling the dynamics of a 3D continuum-mechanical two-muscle musculoskeletal system,” PAMM, vol. 13, pp. 65--66, 2013, doi: 10.1002/pamm.201310028.
    38. M. Sonntag and D. Karastoyanova, “Model-as-you-go: An Approach for an Advanced Infrastructure for Scientific Workflows,” Journal of Grid Computing, vol. 11, pp. 553--583, 2013, doi: 10.1007/s10723-013-9268-1.
    39. S. Silcher, J. Königsberger, P. Reimann, and B. Mitschang, “Cooperative service registries for the service-based Product Lifecycle Management architecture,” Proceedings of the 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2013, doi: 10.1109/CSCWD.2013.6581003.
    40. G. S. Seyboth and F. Allgöwer, “Clock Synchronization over Directed Graphs,” Proc. 52nd IEEE Conference on Decision and Control (CDC), pp. 6105--6111, 2013, doi: 10.1109/CDC.2013.6760854.
    41. R. Seifried and W. Blajer, “Analysis of servo-constraint problems for underactuated multibody systems,” Mechanical Sciences, vol. 4, pp. 113--129, 2013, doi: 10.5194/ms-4-113-2013.
    42. S. Schneegass, B. Pfleging, N. Broy, F. Heinrich, and A. Schmidt, “A data set of real world driving to assess driver workload,” Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2013, doi: 10.1145/2516540.2516561.
    43. G. S. Schmidt, C. Ebenbauer, and F. Allgower, “Output regulation for attitude control: A global approach,” American Control Conference, pp. 5251--5256, 2013, doi: 10.1109/ACC.2013.6580656.
    44. G. S. Schmidt, S. Michalowsky, C. Ebenbauer, and F. Allgöwer, “Global Output Regulation for the Rotational Dynamics of a Rigid Body / Globale Ausgangsregelung für die Drehbewegung eines Starrkörpersystems,” at - Automatisierungstechnik, vol. 61, no. 8, Art. no. 8, 2013, doi: 10.1524/auto.2013.1013.
    45. C. W. Scherer and I. E. Köse, “From transfer matrices to realizations: Convergence properties and parametrization of robustness analysis conditions,” Syst. Control Lett., vol. 62, no. 8, Art. no. 8, 2013, doi: 10.1016/j.sysconle.2013.04.001.
    46. C. W. Scherer, “Structured H∞-Optimal Control for Nested Interconnections: A State-Space Solution,” Syst. Contr. Letters, vol. 62, pp. 1105--1113, 2013, doi: 10.1016/j.sysconle.2013.09.001.
    47. C. W. Scherer, “Structured $H_ınfty$-Optimal Control for Nested Interconnections: A State-Space Solution,” Syst. Control Lett., vol. 62, no. 12, Art. no. 12, 2013, doi: 10.1016/j.sysconle.2013.09.001.
    48. C. W. Scherer, “Structured $H_ınfty$-Optimal Control for Nested Interconnections: A State-Space Solution,” Syst. Control Lett., vol. 62, no. 12, Art. no. 12, 2013, doi: 10.1016/j.sysconle.2013.09.001.
    49. M. Schenke, B. Markert, and W. Ehlers, “Liquefaction in fluid-saturated soils,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 145--146, 2013, doi: 10.1002/pamm.201310068.
    50. D. Scheer, “Risk governance and emerging technologies: learning from case study integration,” Journal of Risk Research, vol. 16/3–4, pp. 355--368, 2013, doi: 10.1080/13669877.2012.729519.
    51. V. Schauer and C. Linder, “All-electron Kohn-Sham density functional theory on hierarchic finite element spaces,” Journal of Computational Physics, vol. 250, pp. 644--664, 2013, doi: 10.1016/j.jcp.2013.04.020.
    52. O. Röhrle, M. Sprenger, E. Ramasamy, and T. Heidlauf, “Multiscale Skeletal Muscle Modeling: From Cellular Level to a Multi-segment Skeletal Muscle Model of the Upper Limb,” Computer Models in Biomechanics, pp. 103--116, 2013, doi: 10.1007/978-94-007-5464-5_8.
    53. N. Roth et al., “Collision of Droplets: An Experimental, Numerical and Analytical Approach,” Proceedings of the ILASS - Europe 2013, 2013, [Online]. Available: http://ilasseurope.org/events/25th-ilass-europe/
    54. C. Rohde and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 3, Art. no. 3, 2013, doi: 10.1142/S0218202512500522.
    55. P. Reimann and H. Schwarz, “Datenmanagementpatterns in Simulationsworkflows,” 15. GI-Fachtagung Datenbanksysteme für Business, Technologie und Web (BTW 2013), pp. 279--293, 2013, [Online]. Available: http://www.btw-2013.de/proceedings/Datenmanagementpatterns%20in%20Simulationsworkflows.pdf
    56. M. Reble, E. Quevedo, and F. Allgöwer, “Control over Erasure Channels: Stochastic Stability and Performance of Packetized Unconstrained Model Predictive Control,” International Journal of Robust and Nonlinear Control, pp. 1151--1167, 2013, doi: 10.1002/rnc.2853.
    57. P. Rauschenberger et al., “Comparative assessment of Volume-of-Fluid and Level-Set methods by relevance to dendritic ice growth in supercooled water,” Journal of Computers and Fluids, vol. 79, pp. 44--52, 2013, doi: 10.1016/j.compfluid.2013.03.010.
    58. D. Philipp, J. Stachowiak, F. Dürr, and K. Rothermel, “Model-Driven Public Sensing in Sparse Networks,” Proceedings of the 10th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2013, doi: 10.1007/978-3-319-11569-6_2.
    59. D. Philipp, J. Stachowiak, P. Alt, F. Dürr, and K. Rothermel, “DrOPS: Model-Driven Optimization for Public Sensing Systems,” 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom 2013), 2013, doi: 10.1109/PerCom.2013.6526731.
    60. B. Pfleging, S. Schneegass, and A. Schmidt, “Exploring User Expectations for Context and Road Video Sharing While Calling and Driving,” Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 132--139, 2013, doi: 10.1145/2516540.2516547.
    61. B. Pfleging, N. Henze, A. Schmidt, D. Rau, and B. Reitschuster, “Influence of subliminal cueing on visual search tasks,” CHI 13 Extended Abstracts on Human Factors in Computing Systems, 2013, doi: 10.1145/2468356.2468583.
    62. B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran, “MigCEP: Operator Migration for Mobility Driven Distributed Complex Event Processing,” Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems (DEBS), 2013, doi: 10.1145/2488222.2488265.
    63. S. Oladyshkin, P. Schroeder, H. Class, and W. Nowak, “Chaos expansion based Bootstrap filter to calibrate CO2 injection models,” Energy Procedia, vol. 40, pp. 398--407, 2013, doi: 10.1016/j.egypro.2013.08.046.
    64. S. Oladyshkin, H. Class, and W. Nowak, “Bayesian updating via Bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations,” Computational Geosciences, vol. 17, no. 4, Art. no. 4, 2013, doi: 10.1007/s10596-013-9350-6.
    65. W. Nowak and A. Litvinenko, “Kriging and spatial design accelerated by orders of magnitude: combining low-rank covariance approximations with FFT-techniques,” Mathematical Geosciences, vol. 45, no. 4, Art. no. 4, 2013, doi: 10.1007/s11004-013-9453-6.
    66. M. A. Müller, D. Liberzon, and F. Allgöwer, “Norm-controllability, or how a nonlinear system responds to large inputs,” Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems (NOLCOS), pp. 104--109, 2013, doi: 10.3182/20130904-3-FR-2041.00052.
    67. M. A. Müller, D. Angli, and F. Allgöwer, “On convergence of averagely constrained economic MPC and necessity of dissipativity for optimal steady-state operation,” Proceedings of the American Control Conference (ACC), pp. 3147--3152, 2013, doi: 10.1109/ACC.2013.6580314.
    68. M. A. Müller, D. Angeli, and F. Allgöwer, “Economic model predictive control with self-tuning terminal weight,” Proceedings of the European Control Conference (ECC), pp. 2044--2049, 2013, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669271
    69. M. A. Müller, D. Angeli, and F. Allgöwer, “Economic model predictive control with transient average constraints,” Proceedings of the 52nd IEEE Conference on Decision and Control (CDC), pp. 5119--5124, 2013, doi: 10.1109/CDC.2013.6760693.
    70. M. A. Müller and F. Allgöwer, “Economic model predictive control with self-tuning terminal cost,” European Journal of Control, vol. 19, pp. 408--416, 2013, doi: 10.1016/j.ejcon.2013.05.019.
    71. M. Mottahedi, S. Röck, and A. Verl, “Simulation-Based Parameter Identification for Online Condition Monitoring of Spindle Nut Drive,” Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives, pp. 193--205, 2013, doi: 10.1007/978-3-642-34471-8_16.
    72. J. M. Montenbruck, G. S. Seyboth, and F. Allgöwer, “Practical and Robust Synchronization of Systems with Additive Linear Uncertainties,” Proc. 9th IFAC Symposium on Nonlinear Control Systems, pp. 743--748, 2013, doi: 10.3182/20130904-3-FR-2041.00134.
    73. J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Practical Cluster Synchronization of Heterogeneous Systems on Graphs with Acyclic Topology,” Proc. 52nd IEEE Conference on Decision and Control, pp. 692--697, 2013, doi: 10.1109/CDC.2013.6759962.
    74. C. Miehe, F. Aldakheel, and S. Mauthe, “Mixed variational principles and robust finite element implementations of gradient plasticity at small strains,” International Journal for Numerical Methods in Engineering, vol. 94, pp. 1037--1074, 2013, doi: 10.1002/nme.4486.
    75. N. M. Mascarenhas and J. Kästner, “How maltose influences structural changes to bind to maltose binding protein: Results from umbrella sampling simulation,” Proteins, vol. 81, p. 185, 2013, doi: 10.1002/prot.24174.
    76. J. Mabuma, B. Markert, and W. Ehlers, “Towards a Standardised Method for Visualisation of Stress Distribution at the Cartilage-Bone Interface,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 69--70, 2013, doi: 10.1002/pamm.201310030.
    77. C. Linder and A. Raina, “A strong discontinuity approach on multiple levels to model solids at failure,” Computer Methods in Applied Mechanics and Engineering, vol. 253, pp. 558--583, 2013, doi: 10.1016/j.cma.2012.07.005.
    78. P. Leube, F. P. J. de Barros, W. Nowak, and R. Rajagopal, “Towards optimal allocation of computer resources: Trade-offs between uncertainty quantification, discretization and model reduction,” Environmental Modelling & Software, vol. 50, pp. 97--107, 2013, doi: 10.1016/j.envsoft.2013.08.008.
    79. T. Köppl, B. I. Wohlmuth, and R. Helmig, “Reduced one-dimensional modelling and numerical simulation for mass transport in fluids,” International Journal for Numerical Methods in Fluids, vol. 72, pp. 135--156, 2013, doi: 10.1002/fld.3728.
    80. J. Kästner, “The Path Length Determines the Tunneling Decay of Substituted Carbenes,” Chem. Eur. J., vol. 19, p. 8207, 2013, doi: 10.1002/chem.201203651.
    81. K. Kratzer, A. Arnold, and R. J. Allen, “Automatic, optimized interface placement in forward flux sampling simulations,” The Journal of Chemical Physics, vol. 138, no. 16, Art. no. 16, 2013, doi: 10.1063/1.4801866.
    82. D. Koch and W. Ehlers, “On heat exchange and heat transport in a geothermal plant,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 201--202, 2013, doi: 10.1002/pamm.201310096.
    83. J. Knittel, A. Sahami Shirazi, N. Henze, and A. Schmidt, “Utilizing contextual information for mobile communication,” CHI 13 Extended Abstracts on Human Factors in Computing Systems, 2013, doi: 10.1145/2468356.2468601.
    84. M. Klinkigt, R. Weeber, S. Kantorovich, and C. Holm, “Cluster formation in systems of shifted-dipole particles,” Soft Matter, 2013, doi: 10.1039/C2SM27290C.
    85. T. Kempka et al., “A Dynamic Flow Simulation Code Intercomparison based on the Revised Static Model of the Ketzin Pilot Site,” Energy Procedia, vol. 40, pp. 418--427, 2013, doi: 10.1016/j.egypro.2013.08.048.
    86. G. K. Karch et al., “Visualization of Piecewise Linear Interface Calculation,” Proceedings of Pacific Visualization Symposium (PacificVis) 2013, pp. 121--128, 2013, doi: 10.1109/PacificVis.2013.6596136.
    87. D. Karastoyanova and V. Andrikopoulos, “eScienceSWaT -- Towards an eScience Software Engineering Methodology,” Enterprise Distributed Object Computing Conference Workshops, pp. 229--238, 2013, doi: 10.1109/EDOCW.2013.32.
    88. K. Häberle and W. Ehlers, “Carbon-dioxide storage and phase transitions: on the numerical modelling of injection and leakage,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 195--196, 2013, doi: 10.1002/pamm.201310093.
    89. M. Hofacker and C. Miehe, “A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns,” International Journal for Numerical Methods in Engineering, vol. 93, pp. 276--301, 2013, doi: 10.1002/nme.4387.
    90. M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Predictability-Based Adaptive Mouse Interaction and Zooming for Visual Flow Exploration,” International Journal for Uncertainty Quantification, vol. 3, pp. 225--240, 2013, doi: 10.1615/Int.J.UncertaintyQuantification.2012003943.
    91. M. Hlawatsch, F. Sadlo, M. Burch, and D. Weiskopf, “Scale-Stack Bar Charts,” Computer Graphics Forum, vol. 32, no. 3, Art. no. 3, 2013, doi: 10.1111/cgf.12105.
    92. R. Helmig, B. Flemisch, M. Wolff, A. Ebigbo, and H. Class, “Model coupling for multiphase flow in porous media,” Advances in Water Resources, vol. 51, pp. 52–66, 2013, doi: 10.1016/j.advwatres.2012.07.003.
    93. S. Heinrich et al., “Determinants of robustness in spindle assembly checkpoint signalling,” Nature Cell Biology, vol. 15, pp. 1328--1339, 2013, doi: 10.1038/ncb2864.
    94. T. Heidlauf and O. Röhrle, “Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library OpenCMISS,” Computational and Mathematical Methods in Medicine, vol. 2013, pp. 1--14, 2013, doi: 10.1155/2013/517287.
    95. T. Heidlauf and O. Röhrle, “On the treatment of active behaviour in continuum muscle mechanics,” PAMM, vol. 13, pp. 71--72, 2013, doi: 10.1002/pamm.201310031.
    96. J. D. Halverson et al., “ESPResSo++: A modern multiscale simulation package for soft matter systems,” Computer Physics Communications, vol. 184, no. 4, Art. no. 4, 2013, doi: 10.1016/j.cpc.2012.12.004.
    97. B. Haasdonk, K. Urban, and B. Wieland, “Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Lou00e8ve Expansion,” SIAM/ASA Journal on Uncertainty Quantification, vol. 1, pp. 79--105, 2013, doi: 10.1137/120876745.
    98. B. Haasdonk, “Convergence Rates of the POD-Greedy Method,” M2AN, vol. 47, pp. 859--873, 2013, doi: 10.1051/m2an/2012045.
    99. S. Göttlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl, “Modeling, simulation and validation of material flow on conveyor belts,” Applied Mathematical Modelling, 2013, doi: 10.1016/j.apm.2013.11.039.
    100. T. Gorius, R. Seifried, and P. Eberhard, “Approximate End-Effector Tracking Control of Flexible Multibody Systems Using Singular Perturbations,” Journal of Computational and Nonlinear Dynamics, vol. 9, no. 1, Art. no. 1, 2013, doi: 10.1115/1.4025635.
    101. S. Frey, F. Sadlo, and T. Ertl, “Explorable Volumetric Depth Images from Raycasting,” SIBGRAPI 13 Proceedings of the 2013 XXVI Conference on Graphics, Patterns and Images, pp. 123--130, 2013, doi: 10.1109/SIBGRAPI.2013.26.
    102. S. Frey, F. Sadlo, and T. Ertl, “Mesh Generation From Layered Depth Images Using Isosurface Raycasting,” Lecture Notes in Computer Science, vol. 8034, pp. 373--383, 2013, doi: 10.1007/978-3-642-41939-3_36.
    103. C. Fischer, K.-P. Fritz, P. Eberhard, and H. Kück, “Investigation and design of an impact actuated micro shift valve,” Archive of Applied Mechanics, vol. 83, pp. 1171--1192, 2013, doi: 10.1007/s00419-013-0741-x.
    104. A. Fischer, P. Eberhard, and J. Ambr?sio, “Parametric flexible multibody model for material removal during turning,” Journal of Computational and Nonlinear Dynamics, vol. 9, 2013, doi: 10.1115/1.4025283.
    105. C. Feller and C. Ebenbauer, “A barrier function based continuous-time algorithm for linear model predictive control,” Proceedings of  the 12th IEEE Euorpean Control Conference, pp. 19--26, 2013, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669710&tag=1
    106. C. Feller and C. Ebenbauer, “Ein zeitkontinuierlicher Optimierungsalgorithmus für die modellprädiktive Regelung linearer Systeme,” Tagungsband zum 18. Steirischen Seminar ueber Regelungstechnik und Prozessautomatisierung, pp. 1--28, 2013, [Online]. Available: http://portal.tugraz.at/portal/page/portal/TU_Graz/Einrichtungen/Institute/Homepages/i4430/Veranstaltungen/Retzhof
    107. M. Falk, M. Krone, and T. Ertl, “Atomistic Visualization of Mesoscopic Whole-Cell Simulations using Ray-Casted Instancing,” Computer Graphics Forum, vol. 32, no. 8, Art. no. 8, 2013, doi: 10.1111/cgf.12197.
    108. M. Ertl, N. Roth, G. Brenn, H. Gomaa, and B. Weigand, “Simulations and Experiments on Shape Oscillations of Newtonian and Non-Newtonian Liquid Droplets,” Proceedings of the ILASS - Europe 2013, 2013, [Online]. Available: http://ilasseurope.org/events/25th-ilass-europe/
    109. W. Ehlers, S. Zinatbakhsh, and B. Markert, “Stability analysis of finite difference schemes revisited: A study of decoupled solution strategies for coupled multi-field problems,” International Journal for Numerical Methods in Engineering, vol. 94, pp. 758--786, 2013, doi: 10.1002/nme.4480.
    110. W. Ehlers and A. Wagner, “Constitutive and Computational Aspects in Tumour Therapies of Multiphasic Brain Tissue,” G. A. Holzapfel & E. Kuhl (eds.): Computer Models in Biomechanics, vol. 0, pp. 263--276, 2013, doi: 10.1007/978-94-007-5464-5_19.
    111. W. Ehlers and A. Wagner, “Multi-component Modelling of Human Brain Tissue,” Computer Methods in Biomechanics and Biomedical Engineering, 2013, doi: 10.1080/10255842.2013.853754.
    112. C. Eck, M. Kutter, A.-M. Sändig, and C. Rohde, “A two scale model for liquid phase epitaxy with elasticity: An iterative procedure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 93, pp. 745--761, 2013, doi: 10.1002/zamm.201200238.
    113. H. Dürr, M. Stakonvic, K. Johansson, and C. Ebenbauer, “Lie bracket approximation of extremum seeking systems,” Automatica, vol. 49, p. 1538?1552, 2013, doi: 10.1016/j.automatica.2013.02.016.
    114. M. Dumbser, U. Iben, and C.-D. Munz, “Efficient implementation of high order unstructured WENO schemes for cavitating flows,” Computers & Fluids, vol. 86, pp. 141--168, 2013, doi: 10.1016/j.compfluid.2013.07.011.
    115. M. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems,” Computational Optimization and Applications, 2013, doi: 10.1007/s10589-014-9697-1.
    116. M. Dihlmann and B. Haasdonk, “Certifed Nonlinear Parameter Optimization with Reduced Basis Surrogate Models,” Proc. Appl. Math. Mech., vol. 13, pp. 3--6, 2013, doi: 10.1002/pamm.201310002.
    117. M. Daub, “An Appropriate Bounded Invariant Region for a Bistable Reaction-Diffusion Model of the Caspase-3/8 Feedback Loop,” Bulletin of Mathematical Biology, vol. 75, no. 11, Art. no. 11, 2013, doi: 10.1007/s11538-013-9892-8.
    118. J. Chaudenson et al., “Stability analysis of pulse-modulated systems with an application to space launchers,” IFAC Proc. Vol., vol. 46, no. 19, Art. no. 19, 2013, doi: 10.3182/20130902-5-DE-2040.00082.
    119. J. Chaudenson et al., “Stability analysis of pulse-modulated systems with an application to space launchers,” 19th IFAC Symposium on Automatic Control in Aerospace, 2013, doi: 10.3182/20130902-5-DE-2040.00082.
    120. A. Chanda, A. Fischer, P. Eberhard, and S. K. Dwivedy, “Stability analysis of a thin-walled cylinder in turning operation using the semi- discretization method,” Acta Mechanica Sinica, 2013, doi: 10.1007/s10409-013-0097-z.
    121. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clari,” Zamm, 2013, doi: 10.1002/zamm.201200174.
    122. M. Bürger, D. Zelazo, and F. Allgöwer, “Hierarchical Clustering of Dynamical Networks Using a Saddle-Point Analysis,” IEEE Transactions on Automatic Control, vol. 58, pp. 113--124, 2013, doi: 10.1109/TAC.2012.2206695.
    123. F. D. Brunner, M. Lazar, and F. Allgöwer, “An Explicit Solution to Constrained Stabilization via Polytopic Tubes,” 52nd IEEE Conference on Decision and Control, pp. 7721--7727, 2013, doi: 10.1109/CDC.2013.6761115.
    124. C. Breindl, M. Chaves, and F. Allgöwer, “A linear reformulation of Boolean optimization problems and structure identi?cation of gene regulation networks,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 733--738, 2013, doi: 10.1109/CDC.2013.6759969.
    125. W. Blajer, R. Seifried, and K. Ko?odziejczyk, “Diversity of Servo-Constraint Problems for Underactuated Mechanical Systems: A Case Study Illustration,” Solid State Phenomena, vol. 198, pp. 473--482, 2013, doi: 10.4028/www.scientific.net/SSP.198.473.
    126. S. Bidier and W. Ehlers, “Particle simulation of granular media and homogenisation towards continuum quantities,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 575--576, 2013, doi: 10.1002/pamm.201310269.
    127. SP. Benson and J. Pleiss, “Incomplete mixing versus clathrate-like structures: a molecular view on hydrophobicity in methanol-water mixtures,” J Mol Model, vol. 19, pp. 3427--3436, 2013, doi: 10.1007/s00894-013-1857-1.
    128. F. Bayer, G. Notarstefano, and F. Allgöwer, “A Projected SQP Method for Nonlinear Optimal Control with Quadratic Convergence,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 6463--6468, 2013, doi: 10.1109/CDC.2013.6760912.
    129. F. Bayer, M. Bürger, and F. Allgöwer, “Discrete-time Incremental ISS: A Framework for Robust NMPC,” Proceedings of the 12th IEEE Euorpean Control Conference, pp. 2068--2073, 2013, [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669322
    130. P. Baier, F. Dürr, and K. Rothermel, “Opportunistic Position Update Protocols for Mobile Devices,” Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2013), 2013, doi: 10.1145/2493432.2493439.
    131. P. Baier, F. Dürr, and K. Rothermel, “Efficient Distribution of Sensing Queries in Public Sensing Systems,” Proceedings of the 10th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2013), 2013, doi: 10.1109/MASS.2013.11.
    132. M. Ashraf, S. Oladyshkin, and W. Nowak, “Geological storage of CO2: global sensitivity analysis and risk assessment using arbitrary polynomial chaos expansion,” International Journal of Greenhouse Gas Control, vol. 19, pp. 704--719, 2013, doi: 10.1016/j.ijggc.2013.03.023.
    133. A. Arnold et al., “Comparison of scalable fast methods for long-range interactions,” Physical Review E, vol. 88, no. 6, Art. no. 6, 2013, doi: 10.1103/PhysRevE.88.063308.
    134. A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz, and C. Holm, “Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts,” Entropy, vol. 15, no. 11, Art. no. 11, 2013, doi: 10.3390/e15114569.
    135. V. Andrikopoulos, S. Gómez Saez, D. Karastoyanova, and A. Weiß, “Towards Collaborative, Dynamic & Complex Systems,” Proceedings of the 6th International Conference on Service-Oriented Computing and Applications, pp. 241--245, 2013, doi: 10.1109/SOCA.2013.35.
    136. F. Alt, S. Schneegass, M. Girgis, and A. Schmidt, “Cognitive Effects of Interactive Public Display Applications,” Proceedings of the 2Nd ACM International Symposium on Pervasive Displays, 2013, doi: 10.1145/2491568.2491572.
    137. F. Alt, B. Pfleging, and A. Schmidt, “Sonify - A Platform for the Sonification of Text Messages,” Mensch & Computer 2013 - Tagungsband, pp. 149--158, 2013, doi: 10.1524/9783486781229.149.
    138. A. Abdulle, A. Barth, and C. Schwab, “Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs,” Multiscale Model. Simul., vol. 11, pp. 1033--1070, 2013, doi: 10.1137/120894725.
  11. 2012

    1. J. Veenman and C. W. Scherer, “Robust Gain-scheduled Controller Synthesis is Convex for Systems without Control Channel Uncertainties,” in 51st IEEE Conf. Decision and Control, in 51st IEEE Conf. Decision and Control. Hawaii, USA, 2012, pp. 1524–1529. [Online]. Available: https://doi.org/10.1109/CDC.2012.6426978
    2. C. W. Scherer and J. Veenman, “Robust Controller Synthesis is Convex for Systems without Control Channel Uncertainties,” in 7th IFAC Symposium on Robust Control Design, in 7th IFAC Symposium on Robust Control Design, vol. 45. Aalborg, DK: IFAC Proceedings Volumes, 2012, p. 2012. [Online]. Available: https://doi.org/10.3182/20120620-3-DK-2025.00110
    3. C. W. Scherer, “Distributed control with dynamic dissipation constraints,” in 50th Annual Allertin Conference on Communication, Control, and Computing, in 50th Annual Allertin Conference on Communication, Control, and Computing. Monticello, Illinois, 2012, pp. 55–62. [Online]. Available: https://doi.org/10.1109/Allerton.2012.6483199
    4. C. W. Scherer, “Gain-scheduled synthesis with dynamic positive real multipliers,” in 51st IEEE Conf. Decision and Control, in 51st IEEE Conf. Decision and Control. Hawaii, USA, 2012, pp. 6641–6646. [Online]. Available: https://doi.org/10.1109/CDC.2012.6426796
    5. J. Chaudenson et al., “PMW Modeling for Attitude Control of a Launcher During Ballistic Phase and Comparative Stability Analysis,” in 7th IFAC Symposium on Robust Control Design, in 7th IFAC Symposium on Robust Control Design, vol. 45. Aalborg, Denmark: IFAC Proceedings Volumes, 2012, pp. 248–253. [Online]. Available: https://doi.org/10.3182/20120620-3-DK-2025.00109
    6. J. Veenman, C. W. Scherer, and I. Köse, “Robust Estimation with Partial Gain-Scheduling Through Convex Optimization,” in Control of Linear Parameter Varying Systems with Applications, J. Mohammadpour and C. W. Scherer, Eds., in Control of Linear Parameter Varying Systems with Applications. , Springer, 2012, pp. 253–278. [Online]. Available: https://doi.org/10.1007/978-1-4614-1833-7_10
    7. S. Schmitt, D. Häufle, R. Blickhan, and M. Gu?nther, Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle. 2012. doi: 10.1088/1748-3182/7/3/036022.
    8. J. Mohammadpour and C. W. Scherer, Control of Linear Parameter Varying Systems with Applications. Springer-Verlag, 2012. [Online]. Available: http://www.springer.com/us/book/9781461418320
    9. H. A. ElMaraghy, Enabling Manufacturing Competitiveness and Economic Sustainability. Springer, 2012. doi: 10.1007/978-3-642-23860-4.
    10. A. Dedner, B. Flemisch, and R. Klöfkorn, Advances in DUNE. Proceedings of the 1st DUNE User Meeting. Springer, 2012. doi: 10.1007/978-3-642-28589-9.
    11. J. Chaudenson, D. Beauvois, S. Bennani, M. Ganet-Schoeller, G. Sandou, C, and C. Frechin, PWM Modeling for Attitude Control of a Launcher During Ballistic Phase and Comparative Stability Analysis. 7th IFAC Symposium on Robust Control Design, 2012. doi: 10.3182/20120620-3-DK-2025.00109.
    12. M. Üffinger, F. Sadlo, M. Kirby, C. Hansen, and T. Ertl, “FTLE Computation Beyond First-Order Approximation,” Eurographics Short Papers, 2012, doi: 10.2312/conf/EG2012/short/061-064.
    13. M. Üffinger, F. Sadlo, and T. Ertl, “A Time-Dependent Vector Field Topology Based on Streak Surfaces,” IEEE Transaction on Visualization and Computer Graphics, 2012, doi: 10.1109/TVCG.2012.131.
    14. S. Zinatbakhsh, B. Markert, and W. Ehlers, “Stability Analysis of Decoupled Solution Strategies for Coupled Multi-field Problems - A General Framework,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 359--360, 2012, doi: 10.1002/pamm.201210168.
    15. S. Yu, C. Böhm, H. Chen, and F. Allgöwer, “Model predictive control of constrained LPV systems,” International Journal of Control, vol. 85, no. 6, Art. no. 6, 2012, doi: 10.1080/00207179.2012.661878.
    16. J. Wu and F. Allgöwer, “A constructive approach to synchronization using relative information,” Proceedings of the 51st IEEE Conference on Decision and Control, 2012, doi: 10.1109/CDC.2012.6426372.
    17. M. Wolff, B. Flemisch, R. Helmig, and I. Aavatsmark, “Treatment of tensorial relative permeabilities with multipoint flux approximation,” Int. J. Numer. Anal. Mod., vol. 9, no. 3, Art. no. 3, 2012.
    18. D. Wirtz and B. Haasdonk, “A-posteriori error estimation for parameterized kernel-based systems,” Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling, 2012, doi: 10.3182/20120215-3-at-3016.00135.
    19. D. Wirtz and B. Haasdonk, “Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems,” System and Control Letters, vol. 61, pp. 203--211, 2012, doi: 10.1016/j.sysconle.2011.10.012.
    20. M. Weigel, A. Arnold, and P. Virnau, “Editorial,” The European Physical Journal Special Topics, 2012, doi: 10.1140/epjst/e2012-01633-0.
    21. R. Weeber, S. Kantorovich, and C. Holm, “Deformation mechanisms in 2D magnetic gels studied by computer simulations,” Soft Matter, vol. 8, p. 9923, 2012, doi: 10.1039/C2SM26097b.
    22. P. Weber, A. Kramer, C. Dingler, and N. Radde, “Trajectory-oriented Bayesian experiment design versus Fisher A-optimal design: an in depth comparison study,” Bioinformatics, vol. 28, pp. i535–i541, 2012, doi: 10.1093/bioinformatics/bts377.
    23. Y. K. Wang, M. P. Nash, A. J. Pullan, J. A. Kieser, and O. Röhrle, “Model-based Identification of Motion Sensor Placement for Tracking Retraction and Elongation of the Tongue,” Biomechanics and Modeling in Mechanobiology, 2012, doi: 10.1007/s10237-012-0407-6.
    24. L. Walter, P. J. Binning, S. Oladyshkin, B. Flemisch, and H. Class, “Brine migration resulting from CO2 injection into saline aquifers - An approach to risk estimation including various levels of uncertainty,” International Journal of Greenhouse Gas Control, vol. 9, pp. 495--506, 2012, doi: 10.1016/j.ijggc.2012.05.004.
    25. S. Waldherr and B. Haasdonk, “Efficient parametric analysis of the chemical master equation through model order reduction,” BMC Systems Biology, vol. 6, 2012, doi: 10.1186/1752-0509-6-81.
    26. S. Wagner, C. Fehling, D. Karastoyanova, and D. Schumm, “State Propagation-based Monitoring of Business Transactions,” Proceedings of the International Conference on Service-Oriented Computing and Applications, 2012, doi: 10.1109/SOCA.2012.6449464.
    27. A. Wagner and W. Ehlers, “Multiphasic modelling of human brain tissue for intracranial drug-infusion studies,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 107--110, 2012, doi: 10.1002/pamm.201210045.
    28. C. Vehlow et al., “Uncertainty-aware visual analysis of biochemical reaction networks,” Proc. of the IEEE Symp on Biol Data Visualization, pp. 79--82, 2012, doi: 10.1109/BioVis.2012.6378598.
    29. J. Veenman, C. W. Scherer, and I. E. Koese, “Robust Estimation with Partial Gain-Scheduling through Convex Optimization,” Control of Linear Parameter Varying Systems with Applications, pp. 253--278, 2012, doi: 10.1007/978-1-4614-1833-7_10.
    30. M. Troldborg, W. Nowak, I. Lange, M. Santos, P. Binning, and P. L. Bjerg, “Application of Bayesian geostatistics for evaluation of mass discharge uncertainty at contaminated sites,” Water Resources Research, vol. 48, no. W09535, Art. no. W09535, 2012, doi: 10.1029/2011WR011785.
    31. M. Tkachuk and C. Linder, “The maximal advance path constraint for the homogenization of materials with random network microstructure,” Philosophical Magazine, vol. 92, pp. 2779--2808, 2012, [Online]. Available: http://dx.doi.org/10.1080/14786435.2012.675090
    32. D. M. Tartakovsky, W. Nowak, and D. Bolster, “Introduction to the special issue on uncertainty quantification and risk assessment,” Advances in Water Resources, vol. 36, pp. 1--2, 2012, doi: 10.1016/j.advwatres.2011.12.010.
    33. M. Sprenger, S. Schmitt, and O. Röhrle, “Coupling 3D and 1D Skeletal Muscle Models,” PAMM, vol. 12, pp. 111--112, 2012, doi: 10.1002/pamm.201210046.
    34. M. Sonntag and D. Karastoyanova, “Ad hoc Iteration and Re-execution of Activities in Workflows,” International Journal on Advances in Software, vol. 5, pp. 91--109, 2012, [Online]. Available: http://www.iariajournals.org/software/soft_v5_n12_2012_paged.pdf
    35. T. Shiiba, J. Fehr, and P. Eberhard, “Flexible Multibody Simulation of Automotive Systems with Non-modal Model Reduction Techniques,” Vehicle System Dynamics, vol. 50, 2012, doi: 10.1080/00423114.2012.700403.
    36. G. S. Seyboth, G. S. Schmidt, and F. Allgöwer, “Cooperative control of linear parameter-varying systems,” Proc. American Control Conference (ACC), pp. 2407--2412, 2012, doi: 10.1109/ACC.2012.6314912.
    37. G. S. Seyboth, G. S. Schmidt, and F. Allgöwer, “Output Synchronization of Linear Parameter-varying Systems via Dynamic Couplings,” Proc. 51st IEEE Conference on Decision and Control (CDC), pp. 3777--3782, 2012, doi: 10.1109/CDC.2012.6426752.
    38. G. S. Seyboth, D. V. Dimarogonas, K. H. Johansson, and F. Allgöwer, “Static Diffusive Couplings in Heterogeneous Linear Networks,” Proc. 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NECSYS), pp. 258--263, 2012, doi: 10.3182/20120914-2-US-4030.00041.
    39. A. Schöniger, W. Nowak, and H.-J. Hendricks Franssen, “Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography,” Water Resources Research, vol. 48, 2012, doi: 10.1029/2011WR010462.
    40. F. Schäfer, L. Walter, H. Class, and C. Müller, “The regional pressure impact of CO storage: a showcase study from the North German Basin,” Environmental Earth Sciences, vol. 65, pp. 2037--2049, 2012, doi: 10.1007/s12665-011-1184-8.
    41. D. Schumm, D. Dentsas, M. Hahn, D. Karastoyanova, F. Leymann, and M. Sonntag, “Web Service Composition Reuse through Shared Process Fragment Libraries,” Proceedings of the 12th International Conference on Web Engineering (ICWE 2012), 2012, doi: 10.1007/978-3-642-31753-8_53.
    42. G. S. Schmidt, C. Ebenbauer, and F. Allgower, “A solution for a class of output regulation problems on SO(n),” American Control Conference, pp. 1773--1779, 2012, doi: 10.1109/ACC.2012.6315147.
    43. G. S. Schmidt, A. Papachristodoulou, U. Münz, and F. Allgöwer, “Frequency synchronization and phase agreement in Kuramoto oscillator networks with delays,” Automatica, vol. 48, no. 12, Art. no. 12, 2012, doi: 10.1016/j.automatica.2012.08.013.
    44. D. Schittler, J. Hasenauer, and F. Allgöwer, “A model for proliferating cell populations that accounts  for cell types,” Proc. of the 9th Workshop on Comp. Syst. Biol., pp. 79--82, 2012, [Online]. Available: http://www.cs.tut.fi/wcsb12/WCSB2012.pdf#page=87
    45. C. W. Scherer and I. E. Köse, “Gain-scheduled control synthesis using dynamic $D$-scales,” IEEE T. Automat. Contr., vol. 57, no. 9, Art. no. 9, Sep. 2012, [Online]. Available: https://doi.org/10.1109/TAC.2012.2184609
    46. M. Schenke, B. Markert, and W. Ehlers, “On the dynamic behaviour of fluid-saturated soil within the framework of elasto-plasticity,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 753--754, 2012, doi: 10.1002/pamm.201210365.
    47. M. Schenke and W. Ehlers, “On the Analysis of Porous Media Dynamics using a DUNE-PANDAS Interface,” Advances in DUNE - Proceedings of the DUNE User Meeting, pp. 157--167, 2012, doi: 10.1007/978-3-642-28589-9_12.
    48. F. Sadlo, M. Üffinger, T. Ertl, and D. Weiskopf, “On the Finite-Time Scope for Computing Lagrangian Coherent Structures from Lyapunov Exponents,” TopoInVis 2011, vol. 0, p. 14, 2012, doi: 10.1007/978-3-642-23175-9_18.
    49. O. Röhrle, J. B. Davidson, and A. J. Pullan, “A physiologically based, multi-scale model of skeletal muscle structure and function,” Frontiers in Striated Muscle Physiology, vol. 3, 2012, doi: 10.3389/fphys.2012.00358.
    50. D. Röhm and A. Arnold, “Lattice boltzmann simulations on GPUs with ESPResSo,” The European Physical Journal Special Topics, vol. 210, no. 1, Art. no. 1, 2012, doi: 10.1140/epjst/e2012-01639-6.
    51. T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori Error Estimation for Second Order Mechanical Systems. Acta Mechanica Sinica,” Acta Mechanica Sinica, vol. 28, pp. 854--862, 2012, doi: 10.1007/s10409-012-0114-7.
    52. T. Richter et al., “ViPLab: a virtual programming laboratory for mathematics and engineering,” Interactive Technology and Smart Education, vol. 9, pp. 246--262, 2012, doi: 10.1109/ISM.2011.95.
    53. M. Reiter et al., “On Analyzing Quality of Data Influences on Performance of Finite Elements driven Computational Simulations,” Proceedings of the 18th International Conference, Euro-Par 2012, vol. 7484, pp. 793--804, 2012, doi: 10.1007/978-3-642-32820-6_79.
    54. M. Reble, E. Quevedo, and F. Allgöwer, “Improved stability conditions for unconstrained nonlinear model predictive control by using additional weighting terms,” Proceedings of the 51st IEEE Conference on Decision and Control, pp. 1625--1630, 2012, doi: 10.1109/CDC.2012.6426743.
    55. M. Reble, E. Quevedo, and F. Allgöwer, “A Unifying Framework for Stability in MPC using a Generalized Integral Terminal Cost,” Proceedings of the American Control Conference, pp. 1211--1216, 2012, doi: 10.1109/ACC.2012.6315070.
    56. P. Rauschenberger, J. Schlottke, and B. Weigand, “A Computation Technique for Rigid Particle Flows in an Eulerian Framework Using the Multiphase DNS Code FS3D,” High Performance Computing in Science and Engineering 11 Transactions of the High Performance Computing Center, Stuttgart (HLRS), 2012, doi: 10.1007/978-3-642-23869-7_23.
    57. N. Radde, “Analyzing fixed points of intracellular regulation networks with complex feedback topology,” BMC Syst Biol, vol. 6, no. 57, Art. no. 57, 2012, doi: 10.1186/1752-0509-6-57.
    58. I. Polhat and C. W. Scherer, “Stability Analysis for Bilateral Teleoperation: An IQC Formulation,” IEEE T. Robot., vol. 28, pp. 1294--1308, 2012, doi: 10.1109/TRO.2012.2209230.
    59. I. Polat and C. W. Scherer, “Stability Analysis for Bilateral Teleoperation: An IQC Formulation,” IEEE T. Robot., vol. 28, no. 6, Art. no. 6, Dec. 2012, [Online]. Available: https://doi.org/10.1109/TRO.2012.2209230
    60. B. Pfleging, S. Schneegass, and A. Schmidt, “Multimodal Interaction in the Car - Combining Speech and Gestures on the Steering Wheel,” Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2012, doi: 10.1145/2390256.2390282.
    61. B. Pfleging, T. Döring, I. Alvarez, M. Kranz, G. Weinberg, and J. Healey, “AutoNUI: 2nd Workshop on Automotive Natural User Interfaces,” Adjunct Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2012, [Online]. Available: http://www.auto-ui.org/12/docs/AutomotiveUI-2012-Adjunct-Proceedings.pdf#page=41
    62. B. Pfleging, F. Alt, and A. Schmidt, “Meaningful Melodies - Personal Sonification of Text Messages for Mobile Devices,” Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services companion, pp. 189--192, 2012, doi: 10.1145/2371664.2371706.
    63. S. Oladyshkin and M. Panfilov, “Open thermodynamic model for compressible multicomponent two-phase flow in porous media,” Journal of Petroleum Science and Engineering, vol. 81, pp. 41--48, 2012, doi: 10.1016/j.petrol.2011.12.001.
    64. S. Oladyshkin and W. Nowak, “Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion,” Reliability Engineering and System Safety, vol. 106, pp. 179--190, 2012, doi: 10.1016/j.ress.2012.05.002.
    65. S. Oladyshkin and W. Nowak, “Polynomial response surfaces for probabilistic risk assessment and risk control via robust design,” Novel Approaches and Their Applications in Risk. ISBN: 978-953-51-0519-0, pp. 317--344, 2012, doi: 10.5772/38170.
    66. S. Oladyshkin, F. P. J. de Barros, and W. Nowak, “Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology,” Advances in Water Resources, vol. 37, pp. 10--22, 2012, doi: 10.1016/j.advwatres.2011.11.001.
    67. C. Nowakowski, J. Fehr, M. Fischer, and P. Eberhard, “Model Reduction in Elastic Multibody Systems using the Floating Frame of Reference Formulation,” Mathematical Modelling, vol. 7, pp. 40--48, 2012, doi: 10.3182/20120215-3-AT-3016.00007.
    68. W. Nowak, Y. Rubin, and F. P. J. de Barros, “A Hypothesis-Driven Approach to Optimal Site Investigation,” Water Resources Research, vol. 48, p. W06509, 2012, doi: 10.1029/2011WR011016.
    69. A. Nowak, D. Karastoyanova, F. Leymann, A. Rapoport, and D. Schumm, “Flexible Information Design for Business Process Visualizations,” Proceedings of the International Conference on Service-Oriented Computing and Applications, 2012, doi: 10.1109/SOCA.2012.6449436.
    70. J. M. Nordbotten et al., “Uncertainties in practical simulation of CO2 storage,” International Journal of Greenhouse Gas Control, vol. 9, pp. 234--242, 2012, doi: 10.1016/j.ijggc.2012.03.007.
    71. M. A. Müller, B. Schürmann, and F. Allgöwer, “Robust cooperative control of dynamically decoupled systems via distributed MPC,” Proceedings of the IFAC Conference on Nonlinear Model Predictive Control, pp. 412--417, 2012, doi: 10.3182/20120823-5-NL-3013.00007.
    72. M. A. Müller, M. Reble, and F. Allgöwer, “Cooperative control of dynamically decoupled systems via distributed model predictive control,” International Journal of Robust and Nonlinear Control, vol. 22, pp. 1376--1397, 2012, doi: 10.1002/rnc.2826.
    73. M. A. Müller, D. Liberzon, and F. Allgöwer, “Relaxed conditions for norm-controllability of nonlinear systems,” Proceedings of the 51st IEEE Conference on Decision and Control (CDC), pp. 314--319, 2012, doi: 10.1109/CDC.2012.6426430.
    74. M. A. Müller and F. Allgöwer, “Improving performance in model predictive control: switching cost functionals under average dwell-time,” Automatica, Elsevier, vol. 48, pp. 402--409, 2012, doi: 10.1016/j.automatica.2011.11.005.
    75. M. A. Müller and F. Allgöwer, “Robustness of steady-state optimality in economic model predictive control,” Proceedings of the 51st IEEE Conference on Decision and Control (CDC), pp. 1011--1016, 2012, doi: 10.1109/CDC.2012.6426754.
    76. D. Molnar, C. Niedermeier, P. Binkele, A. Mora, and S. Schmauder, “Activation Energies for Nucleation and Growth and Critical Cluster Size Dependence in JMAK Analyses of Kinetic Monte-Carlo Simulations of Precipitation,” Continuum Mechanics and Thermodynamics, vol. 24, pp. 607--617, 2012, doi: 10.1007/s00161-012-0258-5.
    77. D. Molnar et al., “Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics and Phase-Field simulations,” Acta Materialia, vol. 60, p. 6961?6971, 2012, doi: 10.1016/j.actamat.2012.08.051.
    78. D. Molnar, F. Maier, P. Binkele, and S. Schmauder, “Molecular Dynamics simulations on the coherency of Cu nano precipitates in BCC-Fe,” Proceedings of the 20th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), 2012, [Online]. Available: http://eccomas2012.conf.tuwien.ac.at/
    79. D. Molnar, P. Binkele, S. Hocker, and S. Schmauder, “Atomistic multiscale simulations on the anisotropic tensile behaviour of copper-alloyed alpha-iron at different states of thermal ageing,” Philosophical Magazine, vol. 92, pp. 586--607, 2012, doi: 10.1080/14786435.2011.630690.
    80. C. Miehe, D. Zäh, and D. Rosato, “Variational-Based Modeling of Micro-Electro-Elasticity with Electric Field- and Stress-Driven Domain Evolution,” International Journal for Numerical Methods in Engineering, vol. 91, no. 2, Art. no. 2, 2012, doi: 10.1002/nme.4254.
    81. C. Miehe and G. Ethiraj, “A Geometrically Consistent Incremental Variational Formulation for Phase Field Models in Micromagnetics,” Computer Methods in Applied Mechanics and Engineering, 2012, doi: 10.1016/j.cma.2012.03.021.
    82. C. Miehe, “Mixed variational principles for the evolution problem of gradient-extended dissipative solids,” GAMM-Mitteilungen, vol. 35, pp. 8--25, 2012, doi: 10.1002/gamm.201210002.
    83. O. Meister, K. Rahnema, and M. Bader, “cover A Software Concept for Cache-Efficient Simulation on Dynamically Adaptive Structured Triangular Grids,” Advances in Parallel Computing, vol. 22, pp. 251--260, 2012, doi: 10.3233/978-1-61499-041-3-251.
    84. N. M. Mascarenhas and J. Kästner, “Are different stoichiometries feasible for complexes between lymphotoxin-alpha and tumor necrosis factor receptor 1?,” BMC Structural Biology, vol. 12, p. 8, 2012, doi: 10.1186/1472-6807-12-8.
    85. J. Mabuma, B. Markert, and W. Ehlers, “Towards a Method for Parameter Estimation of Articular Cartilage and a Staggered Procedure for Synovial Fluid-Cartilage Interaction,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 129--130, 2012, doi: 10.1002/pamm.201210055.
    86. C. Linder and C. Miehe, “Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics,” Journal of the Mechanics and Physics of Solids, vol. 60, pp. 882--903, 2012, doi: 10.1016/j.jmps.2012.01.012.
    87. C. Linder, “An analysis of the exponential electric displacement saturation model in fracturing piezoelectric ceramics,” Technische Mechanik, 2012, [Online]. Available: http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2012_Heft1/04_Linder.pdf
    88. P. Leube, W. Nowak, and G. Schneider, “Temporal Moments revisited: Why there is no better way for physically-based model reduction in time,” Water Resources Research, vol. 48, no. 11, Art. no. 11, 2012, doi: 10.1029/2012WR011973.
    89. P. Leube, A. Geiges, and W. Nowak, “Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design,” Water Resources Research, vol. 48, no. 2, Art. no. 2, 2012, doi: 10.1029/2010WR010137.
    90. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative noise,” Applied Numerical Mathematics, vol. 62, pp. 441--456, 2012, doi: 10.1016/j.apnum.2011.01.011.
    91. R. Krause, D. Schittler, S. Waldherr, F. Allgöwer, B. Markert, and W. Ehlers, “Remodelling Processes in Bones: A Biphasic Porous Media Model,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 131--132, 2012, doi: 10.1002/pamm.201210056.
    92. B. Koldehofe, B. Ottenwälder, K. Rothermel, and U. Ramachandran, “Moving Range Queries in Distributed Complex Event Processing,” Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems (DEBS), 2012, doi: 10.1145/2335484.2335507.
    93. B. Koldehofe, F. D?rr, M. A. Tariq, and K. Rothermel, “The Power of Software-defined Networking: Line-rate Content-based Routing Using OpenFlow,” Proceedings of the 7th MW4NG Workshop of the 13th International Middleware Conference, 2012, doi: 10.1145/2405178.2405181.
    94. A. Kohler and M. Radetzki, “Optimized Reduce for Mesh-Based NoC Multiprocessors,” Proceedings of the International Parallel & Distributed Processing Symposium, Workshops & PhD forum (IPDPSW ’12), 2012, doi: 10.1109/IPDPSW.2012.111.
    95. A. Kohler, P. Gschwandtner, M. Radetzki, and T. Fahringer, “Low-Latency Collectives for the Intel SCC,” Proceedings of the International Conference on Cluster Computing (CLUSTER ’12), 2012, doi: 10.1109/CLUSTER.2012.58.
    96. A. Kohler, J. M. Castillo-Sanchez, J. Gross, and M. Radetzki, “Minimal MPI as Programming Interface for Multicore System-on-Chips,” Proceedings of the Forum on Specification and Design Languages (FDL ’12), 2012, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6336998
    97. D. Koch and W. Ehlers, “On the flow characteristics of a geothermal plant in a heterogeneous subsurface,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 373--374, 2012, doi: 10.1002/pamm.201210175.
    98. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone Using a Multiscale Approach,” Vadose Zone Journal, vol. 11, no. 3, Art. no. 3, 2012, doi: 10.2136/vzj2011.0193.
    99. J. H. K. Kim, M. L. Trew, A. J. Pullan, and O. Röhrle, “Simulating a dual-array electrode configuration to investigate the influence of skeletal muscle fatigue following functional electrical stimulation,” Computers in Biology and Medicine, vol. 42, pp. 915--924, 2012, doi: 10.1016/j.compbiomed.2012.07.004.
    100. J. Kelkel and C. Surulescu, “A Multiscale Approach to Cell Migration in Tissue Networks,” Mathematical Models and Methods in Applied Sciences (M3AS), vol. 22, no. 3, Art. no. 3, 2012, doi: 10.1142/S0218202511500175.
    101. G. K. Karch, F. Sadlo, D. Weiskopf, C.-D. Munz, and T. Ertl, “Visualization of Advection-Diffusion in Unsteady Fluid Flow,” Computer Graphics Forum (Proceedings of EUROVIS 2012), vol. 31, no. 3, Art. no. 3, 2012, doi: 10.1111/j.1467-8659.2012.03103.x.
    102. G. K. Karch, F. Sadlo, D. Weiskopf, C. D. Hansen, G.-S. Li, and T. Ertl, “Dye-Based Flow Visualization,” IEEE Computing in Science and Engineering, vol. 14, no. 6, Art. no. 6, 2012, doi: 10.1109/MCSE.2012.118.
    103. D. Karastoyanova, D. Dentsas, D. Schumm, M. Sonntag, L. Sun, and K. Vukojevic, “Service-based Integration of Human Users in Workflow-driven Scientific Experiments,” Proceedings of the 8th IEEE International Conference on eScience, pp. 1--8, 2012, doi: 10.1109/eScience.2012.6404435.
    104. F. Jaegle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface tension,” ESAIM Proceedings, vol. 38, pp. 387--408, 2012, doi: 10.1051/proc/201238022.
    105. E. A. Jaegle and E. J. Mittemeijer, “Interplay of kinetics and microstructure in the recrystallisation of pure copper: comparing mesoscopic simulations and experiments,” Metallurgical and Materials Transactions, vol. 43, no. 7, Art. no. 7, 2012, doi: 10.1007/s11661-012-1094-8.
    106. A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and  Transport Phenomena in Porous Medium Systems: 9. Transition Region Models,” Advances in Water Resources, 2012, doi: 10.1016/j.advwatres.2012.01.006.
    107. K. Häberle and W. Ehlers, “Carbon-dioxide storage and phase transitions: towards an understanding of crack development in the cap-rock layer,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 377--378, 2012, doi: 10.1002/pamm.201210177.
    108. M. Hofacker and C. Miehe, “Continuum phase field modeling of dynamic fracture: Variational principles and staggered FE implementation,” International Journal of Fracture, vol. 178, pp. 113--129, 2012, doi: 10.1007/s10704-012-9753-8.
    109. F. E. Hildebrand and C. Miehe, “Comparison of two bulk energy approaches for the phasefield modeling of two-variant martensitic laminate microstructure,” Technische Mechanik, vol. 32, pp. 3--20, 2012, [Online]. Available: http://www.ovgu.de/ifme/zeitschrift_tm/02_HTML_Inhalt/2012.htm
    110. F. E. Hildebrand and C. Miehe, “A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains,” Philosophical Magazine, vol. 92, pp. 4250--4290, 2012, doi: 10.1080/14786435.2012.705039.
    111. T. Heidlauf and O. Röhrle, “A geometrical model of skeletal muscle,” PAMM, vol. 1, pp. 119--120, 2012, doi: 10.1002/pamm.201210050.
    112. J. Hasenauer, D. Schittler, and F. Allgöwer, “Analysis and simulation of division- and label-structured population models,” Bulletin of Mathematical Biology, vol. 74, no. 11, Art. no. 11, 2012, doi: 10.1007/s11538-012-9774-5.
    113. J. Hasenauer, M. Löhning, M. Khammash, and F. Allgöwer, “Dynamical optimization using reduced order models: A method to guarantee performance,” Journal of Process Control, vol. 22, no. 8, Art. no. 8, 2012, doi: 10.1016/j.jprocont.2012.01.017.
    114. J. Hasenauer, J. Heinrich, M. Doszczak, P. Scheurich, D. Weiskopf, and F. Allgöwer, “A visual analytics approach for models of heterogeneous cell populations,” EURASIP Journal on Bioinformatics and Systems Biology, vol. 2012, no. 4, Art. no. 4, 2012, doi: 10.1186/1687-4153-2012-4.
    115. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” Journal of Mathematical Analysis and Applications, vol. 393, pp. 397--412, 2012, doi: 10.1016/j.jmaa.2012.04.019.
    116. H. Harbrecht, M. Peters, and R. Schneider, “On the low-rank approximation by the pivoted Cholesky decomposition,” Applied Numerical Mathematics, vol. 62, pp. 428--440, 2012, doi: 10.1016/j.apnum.2011.10.001.
    117. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for the Simulation of American Options,” Numerical Mathematics and Advanced Applications 2011, pp. 821--829, 2012, doi: 10.1007/978-3-642-33134-3_85.
    118. M. Günther, O. Röhrle, D. Häufle, and S. Schmitt, “Spreading out muscle mass within a hill-type model: a computer simulation study,” Computational and mathematical methods in medicine, 2012, doi: 10.1155/2012/848630.
    119. C. C. Gruber and J. Pleiss, “Molecular Modeling of Lipase Binding to a Substrate-Water Interface,” Lipases and Phospholipases, vol. 861, pp. 313--327, 2012, doi: 10.1007/978-1-61779-600-5_19.
    120. S. Frey, F. Sadlo, and T. Ertl, “Visualization of Temporal Similarity in Field Data,” Transactions on Visualization and Computer Graphics, vol. 18, pp. 2023--2032, 2012, doi: 10.1109/TVCG.2012.284.
    121. S. Frey, G. Reina, and T. Ertl, “SIMT Microscheduling: Reducing Thread Stalling in Divergent Iterative Algorithms,” Parallel, Distributed and Network-Based Processing (PDP), 2012 20th Euromicro International Conference on, pp. 399--406, 2012, doi: 10.1109/PDP.2012.62.
    122. J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, “Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 93, pp. 501--519, 2012, doi: 10.1002/zamm.201200014.
    123. C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin, and D. Schumm, “Capturing Cloud Computing Knowledge and Experience in Patterns,” Proceedings of the 2012 IEEE International Conference on Cloud Computing (CLOUD 2012), 2012, doi: 10.1109/CLOUD.2012.124.
    124. C. Ergenzinger, R. Seifried, and P. Eberhard, “A Discrete Element Approach to Model Breakable Railway Ballast,” Journal of Computational and Nonlinear Dynamics, vol. 7, no. 4, Art. no. 4, 2012, doi: 10.1115/1.4006731.
    125. C. Ergenzinger, R. Seifried, and P. Eberhard, “A discrete element model predicting the strength of ballast stones,” Computers & Structures, vol. 108–109, pp. 3--13, 2012, doi: 10.1016/j.compstruc.2012.02.006.
    126. K. Erbertseder, J. Reichold, B. Flemisch, P. Jenny, and R. Helmig, “A Coupled Discrete / Continuum Model for Describing Cancer-Therapeutic Transport in the Lung,” PLoS ONE, 2012, doi: 10.1371/journal.pone.0031966.
    127. R. Enzenhöfer, W. Nowak, and R. Helmig, “Probabilistic Exposure Risk Assessment with Advective-Dispersive Well Vulnerability Criteria,” Advances in Water Resources, vol. 36, pp. 121--132, 2012, doi: 10.1016/j.advwatres.2011.04.018.
    128. P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” Series in Contemporary Applied Mathematics, vol. 0, 2012, doi: 10.1142/9789814417099_0038.
    129. P. Eberhard and Q. Tang, “Sensor Data Fusion for the Localization and Position Control of One Kind of Omnidirectional Mobile Robots,” Multibody System Dynamics, Robotics and Control, pp. 45--73, 2012, doi: 10.1007/978-3-7091-1289-2_4.
    130. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation,” SIAM-SISC, vol. 34, pp. A937–A969, 2012, doi: 10.1137/10081157x.
    131. M. Drohmann, B. Haasdonk, and S. Kaulmann, “A Software Framework for Reduced Basis Methods Using Dune-RB and RBmatlab,” Advances in DUNE, pp. 77--88, 2012, doi: 10.1007/978-3-642-28589-9_6.
    132. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic analysis for Korteweg models,” Interfaces and Free Boundaries, vol. 14, pp. 105--143, 2012, doi: 10.4171/IFB/275.
    133. M. Dihlmann, S. Kaulmann, and B. Haasdonk, “Online Reduced Basis Construction Procedure for Model Reduction of Parametrized Evolution Systems,” Proceedings of Mathmod 2012, 2012, doi: 10.3182/20120215-3-at-3016.00020.
    134. M. Deininger, J. Jung, R. Skoda, P. Helluy, and C.-D. Munz, “Evaluation of interface models for 3D-1D coupling of compressible Euler methods for the application on cavitating  ows,” ESAIM: Proceedings, vol. 38, pp. 298--318, 2012, doi: 10.1051/proc/201238016.
    135. A. Dadalau and A. Verl, “Modeling linear guide systems with CoFEM - Experimental validation,” Production Engineering Research and Development, 2012, doi: 10.1007/s11740-012-0377-7.
    136. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” Journal of  Differential Equations, vol. 253, 2012, doi: 10.1016/j.jde.2012.05.006.
    137. O. A. Cirpka, M. Rolle, G. Chiogna, F. P. J. de Barros, and W. Nowak, “Stochastic Evaluation of Mixing-Controlled Steady-State Plume Lengths in Two-Dimensional Heterogeneous Domains,” Journal of Contaminant Hydrology, vol. 138–139, pp. 22--39, 2012, doi: 10.1016/j.jconhyd.2012.05.007.
    138. C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition Problems,” SIAM Journal on Scientific Computing, vol. 34, pp. A1753–A1776, 2012, doi: 10.1137/110848815.
    139. M. Bürger, G. Notarstefano, F. Allgöwer, and F. Bullo, “A Distributed Simplex Algorithm for Degenerate Linear Programs and Multi-Agent Assignments,” Automatica, vol. 48, pp. 2298--2304, 2012, doi: 10.1016/j.automatica.2012.06.040.
    140. C. Böhm, M. Lazar, and F. Allgöwer, “Stability of periodically time-varying systems: Periodic Lyapunov functions,” Automatica, vol. 48, no. 10, Art. no. 10, 2012, doi: 10.1016/j.automatica.2012.06.070.
    141. C. Breindl, M. Chaves, J. Gouze, and F. Allgöwer, “Structure estimation for unate Boolean models of gene regulation networks,” Proceedings of the 16th IFAC Symposium on System Identification, pp. 1725--1730, 2012, doi: 10.3182/20120711-3-BE-2027.00278.
    142. S. Brdar, M. Baldauf, A. Dedner, and R. Klöfkorn, “Comparison of dynamical cores for NWP models - Comparison of COSMO and DUNE,” Theoretical and Computational Fluid Dynamics, 2012, doi: 10.1007/s00162-012-0264-z.
    143. C. Braun, S. Holst, J. M. Castillo, J. Gross, and H.-J. Wunderlich, “Acceleration of Monte-Carlo Molecular Simulations on Hybrid Computing Architectures,” Proceedings of the IEEE International Conference on Computer Design (ICCD12), 2012, doi: 10.1109/ICCD.2012.6378642.
    144. C. Braun, M. Daub, A. Schoell, G. Schneider, and H.-J. Wunderlich, “Parallel Simulation of Apoptotic Receptor-Clustering on GPGPU Many-Core Architectures,” Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM’12), 2012, doi: 10.1109/BIBM.2012.6392661.
    145. T. Brandes, A. Arnold, T. Soddemann, and D. Reith, “CPU vs. GPU-Performance comparison for the Gram-Schmidt algorithm,” The European Physical Journal Special Topics, vol. 210, no. 1, Art. no. 1, 2012, doi: 10.1140/epjst/e2012-01638-7.
    146. T. Binz, F. Leymann, A. Nowak, and D. Schumm, “Improving the Manageability of Enterprise Topologies Through Segmentation, Graph Transformation, and Analysis Strategies,” Proceedings of Enterprise Distributed Object Computing Conference (EDOC 2012), 2012, doi: 10.1109/EDOC.2012.17.
    147. T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm, “Formalizing the Cloud through Enterprise Topology Graphs,” Proceedings of  International Conference on Cloud Computing, 2012, doi: 10.1109/CLOUD.2012.143.
    148. H. M. N. K. Balini, J. Witte, and C. W. Scherer, “Synthesis and implementation of gain-scheduling and LPV controllers for an AMB system,” Automatica, 2012, doi: 10.1016/j.automatica.2011.08.061.
    149. P. Baier, F. Dürr, and K. Rothermel, “PSense: Reducing Energy Consumption in Public Sensing Systems,” Proceedings of the 26th IEEE International Conference on Advanced Information Networking and Applications, 2012, doi: 10.1109/AINA.2012.33.
    150. P. Baier, F. Dürr, and K. Rothermel, “TOMP: Opportunistic Traffic Offloading Using Movement Predictions,” Proceedings of the 37th IEEE Conference on Local Computer Networks (LCN), 2012, doi: 10.1109/LCN.2012.6423668.
    151. S. Bachthaler, F. Sadlo, R. Weeber, S. Kantorovich, C. Holm, and D. Weiskopf, “Magnetic Flux Topology of 2D Point Dipoles,” Computer Graphics Forum, vol. 31, p. 955, 2012, doi: 10.1111/j.1467-8659.2012.03088.x.
    152. K. Baber, K. Mosthaf, B. Flemisch, R. Helmig, S. Müthing, and B. Wohlmuth, “Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow,” IMA Journal of Applied Mathematics, vol. 77, no. 6, Art. no. 6, 2012, doi: 10.1093/imamat/hxs048.
    153. F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger, “The Localized Reduced Basis Multiscale Method,” Algoritmy 2012 - Proceedings of contributed papers and posters, vol. 1, pp. 393--403, 2012, [Online]. Available: http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/40Albrecht.pdf
  12. 2011

    1. J. Veenman and C. W. Scherer, “Robust Gain-Scheduled Estimation: A Convex Solution,” in 50th IEEE Conf. Decision and Control, in 50th IEEE Conf. Decision and Control. Orlando, FL, USA, 2011, pp. 1347–1352. [Online]. Available: https://doi.org/10.1109/CDC.2011.6160420
    2. J. Veenman and C. W. Scherer, “IQC-Synthesis with General Dynamic Multipliers,” in 18th IFAC World Congress, in 18th IFAC World Congress, vol. 18. Milano, Italy, 2011, pp. 4600–4605. [Online]. Available: https://doi.org/10.3182/20110828-6-IT-1002.00776
    3. C. W. Scherer and I. E. Köse, “On Convergence of Transfer Matrices and their Realizations,” in 18th IFAC World Congress, in 18th IFAC World Congress. Milano, Italy, 2011, pp. 3348–3353. [Online]. Available: https://doi.org/10.3182/20110828-6-IT-1002.03449
    4. C. W. J. Hol et al., “Optimal Feedforward Filter Design for Flying Gauge Changes of a Continuous Cold Mill,” in 18th IFAC World Congress, in 18th IFAC World Congress. Milano, Italy, 2011, pp. 8545–8551. [Online]. Available: https://doi.org/10.3182/20110828-6-IT-1002.00393
    5. J. Veenman and C. W. Scherer, On Robust LPV Controller Synthesis: A Dynamic Integral Quadratic Constraint based Approach, vol. 0. 49th IEEE Conf. Decision and Control, 2011. doi: 10.1109/CDC.2010.5717992.
    6. M. Sonntag and D. Karastoyanova, Compensation of Adapted Service Orchestration Logic in BPEL`n`Aspects, vol. 0. Springer-Verlag, 2011. doi: 10.1007/978-3-642-23059-2_30.
    7. M. Sonntag, S. Hotta, D. Karastoyanova, D. Molnar, and S. Schmauder, Workflow-Based Distributed Environment For Legacy Simulation Applications, vol. 0. SciTePress Digital Library, 2011. doi: 10.5220/0003444400910094.
    8. D. Schumm, G. Latuske, F. Leymann, R. Mietzner, and T. Scheibler, State Propagation for Business Process Monitoring on Different Levels of Abstraction, vol. 0. AIS Electronic Library, 2011. [Online]. Available: http://aisel.aisnet.org/ecis2011/18/
    9. C. W. Scherer and I. E. Köse, On Convergence of Transfer Matrices and Their Realizations, vol. 18. IFAC, 2011. doi: 10.3182/20110828-6-IT-1002.03449.
    10. U. Pompe, Perception and Cognition - The Analysis of Object Recognition, vol. 0. Mentis Verlag, 2011. [Online]. Available: http://mentis.de/index.php?id=00000034&article_id=00000028&category=&book_id=00000668&key=pompe
    11. D. Mueller-Hoeppe, S. Loehnert, and S. Reese, Recent Developments and Innovative Applications in Computational Mechanics. Springer, 2011. doi: 10.1007/978-3-642-17484-1.
    12. C. W. J. Hol, S. Sujoto, and M. de Boer, Optimal Feedforward Filter Design for Flying Gauge Changes of a Continuous Cold Mill, vol. 18. 18th IFAC World Congress, 2011. doi: 10.3182/20110828-6-IT-1002.00393.
    13. S. Hoher, P. Schindler, S. Göttlich, V. Schleper, and S. Röck, System Dynamic Models and Real-time Simulation  of Complex Material Flow Systems, vol. 0. Springer, 2011. doi: 10.1007/978-3-642-23860-4_52.
    14. S. Zinatbakhsh, B. Markert, and W. Ehlers, “On the Stability Analysis of Decoupled Solution Schemes,” Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 497--498, 2011, doi: 10.1002/pamm.201110240.
    15. S. Yu, M. Reble, H. Chen, and F. Allgöwer, “Inherent Robustness Properties of Quasi-infinite Horizon MPC,” Proc.  18th IFAC World Congress, pp. 179--184, 2011, doi: 10.3182/20110828-6-IT-1002.01969.
    16. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions of death receptor signalling,” Mathematical Biosciences and Engineering, vol. 0, 2011, doi: 10.3934/mbe.2012.9.663.
    17. P. Wieland, R. Sepulchre, and F. Allgöwer, “An internal model principle is necessary and sufficient for linear output synchronization,” Automatica, vol. 47, no. 5, Art. no. 5, 2011, doi: 10.1016/j.automatica.2011.01.081.
    18. H.-J. Werner and M. Schütz, “An efficienient local coupled cluster method for accurate thermochemistry of large systems,” J. Chem. Phys., vol. 135, p. 144116, 2011, doi: 10.1063/1.3641642.
    19. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, “Molpro: a general-purpose quantum chemistry program package,” Comput. Mol. Sci., vol. 0, 2011, doi: 10.1002/wcms.82.
    20. H.-J. Werner, G. Knizia, and F. R. Manby, “Explicitly correlated coupled cluster methods with pair-specific geminals,” Mol. Phys., vol. 109, p. 407, 2011, doi: 10.1080/00268976.2010.526641.
    21. N. Wengert and P. Eberhard, “Optimization of the Dynamical Behavior of High-Performance Lens Systems to Reduce Dynamic Aberrations,” Archive of Mechanical Engineering, vol. 58, pp. 407--423, 2011, doi: 10.2478/v10180-011-0025-3.
    22. K. Wendler, F. Dommert, Y. Y. Zhao, R. Berger, C. Holm, and L. Delle Site, “Ionic liquids studied across different scales: A computational perspective,” Faraday Discussions, vol. 0, 2011, doi: 10.1039/C1FD00051A.
    23. H. Weinschrott, J. Weisser, F. Dürr, and K. Rothermel, “Participatory sensing algorithms for mobile object discovery in urban areas,” IEEE International Conference on Pervasive Computing and Communications (PerCom), vol. 0, 2011, doi: 10.1109/PERCOM.2011.5767577.
    24. W. Weimer-Jehle, S. Wassermann, and H. Kosow, “Konsistente Rahmendaten für Modellierungen und Szenariobildung im UBA,” UBA Texte, vol. 20, 2011, [Online]. Available: http://www.uba.de/uba-info-medien/4096.html
    25. W. Weimer-Jehle and H. Kosow, “Gesellschaftliche Kontextszenarien als Ausgangspunkt für modellgestützte Energieszenarien,” C. Diekhoff  et al. (Hrsg.): Energieszenarien. Konstruktion, Bewertung und Wirkung, vol. 0, pp. 53--65, 2011, [Online]. Available: https://books.google.de/books?hl=de&lr=&id=RO51I5tPHHcC&oi=fnd&pg=PA53&dq=Gesellschaftliche+Kontextszenarien+als+Ausgangspunkt+f%C3%BCr+modellgest%C3%BCtzte+Energieszenarien&ots=PRppo0EehE&sig=a8Lj31zio8vl8hfd-1JVzpnlMAA
    26. M. Weidmann, F. Koetter, T. Renner, D. Schumm, F. Leymann, and D. Schleicher, “Synchronization of Adaptive Process Models Using Levels of Abstraction,” Proceedings of the 4th International Workshop on Evolutionary Business Processes (EVL-BP 2011), 2011, doi: 10.1109/EDOCW.2011.24.
    27. M. Weidmann, M. Alvi, F. Koetter, F. Leymann, T. Renner, and D. Schumm, “Business Process Change Management based on Process Model Synchronization of Multiple Abstraction Levels,” Proceedings of SOCA, 2011, doi: 10.1109/SOCA.2011.6166253.
    28. P. Weber, J. Hasenauer, F. Allgöwer, and N. Radde, “Parameter estimation and identifiability of biological networks using  relative data,” Proceedings IFAC 2011, vol. 0, 2011, doi: 10.3182/20110828-6-IT-1002.01007.
    29. S. Wassermann, D. Scheer, and M. Schulz, “Linking public acceptance with expert knowledge on CO2 storage: Outcomes of a delphi approach,” Energy Procedia, vol. 4, pp. 6353--6359, 2011, doi: 10.1016/j.egypro.2011.02.652.
    30. L. Walter, S. Oladyshkin, H. Class, M. Darcis, and R. Helmig, “A study on pressure evolution in a channel system during CO2 injection,” Energy Procedia, vol. 4, pp. 3722--3729, 2011, doi: 10.1016/j.egypro.2011.02.305.
    31. S. Waldherr, D. Dylus, and F. Allgöwer, “Bifurcation search via feedback loop breaking in biochemical signaling pathways with time delay,” Asian Journal of Control, vol. 13, pp. 691--700, 2011, doi: 10.1002/asjc.383.
    32. S. Waldherr and F. Allgöwer, “Robust stability and instability of biochemical networks with parametric uncertainty,” Automatica, vol. 47, no. 6, Art. no. 6, 2011, doi: 10.1016/j.automatica.2011.01.012.
    33. A. Wagner and W. Ehlers, “Computational modelling of drug infusion into the anisotropic white-matter tracts of the human brain,” Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 133--134, 2011, doi: 10.1002/pamm.201110058.
    34. C. Vehlow, J. Heinrich, F. Battke, D. Weiskopf, and K. Nieselt, “iHAT: the interactive Hierarchical Aggregation Table,” Proceedings of the IEEE Symposium on Biological Data Visualization, vol. 0, pp. 63--69, 2011, doi: 10.1109/BioVis.2011.6094049.
    35. M. A. Tariq, B. Koldehofe, G. G. Koch, I. Khan, and K. Rothermel, “Meeting subscriber-defined QoS constraints in publish/subscribe systems,” Concurrency and Computation: Practice and Experience, vol. 0, 2011, doi: 10.1002/cpe.1751.
    36. Q. Tang and P. Eberhard, “A PSO-based Algorithm Designed for a Swarm of Mobile Robots,” Structural and Multidisciplinary Optimization, vol. 0, 2011, doi: 10.1007/s00158-010-0618-3.
    37. Q. Tang and P. Eberhard, “Cooperative Motion of Swarm Mobile Robots Based on Particle Swarm Optimization and Multibody System Dynamics,” Mechanics Based Design of Structures and Machines, vol. 39, no. 2, Art. no. 2, 2011, doi: 10.1080/15397734.2011.550855.
    38. F. Tabatabaei, O. Lenz, and C. Holm, “Simulational study of anomalous tracer diffusion in hydrogels,” Colloid and Polymer Science, vol. 289 (5–6), pp. 523--534, 2011, doi: 10.1007/s00396-011-2393-0.
    39. A. Szymkiewicz, R. Helmig, and I. Neuweiler, “Upscaling unsaturated flow in binary porous media with air entry pressure effects,” Water Resources Research, vol. 0, 2011, doi: 10.1029/2011WR010893.
    40. A. Szymkiewicz, R. Helmig, and H. Kuhnke, “Two phase flow in heterogeneous porous media with non-wetting phase trapping,” Transport in Porous Media, vol. 86, no. 1, Art. no. 1, 2011, doi: 10.1007/s11242-010-9604-x.
    41. A. Szymkiewicz and R. Helmig, “Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils,” Advances in Water Resources, vol. 34, no. 8, Art. no. 8, 2011, doi: 10.1016/j.advwatres.2011.05.011.
    42. C. Surulescu and N. Surulescu, “Modeling and simulation of bacterial motion via a nonparametric method,” Mathematical Biosciences and Engineering, vol. 8, no. 2, Art. no. 2, 2011, doi: 10.3934/mbe.2011.8.263.
    43. T. Stindl et al., “Comparison of Coupling Techniques in a High-Order Discontinuous Galerkin based Particle in Cell Solver,” Journal of Physics D: Applied Physics, vol. 44, no. 19, Art. no. 19, 2011, doi: 10.1088/0022-3727/44/19/194004.
    44. R. Steuer, S. Waldherr, V. Sourjik, and M. Kollmann, “Robust Signal Processing in Living Cells,” PLoS Computational Biology, vol. 7, p. e1002218, 2011, doi: 10.1371/journal.pcbi.1002218.
    45. I. Steinwart, D. Hush, and C. Scovel, “Training SVMs without offset,” Journal of Machine Learning Research, vol. 12, pp. 141--202, 2011, [Online]. Available: http://www.jmlr.org/papers/volume12/steinwart11a/steinwart11a.pdf
    46. M. Sprenger, N. Karajan, S. Schmitt, and O. Röhrle, “On the Coupling of 3D-1D Muscle Models for Lumbar Spine Mechanics,” PAMM, vol. 11, pp. 125--126, 2011, doi: 10.1002/pamm.201110054.
    47. M. Sonntag and D. Karastoyanova, “Concurrent Workflow Evolution,” Electronic Communications of the EASST, vol. 37, p. 12, 2011, [Online]. Available: http://journal.ub.tu-berlin.de/eceasst/article/view/485
    48. M. Sonntag, S. Hotta, D. Karastoyanova, D. Molnar, and S. Schmauder, “Using Services and Service Compositions to Enable the Distributed Execution of Legacy Simulation Applications,” Lecture Notes in Computer Science, vol. 6994, pp. 242--253, 2011, doi: 10.1007/978-3-642-24755-2_23.
    49. M. Sonntag, K. Görlach, D. Karastoyanova, F. Leymann, P. Malets, and D. Schumm, “Views on Scientific Workflows,” Lecture Notes in Business Information Processing, vol. 90, pp. 321--335, 2011, doi: 10.1007/978-3-642-24511-4_25.
    50. A. Shirazi, M. Rohs, R. Schleicher, S. Kratz, and A. Schmidt, “Real-time nonverbal opinion sharing through mobile phones during sports events,” Proceedings of the 2011 annual conference on Human factors in computing systems, vol. 0, pp. 307--310, 2011, doi: 10.1145/1978942.1978985.
    51. T. Shiozaki and H.-J. Werner, “Explicitly correlated multireference configuration interaction with multiple reference functions: Avoided crossings and conical intersections,” J. Chem. Phys., vol. 134, p. 184104, 2011, doi: 10.1063/1.3587632.
    52. T. Shiozaki, G. Knizia, and H.-J. Werner, “Explicitly correlated multireference configuration interaction: MRCI-F12,” Journal of Chemical Physics, vol. 134, no. 3, Art. no. 3, 2011, doi: 10.1063/1.3528720.
    53. T. Shiozaki, W. Gyorffy, P. Celani, and H.-J. Werner, “Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients,” J. Chem. Phys., vol. 135, p. 081106, 2011, doi: 10.1063/1.3633329.
    54. K. R. Shamasundar, G. Knizia, and H.-J. Werner, “A new internally contracted multi-reference configuration interaction (MRCI) method,” Journal of Chemical Physics, vol. 135, no. 5, Art. no. 5, 2011, doi: 10.1063/1.3609809.
    55. P. Sekler, M. Voß, and A. Verl, “Model-based calculation of the system behavior of machine structures on the control device for vibration avoidance,” The International Journal of Advanced Manufacturing Technology, vol. 0, 2011, doi: 10.1007/s00170-011-3450-z.
    56. R. Seifried, T. Gorius, and P. Eberhard, “Control Design for the Interactive 3D-Pendulum Presented at the World Exhibition EXPO 2010,” Journal of System Design and Dynamics, vol. 5, pp. 937--952, 2011, doi: 10.1299/jsdd.5.937.
    57. R. Seifried, “Integrated Mechanical and Control Design of Underactuated Multibody Systems,” Nonlinear Dynamics, 2011, doi: 10.1007/s11071-011-0087-2.
    58. R. Seifried, “Two Approaches for Feedforward Control and Optimal Design of Underactuated Multibody Systems,” Multibody System Dynamics, 2011, doi: 10.1007/s11044-011-9261-z.
    59. J. Seifert, B. Pfleging, E. d. C Valderrama Bahamóndez, M. Hermes, E. Rukzio, and A. Schmidt, “MobiDev: A Tool for Creating Apps on Mobile Phones,” Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 109--112, 2011, doi: 10.1145/2037373.2037392.
    60. M. A. Schweitzer, “Multilevel particle-partition of unity method,” Numerische Mathematik, vol. 118, no. 2, Art. no. 2, 2011, doi: 10.1007/s00211-010-0346-z.
    61. M. A. Schweitzer, “Stable enrichment and local preconditioning in the particle-partition of unity method,” Numerische Mathematik, vol. 118, no. 1, Art. no. 1, 2011, doi: 10.1007/s00211-010-0323-6.
    62. M. Schweitzer, “Generalizations of the Finite Element Method,” Central European Journal of Mathematics, vol. 0, 2011, [Online]. Available: http://link.springer.com/article/10.2478/s11533-011-0112-1
    63. D. Schumm, D. Karastoyanova, O. Kopp, F. Leymann, M. Sonntag, and S. Strauch, “Process Fragment Libraries for Easier and Faster Development of Process-based Applications,” SI-Journal, vol. 2, no. 1, Art. no. 1, 2011, [Online]. Available: http://www.si-journal.org/index.php/JSI/article/view/83
    64. D. Schumm, J. Cai, C. Fehling, D. Karastoyanova, F. Leymann, and M. Weidmann, “Composite Process View Transformation,” Proceedings of the 12th International Conference on Electronic Commerce and Web Technologies, 2011, doi: 10.1007/978-3-642-23014-1_5.
    65. G. Schneider and C. E. Wayne, “Justification of the NLS approximation for a quasilinear water wave model,” Journal of Differential Equations, vol. 251, no. 2, Art. no. 2, 2011, doi: 10.1016/j.jde.2011.04.011.
    66. B. Schneider, G. A. D Addetta, and E. Ramm, “On Material Modeling by Polygonal Discrete Elements,” Particle-Based Methods, vol. 25, pp. 159--185, 2011, doi: 10.1007/978-94-007-0735-1_6.
    67. S. Schneegass, B. Pfleging, D. Kern, and A. Schmidt, “Support for Modeling Interaction with Automotive User Interfaces,” Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2011, doi: 10.1145/2381416.2381428.
    68. G. S. Schmidt, C. Ebenbauer, and F. Allgöwer, “Observability properties of the periodic Toda lattice,” control and Automation, pp. 704--709, 2011, doi: 10.1109/ICCA.2011.6138011.
    69. A. Schmidt, M. Langheinrich, and K. Kersting, “Perception beyond the Here and Now,” Computer, vol. 44, no. 2, Art. no. 2, 2011, doi: 10.1109/MC.2011.54.
    70. S. Schmauder, U. Weber, A. Reuschel, and M. Willert, “Simulation of the Mechanical Behaviour of Metal Matrix Composites,” Materials Science Forum, vol. 678, pp. 49--60, 2011, doi: 10.4028/www.scientific.net/MSF.678.49.
    71. S. Schmauder and C. Kohler, “Atomistic simulations of solid solution strengthening of α-Iron,” Computational Materials Science, vol. 50, no. 4, Art. no. 4, 2011, doi: 10.1016/j.commatsci.2010.04.041.
    72. D. Schleicher et al., “Compliance Domains: A Means to Model Data-Restrictions in Cloud Environments,” Enterprise Distributed Object Computing Conference (EDOC 2011), 2011, doi: 10.1109/EDOC.2011.22.
    73. D. Schittler, J. Hasenauer, and F. Allgöwer, “A generalized population model for cell proliferation: Integrating division numbers and label dynamics,” Proc. of the 8th Workshop on Comp. Syst. Biol., vol. 0, pp. 165--168, 2011, [Online]. Available: http://www.wcsb2011.ethz.ch/proc_wcsb2011.pdf#page=176
    74. O. Schiller, B. Schiller, A. Brodt, and B. Mitschang, “Native support of multi-tenancy in RDBMS for software as a service,” Proceedings of the 14th International Conference on Extending Database Technology, vol. 0, pp. 117--128, 2011, doi: 10.1145/1951365.1951382.
    75. M. Schenke and W. Ehlers, “On the Analysis of Soils using an Abaqus-PANDAS Interface,” Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 431--432, 2011, doi: 10.1002/pamm.201110207.
    76. D. Scheer, “Computer simulation at the science-policy interface: Assessing the policy relevance of Carbon Capture & Storage simulations,” Energy Procedia, vol. 4, pp. 5770--5777, 2011, doi: 10.1016/j.egypro.2011.02.573.
    77. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Rigorous modeling of meander-type metamaterials for sublambda imaging,” Proc. SPIE, vol. 8083, 2011, doi: 10.1117/12.889451.
    78. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Optics Express, vol. 19, no. 4, Art. no. 4, 2011, doi: 10.1364/OE.19.003627.
    79. C. Schacht, T. Vlugt, and J. Gross, “Using an analytic equation of state quantitative solubilities of  CO2 by molecular simulation,” Journal of Physical Chemistry, vol. 2, no. 5, Art. no. 5, 2011, doi: 10.1021/jz101688h.
    80. P. A. Sanchez, J. J. Cerda, V. Ballenegger, T. Sintes, O. Piro, and C. Holm, “Semiflexible magnetic filaments near attractive flat surfaces: a Langevin dynamics study,” Soft Matter, vol. 7, no. 5, Art. no. 5, 2011, doi: 10.1039/c0sm00772b.
    81. F. Sadlo et al., “Visualization of Cell-Based Higher-Order Fields,” Computing in Science and Engineering, vol. 13, no. 3, Art. no. 3, 2011, doi: 10.1109/MCSE.2011.53.
    82. O. Röhrle, E. Ramasamy, and S. Schmitt, “Forward dynamics applied to a three-dimensional continuum-mechanical model of the upper limb,” Proc. Appl. Math. Mech., vol. 11, pp. 115--116, 2011, doi: 10.1002/pamm.201110049.
    83. O. Röhrle, H. Köstler, and M. Loch, “Segmentation of skeletal muscle fibres for applications in computational skeletal muscle mechanics,” Computational Biomechanics for Medicine, vol. 0, pp. 107--117, 2011, doi: 10.1007/978-1-4419-9619-0_12.
    84. T. K. Rupp and S. Schmitt, “Inverse dynamics of the lower extremities: novel approach considering talocrural and subtalar joint axis,” Journal of Mechanics in Medicine and Biology, vol. 11, pp. 515--527, 2011, doi: 10.1142/S0219519411004009.
    85. J. B. Rommel and J. Kästner, “Adaptive Integration Grids in Instanton Theory Improve the Numerical Accuracy at Low Temperature,” J. Chem. Phys, vol. 134, no. 18, Art. no. 18, 2011, doi: 10.1063/1.3587240.
    86. J. B. Rommel and J. Kästner, “The Fragmentation?Recombination Mechanism of the Enzyme Glutamate Mutase Studied by QM/MM Simulations,” Journal of the American Chemical Society, vol. 133, no. 26, Art. no. 26, 2011, doi: 10.1021/ja202312d.
    87. J. B. Rommel, T. P. M. Goumans, and J. Kästner, “Locating instantons in many degrees of freedom,” J. Chem. Theory Comput., vol. 7, no. 3, Art. no. 3, 2011, doi: 10.1021/ct100658y.
    88. V.-M. Rodriguez-Betancourtt, V.-M. Quezada-Navarro, M. Neff, and G. Rauhut, “Anharmonic frequencies of F,C,N,X isomers (X=O,S) obtained from explicitly correlated coupled-cluster calculations,” Chemical Physics, vol. 387 (1–3), pp. 1--4, 2011, doi: 10.1016/j.chemphys.2011.06.015.
    89. M. Richter, “Virtual reality - virtual actuality. Remarks on the use of technical terms in philosophy of virtuality,” Trust and Virtual Worlds: Contemporary Perspectives, pp. 31--44, 2011, [Online]. Available: https://www.peterlang.com/search?q1=Trust+and+Virtual+Worlds.+contemporary+Perspectives&searchBtn=
    90. O. Renn, A. Klinke, and M. van Asselt, “Coping with complexity, uncertainty and ambiguity in risk governance: A synthesis,” AMBIO: A JOURNAL OF THE HUMAN ENVIRONMENT, vol. 40, no. 2, Art. no. 2, 2011, doi: 10.1007/s13280-010-0134-0.
    91. O. Renn, A. Arnold, V. Schetula, and P.-J. Schweizer, “Das Ringen der Sozialwissenschaften um ihre Rolle in der Klimawandeldebatte,” Soziologische Revue, vol. 34, no. 4, Art. no. 4, 2011, doi: 10.1524/srsr.2011.0027.
    92. O. Renn, “Neue Technologien, neue Technikfolgen: Ambivalenz, Komplexität und Unsicherheit als Herausforderungen der Technikfolgenabschätzung,” Neue Technologien in der Gesellschaft Akteure, Erwartungen, Kontroversen und Konjunkturen, vol. 0, pp. 63--76, 2011, [Online]. Available: http://www.transcript-verlag.de/ts1573/ts1573.php
    93. H.-U. Rempler, C. Wieners, and W. Ehlers, “Efficiency Comparison of an Augmented Finite Element Formulation with Standard Return Mapping Algorithms for Elastic-inelastic Materials,” Computational Mechanics, vol. 0, 2011, doi: 10.1007/s00466-011-0602-9.
    94. M. Reiter, U. Breitenbuecher, S. Dustdar, D. Karastoyanova, F. Leymann, and H.-L. Truong, “A Novel Framework for Monitoring and Analyzing Quality of Data in Simulation Workflows,” Proceedings of the 7th IEEE International Conference on e-Science, pp. 105--112, 2011, doi: 10.1109/eScience.2011.23.
    95. T. Reiner, G. Mückl, and C. Dachsbacher, “Interactive Modeling of Implicit Surfaces using a Direct Visualization Approach with Signed Distance Functions,” Computers & Graphics, vol. 35, no. 3, Art. no. 3, 2011, doi: 10.1016/j.cag.2011.03.010.
    96. P. Reimann, H. Schwarz, and B. Mitschang, “Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines,” Journal of Information and Data Management, vol. 2, no. 3, Art. no. 3, 2011, [Online]. Available: http://seer.lcc.ufmg.br/index.php/jidm/article/viewFile/150/91
    97. P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, and F. Leymann, “SIMPL - A Framework for Accessing External Data in Simulation Workflows,” 14. GI-Fachtagung Datenbanksysteme für Business, Technologie und Web (BTW), vol. 0, 2011, [Online]. Available: http://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2011/gi-edition-lecture-notes-in-informatics-lni-p-180.html
    98. M. Reble, D. E. Quevedo, and F. Allgöwer, “Stochastic Stability and Performance Estimates of Packetized Unconstrained Model Predictive Control for Networked Control Systems,” 9th IEEE International Conference on Control & Automation, pp. 171--176, 2011, doi: 10.1109/ICCA.2011.6137929.
    99. M. Reble, F. D. Brunner, and F. Allgöwer, “Model Predictive Control for Nonlinear Time-Delay Systems without Terminal Constraint,” Proc.  18th IFAC World Congress, pp. 9254--9259, 2011, doi: 10.3182/20110828-6-IT-1002.00607.
    100. M. Reble and F. Allgöwer, “Design of Terminal Cost Functionals and Terminal Regions for Model Predictive Control of Nonlinear Time-Delay Systems,” R. Sipahi, T. Vyhlidal, P. Pepe, and S.-I. Niculescu, editors, Time Delay Systems - Methods, Applications, and New Trends, Lecture Notes in Control and Information Sciences, pp. 355--366, 2011, doi: 10.1007/978-3-642-25221-1_27.
    101. M. Reble and F. Allgöwer, “Unconstrained Nonlinear Model Predictive Control and Suboptimality Estimates for Continuous-Time Systems,” Proc.  18th IFAC World Congress, pp. 6733--6738, 2011, doi: 10.3182/20110828-6-IT-1002.00609.
    102. M. Radetzki and A. Kohler, “Cost-Based Deflection Routing for Intelligent NoC Switches,” Lecture Notes in Electrical Engineering, vol. 81, 2011, doi: 10.1007/978-94-007-0638-5_6.
    103. N. Radde, “The role of feedback mechanisms in biological network models - A tutorial,” Asian Journal of Control, vol. 13, no. 5, Art. no. 5, 2011, doi: 10.1002/asjc.376.
    104. B. Qiao, M. Sega, and C. Holm, “An atomistic study of a poly(styrene sulfonate)/poly(diallyldimethylammonium) bilayer: the role of surface properties and charge reversal,” Phys. Chem. Chem. Phys., vol. 13, no. 36, Art. no. 36, 2011, doi: 10.1039/C1CP21777A.
    105. B. Qiao, J. J. Cerda, and C. Holm, “Atomistic Study of Surface Effects on Polyelectrolyte Adsorption: Case Study of a Poly(styrenesulfonate) Monolayer,” Macromolecules, vol. 44, no. 6, Art. no. 6, 2011, doi: 10.1021/ma1026109.
    106. E. Pyanzina, S. Kantorovich, J. J. Cerda, and C. Holm, “Structure factor of ferrofluids with chain aggregates: Theory and computer simulations,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, Art. no. 10, 2011, doi: 10.1016/j.jmmm.2010.11.018.
    107. T. Prokopyeva, V. Danilov, A. Dobroserdova, S. Kantorovich, and C. Holm, “Ground state structures in ferrofluid monolayers,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, Art. no. 10, 2011, doi: 10.1016/j.jmmm.2010.11.034.
    108. D. Philipp, F. Dürr, and K. Rothermel, “A Sensor Network Abstraction for Flexible Public Sensing Systems,” Proceedings of the 8th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems: MASS11, 2011, doi: 10.1109/MASS.2011.52.
    109. B. Pfleging, A. Schmidt, T. Döring, and M. Knobel, “AutoNUI: a workshop on automotive natural user interfaces,” Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 207--209, 2011, doi: 10.1145/2381416.2381450.
    110. B. Pfleging, M. Kienast, A. Schmidt, and T. Döring, “SpeeT: A Multimodal Interaction Style Combining Speech  and Touch Interaction in Automotive Environments,” Adjunct Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2011, [Online]. Available: http://www.vis.uni-stuttgart.de/uploads/tx_vispublications/autoui11_pfleging_interactive_demo_v7_cameraReady.pdf
    111. K. A. Peterson, C. Krause, H. Stoll, J. G. Hill, and H.-J. Werner, “Application of explicitly correlated coupled-cluster methods to molecules containing post-3d main group elements,” Mol. Phys., vol. 109, no. 22, Art. no. 22, 2011, doi: 10.1080/00268976.2011.624129.
    112. A. Panagiotidis, D. Kauker, S. Frey, and T. Ertl, “DIANA: A Device Abstraction Framework for Parallel Computations,” Proceedings of the Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, 2011, doi: 10.4203/ccp.95.20.
    113. S. Oladyshkin and M. Panfilov, “Hydrogen penetration in water through porous medium: application to a radioactive waste storage site,” Environmental Earth Sciences, vol. 64, no. 4, Art. no. 4, 2011, doi: 10.1007/s12665-011-0916-0.
    114. S. Oladyshkin, H. Class, R. Helmig, and W. Nowak, “An Integrative Approach to Robust Design and Probabilistic Risk Assessment for CO2 Storage in Geological Formations,” Computational Geosciences, vol. 15, no. 3, Art. no. 3, 2011, doi: 10.1007/s10596-011-9224-8.
    115. S. Oladyshkin, H. Class, R. Helmig, and W. Nowak, “A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations,” Advances in Water Resources, vol. 34, pp. 1508--1518, 2011, doi: 10.1016/j.advwatres.2011.08.005.
    116. J. Offtermatt and N. Radde, “Convergence of Posteriors for Structurally Non-Identifiable Problems Using Results from the Theory of Inverse Problems,” Journal of Inverse and Illposed Problems, 2011, doi: 10.1515/jip-2012-0057.
    117. C. Nowakowski, J. Fehr, and P. Eberhard, “Einfluss von Schnittstellenmodellierungen bei der Reduktion elastischer Mehrkörpersysteme,” at - Automatisierungstechnik, vol. 59, pp. 512--519, 2011, doi: 10.1524/auto.2011.0929.
    118. A. Nowak, F. Leymann, D. Schumm, and B. Wetzstein, “An Architecture and Methodology for a Four-Phased Approach to Green Business Process Reengineering,” Proceedings of the 1st International Conference on ICT as Key Technology for the Fight against Global Warming - ICT-GLOW 2011, 2011, doi: 10.1007/978-3-642-23447-7_14.
    119. A. Nowak, F. Leymann, and D. Schumm, “The Differences and Commonalities between Green and Conventional Business Process Management,” Proceedings of the International Conference on Cloud and Green Computing, CGC 2011, 2011, doi: 10.1109/DASC.2011.105.
    120. A. Nowak, F. Leymann, D. Schleicher, D. Schumm, and S. Wagner, “Green Business Process Patterns,” Proceedings of the 18th Conference on Pattern Languages of Programs, PLoP 2011, 2011, doi: 10.1145/2578903.2579144.
    121. J. Niessner, S. Berg, and M. Hassanizadeh, “Comparison of Two-Phase Darcy"s Law with a Thermodynamically Consistent Approach,” Transport in Porous Media, vol. 88, pp. 133--148, 2011, doi: 10.1007/s11242-011-9730-0.
    122. F. Niedermann, S. Radeschütz, and B. Mitschang, “Business Process Optimization using Formalized Optimization Patterns,” Proceedings of the 14th International Conference on Business Information Systems (BIS), 2011, doi: 10.1007/978-3-642-21863-7_11.
    123. U. Münz, A. Papachristodoulou, and F. Allgöwer, “Robust consensus controller design for nonlinear relative degree two multi-agent systems with communication constraints,” IEEE Transactions on Automatic Control, vol. 56, no. 1, Art. no. 1, 2011, doi: 10.1109/TAC.2010.2084150.
    124. M. A. Müller, M. Reble, and F. Allgöwer, “A general distributed MPC framework for cooperative control,” IFAC World Congress, Milano, Italy, vol. 0, pp. 7987--7992, 2011, doi: 10.3182/20110828-6-IT-1002.02884.
    125. M. A. Müller and F. Allgöwer, “Model predictive control of switched nonlinear systems under average dwell-time,” American Control Conference (ACC), San Francisco, USA, vol. 0, pp. 5169--5174, 2011, doi: 10.1109/ACC.2011.5990955.
    126. G. Mückl and C. Dachsbacher, “Deducing Explicit from Implicit Visibility for Global Illumination Using Antiradiance,” Journal of WSCG, vol. 19, no. 2, Art. no. 2, 2011, [Online]. Available: http://wscg.zcu.cz/jwscg/J_WSCG_2011/!_2011_J_WSCG-2.pdf
    127. K. Mosthaf et al., “A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow,” Water Resources Research, vol. 47, no. 10, Art. no. 10, 2011, doi: 10.1029/2011WR010685.
    128. J. Minguez, P. Reimann, and S. Zor, “Event-driven Business Process Management in Engineer-to-Order Supply Chains,” Proceedings of the 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2011, doi: 10.1109/CSCWD.2011.5960183.
    129. H. Minamoto, R. Seifried, P. Eberhard, and S. Kawamuraa, “Longitudinal Impact of Elastic Ball Against Steel Rod,” Transactions of the Japan Society of Mechanical Engineers Series C, vol. 74, no. 744, Art. no. 744, 2011, doi: 10.1299/kikaic.74.1993.
    130. C. Miehe, D. Rosato, and B. Kiefer, “Variational principles in dissipative electro-magneto-mechanics: A framework for the macro-modeling of functional materials,” International Journal for Numerical Methods in Engineering, vol. 86, no. 10, Art. no. 10, 2011, doi: 10.1002/nme.3127.
    131. C. Miehe and D. Rosato, “A rate-dependent incremental variational formulation of ferroelectricity,” International Journal of Engineering Science, vol. 49, no. 6, Art. no. 6, 2011, doi: 10.1016/j.ijengsci.2010.11.003.
    132. C. Miehe, J. Mendez, S. Göktepe, and L. Schänzel, “Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory,” International Journal of Solids and Structures, vol. 48, no. 13, Art. no. 13, 2011, doi: 10.1016/j.ijsolstr.2011.01.030.
    133. C. Miehe, B. Kiefer, and D. Rosato, “An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level,” International Journal of Solids and Structures, vol. 48, no. 13, Art. no. 13, 2011, doi: 10.1016/j.ijsolstr.2011.02.011.
    134. C. Miehe, I. Frankenreiter, and D. Rosato, “Codf-Evolutions on Polycrystalline Orientation Continua Obtained by Fast Geometric Estimates of Plastic Slip,” International Journal of Numerical Methods in Engineering, vol. 85, no. 9, Art. no. 9, 2011, doi: 10.1002/nme.3005.
    135. C. Miehe, “A multi-field incremental variational framework for gradient-extended standard dissipative solids,” Journal of the Mechanics and Physics of Solids, vol. 59, no. 4, Art. no. 4, 2011, doi: 10.1016/j.jmps.2010.11.001.
    136. J. Meisner, J. B. Rommel, and J. Kästner, “Kinetic Isotope Effects Calculated with the Instanton Method,” J. Comput. Chem., vol. 32, no. 16, Art. no. 16, 2011, doi: 10.1002/jcc.21930.
    137. B. A. Mann, O. Lenz, K. Kremer, and C. Holm, “Hydrogels in Poor Solvent - A Molecular Dynamics Study,” Macromol. Theory Simul., 2011, doi: 10.1002/mats.201100050.
    138. M. Löhning, J. Hasenauer, and F. Allgöwer, “Trajectory-based model reduction of nonlinear biochemical networks employing the observability normal form,” Proceedings of the 18th IFAC World Congress, 2011, Milano, Italy, vol. 0, pp. 10442--10447, 2011, doi: 10.3182/20110828-6-IT-1002.02795.
    139. F. Lique, G. Li, H.-J. Werner, and M. H. Alexander, “Communication: Non-adiabatic coupling and resonances in the F + H2 reaction at low energies,” J. Chem. Phys., vol. 134, p. 231101, 2011, doi: 10.1063/1.3603453.
    140. C. Linder, M. Tkachuk, and C. Miehe, “A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity,” Journal of the Mechanics and Physics of Solids, vol. 0, 2011, doi: 10.1016/j.jmps.2011.05.005.
    141. C. Linder, D. Rosato, and C. Miehe, “New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids,” Computer Methods in Applied Mechanics and Engineering, vol. 200 (1–4), pp. 141--161, 2011, doi: 10.1016/j.cma.2010.07.021.
    142. D. Liberzon, M. A. Müller, and F. Allgöwer, “On norm-controllability of nonlinear systems,” IEEE Conference on Decision and Control, Orlando, USA, 2011, doi: 10.1109/CDC.2011.6160557.
    143. A. Lauser, C. Hager, R. Helmig, and B. Wohlmuth, “A new approach for phase transitions in miscible multi-phase flow in porous media,” Advances in Water Resources, vol. 0, 2011, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0309170811000856
    144. M. Lang, T. Marquez-Lago, J. Stelling, and S. Waldherr, “Autonomous Synchronization of Chemically Coupled Synthetic Oscillators,” Bulletin of Mathematical Biology, vol. 73, pp. 2678--2706, 2011, doi: 10.1007/s11538-011-9642-8.
    145. H. Köroglu and C. W. Scherer, “Scheduled control for robust attenuation of non-stationary sinusodial disturbances with measurable frequencies,” Automatica, vol. 47, pp. 504–514, 2011, [Online]. Available: https://doi.org/10.1016/j.automatica.2011.01.017
    146. H. Köroglu and C. W. Scherer, “Scheduled control for robust attenuation of non-stationary sinusoidal disturbances with measurable frequencies,” Automatica, vol. 47, no. 3, Art. no. 3, 2011, doi: 10.1016/j.automatica.2011.01.017.
    147. J. Kästner, “Umbrella Sampling,” WIREs Comput. Mol. Sci., vol. 1, p. 932, 2011, doi: 10.1002/wcms.66.
    148. M. Krone, M. Falk, S. Rehm, J. Pleiss, and T. Ertl, “Interactive Exploration of Protein Cavities,” Computer Graphics Forum, vol. 30, no. 3, Art. no. 3, 2011, doi: 10.1111/j.1467-8659.2011.01916.x.
    149. C. Kreuzer and K. G. Siebert, “Decay rates of adaptive finite elements with Dörfler marking,” Numerische Mathematik, vol. 117, no. 4, Art. no. 4, 2011, doi: 10.1007/s00211-010-0324-5.
    150. R. Krause, D. Schittler, S. Waldherr, F. Allgöwer, B. Markert, and W. Ehlers, “Bone remodelling: A combined biomechanical and systems-biological challenge,” Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 99--100, 2011, doi: 10.1002/pamm.201110041.
    151. O. Kopp et al., “A Classification of BPEL Extensions,” Journal of Systems Integration, vol. 2, no. 4, Art. no. 4, 2011, [Online]. Available: http://www.si-journal.org/index.php/JSI/article/view/103
    152. G. Knizia, W. Li, S. Simon, and H.-J. Werner, “Determining the numerical stability of quantum chemistry algorithms,” Journal of Chemical Theory and Computation, vol. 7, no. 8, Art. no. 8, 2011, doi: 10.1021/ct200239p.
    153. S. Kesselheim, M. Sega, and C. Holm, “Applying ICC* to DNA translocation. Effect of dielectric boundaries,” Computer Physics Communications, vol. 182, no. 1, Art. no. 1, 2011, doi: 10.1016/j.cpc.2010.08.014.
    154. J. Kelkel and C. Surulescu, “On some models for cancer cell migration through tissue networks,” Mathematical Biosciences and Engineering, vol. 8, no. 2, Art. no. 2, 2011, doi: 10.3934/mbe.2011.8.575.
    155. S. Kaulmann, M. Ohlberger, and B. Haasdonk, “A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems,” Comptes Rendus Mathematique, 2011, doi: 10.1016/j.crma.2011.10.024.
    156. N. Karajan, O. Röhrle, W. Ehlers, and S. Schmitt, “Linking Continuous and Discrete Intervertebral Disc Models through Homogenisation,” Biomechanics and Modeling in Mechanobiology, 2011, doi: 10.1007/s10237-012-0416-5.
    157. N. Karajan, W. Ehlers, O. Röhrle, and S. Schmitt, “Homogenisation method to capture the non-linear behaviour of intervertebral discs in multi-body systems,” Proc. Appl. Math. Mech., vol. 11, pp. 95--96, 2011, doi: 10.1002/pamm.201110039.
    158. S. Kantorovich, R. Weeber, J. J. Cerdu00e0, and C. Holm, “Magnetic particles with shifted dipoles,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, Art. no. 10, 2011, doi: 10.1016/j.jmmm.2010.11.019.
    159. S. Kantorovich, R. Weeber, J. J. Cerda, and C. Holm, “Ferrofluids with shifted dipoles: ground state structures,” Soft Matter, vol. 7, no. 11, Art. no. 11, 2011, doi: 10.1039/c1sm05186e.
    160. B. Kaltenbacher and J. Offtermatt, “A Refinement and Coarsening Indicator Algorithm for Finding Sparse Solutions of Inverse Problems,” Inverse Problems and Imaging, vol. 5, no. 2, Art. no. 2, 2011, doi: 10.3934/ipi.2011.5.391.
    161. E. A. Jägle and E. J. Mittemeijer, “Kinetics of interface-controlled phase transformations: atomistic and mesoscopic simulations,” Kinetics of interface-controlled phase transformations: atomistic and mesoscopic simulations. International Journal of Materials Research, vol. 102, no. 7, Art. no. 7, 2011, doi: 10.3139/146.110538.
    162. N. Jung, T. Patera, B. Haasdonk, and B. Lohmann, “Model order reduction and error estimation with an application to the parameter-dependent eddy current equation,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, pp. 561--582, 2011, doi: 10.1080/13873954.2011.582120.
    163. P. Janowski, B. Mitschang, and A. Gollmann, “Issues and characteristics of testing as part of the design process in mechanical engineering,” Proceedings of the 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 599--604, 2011, doi: 10.1109/CSCWD.2011.5960179.
    164. E. A. Jaegle and E. J. Mittemeijer, “The kinetics of grain-boundary nucleated phase transformations: Simulations and modelling,” Acta Materialia, vol. 59, pp. 5775--5786, 2011, doi: 10.1016/j.actamat.2011.05.054.
    165. E. A. Jaegle and E. J. Mittemeijer, “Simulation of the Kinetics of Grain-Boundary Nucleated Phase Transformations,” Solid State Phenom, vol. 172, pp. 1128--133, 2011, doi: 10.4028/www.scientific.net/SSP.172-174.1128.
    166. E. A. Jaegle and E. J. Mittemeijer, “The Kinetics of and the Microstructure Induced by the Recrystallization of Copper,” Metallurgical and Materials Transactions, 2011, doi: 10.1007/s11661-011-0959-6.
    167. M. Iwamura, P. Eberhard, W. Schiehlen, and R. Seifried, “A General Purpose Algorithm for Optimal Trajectory Planning of Closed Loop Multibody Systems,” Multibody Dynamics, vol. 23, pp. 173--193, 2011, doi: 10.1007/978-90-481-9971-6_9.
    168. K. Häberle and W. Ehlers, “Carbon dioxide storage in the subsurface: an approach including solid deformations and phase transition,” Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 476--474, 2011, doi: 10.1002/pamm.201110228.
    169. M. Huptych, K. Groh, and S. Röck, “Online Path Planning for Industrial Robots in Varying Environments Using the Curve Shortening Flow Method,” Lecture Notes in Computer Science, vol. 7101, pp. 73--82, 2011, doi: 10.1007/978-3-642-25486-4.
    170. S. Hoher and S. Röck, “A contribution to the real-time simulation of coupled finite element models of machine tools - a numerical comparison,” Simulation Modelling Practice and Theory, vol. 19, pp. 1627--1639, 2011, doi: 10.1016/j.simpat.2011.03.002.
    171. M. Hlawatsch, J. Vollrath, F. Sadlo, and D. Weiskopf, “Coherent Structures of Characteristic Curves in Symmetric Second Order Tensor Fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 6, Art. no. 6, 2011, doi: 10.1109/TVCG.2010.107.
    172. M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Hierarchical Line Integration,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 8, Art. no. 8, 2011, doi: 10.1109/TVCG.2010.227.
    173. M. Hlawatsch, P. Leube, W. Nowak, and D. Weiskopf, “Flow Radar Glyphs-Static Visualization of Unsteady Flow with Uncertainty,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, Art. no. 12, 2011, doi: 10.1109/TVCG.2011.203.
    174. O. A. Hickey, C. Holm, J. L. Harden, and G. W. Slater, “Influence of charged polymer coatings on electro-osmotic flow: molecular dynamics simulations,” Macromolecules, vol. 44, no. 23, Art. no. 23, 2011, doi: 10.1021/ma201995q.
    175. M. Herty and V. Schleper, “Time discretization methods for hyperbolic optimization problems with relaxation,” Applied Mathematics and Computation, vol. 218, no. 1, Art. no. 1, 2011, doi: 10.1016/j.amc.2011.05.116.
    176. J. Heinrich, M. Burch, R. Seifert, and D. Weiskopf, “BiCluster Viewer: A Visualization Tool for Analyzing Gene Expression Data,” Lecture Notes in Computer Science (LNCS), vol. 0, 2011, doi: 10.1007/978-3-642-24028-7_59.
    177. J. Heinrich, S. Bachthaler, and D. Weiskopf, “Progressive Splatting of Continuous Scatterplots and Parallel Coordinates,” Computer Graphics Forum, vol. 30, no. 3, Art. no. 3, 2011, doi: 10.1111/j.1467-8659.2011.01914.x.
    178. Y. Heider, B. Markert, and W. Ehlers, “Dynamic Wave Propagation in Infinite Saturated Porous Media Half Spaces,” Computational Mechanics, vol. 0, 2011, doi: 10.1007/s00466-011-0647-9.
    179. J. Hasenauer, S. Waldherr, M. Doszczak, P. Scheurich, N. Radde, and F. Allgöwer, “Analysis of heterogeneous cell populations: A density-based modeling and identification framework,” Journal of Process Control, vol. 21, no. 10, Art. no. 10, 2011, doi: 10.1016/j.jprocont.2011.06.020.
    180. J. Hasenauer, S. Waldherr, M. Doszczak, N. Radde, P. Scheurich, and F. Allgöwer, “Identification of models of heterogeneous cell populations from population snapshot data,” BMC Bioinformatics, vol. 12, p. 125, 2011, doi: 10.1186/1471-2105-12-125.
    181. J. Hasenauer, J. Heinrich, M. Doszczak, P. Scheurich, D. Weiskopf, and F. Allgöwer, “Visualization methods and support vector machines as tools for determining markers in models of heterogeneous populations: Proapoptotic signaling as a case study,” In Proc. of 8th Workshop for Computational Systems Biology (WCSB 2011), Zürich, Switzerland, vol. 0, pp. 61--64, 2011, [Online]. Available: http://www.vis.uni-stuttgart.de/~weiskopf/publications/wcsb11.pdf
    182. H. Harbrecht and C. Schwab, “Sparse tensor finite elements for elliptic multiple scale problems,” CMAME, vol. 200, pp. 3100--3110, 2011, doi: 10.1016/j.cma.2011.07.001.
    183. H. Harbrecht and M. Randrianarivony, “Wavelet BEM on molecular surfaces: solvent excluded surfaces,” Computing, vol. 92, no. 4, Art. no. 4, 2011, doi: 10.1007/s00607-011-0147-y.
    184. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for Parametrized Variational Inequalities,” SIAM Journal on Numerical Analysis, vol. 0, 2011, doi: 10.1137/110835372.
    185. B. Haasdonk and B. Lohmann, “Special Issue on "Model Order Reduction of Parameterized Problems`,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, pp. 295--296, 2011, doi: 10.1080/13873954.2011.547661.
    186. B. Haasdonk, M. Dihlmann, and M. Ohlberger, “A Training Set and Multiple Bases Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, pp. 423--442, 2011, doi: 10.1080/13873954.2011.547674.
    187. E. Gürses and C. Miehe, “On evolving deformation microstructures in non-convex partially damaged solids,” Journal of the Mechanics and Physics of Solids, vol. 59, no. 6, Art. no. 6, 2011, doi: 10.1016/j.jmps.2011.01.002.
    188. K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter, “Conventional Workflow Technology for Scientific Simulation,” Guide to e-Science, vol. 0, 2011, doi: 10.1007/978-0-85729-439-5_12.
    189. N. Gribova, A. Arnold, T. Schilling, and C. Holm, “How close to two dimensions does a Lennard-Jones system need to be to produce a hexatic phase?,” Journal of Chemical Physics, vol. 135, no. 5, Art. no. 5, 2011, doi: 10.1063/1.3623783.
    190. T. P. M. Goumans and J. Kästner, “Deuterium Enrichment of Interstellar Methanol Explained by Atom Tunneling,” J. Phys. Chem. A, vol. 115, pp. 10767--10774, 2011, doi: 10.1021/jp206048f.
    191. T. Gorius, R. Seifried, and P. Eberhard, “The 3D-Pendulum at the World Exhibition 2010 - Control Design and Experimental Results,” IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, vol. 30, pp. 19--26, 2011, doi: 10.1007/978-94-007-1643-8_3.
    192. T. Gorius, R. Seifried, and P. Eberhard, “Comparing exact inversion and singular perturbation approaches for a serial flexible manipulator,” PAMM, vol. 11, no. 1, Art. no. 1, 2011, doi: 10.1002/pamm.201110014.
    193. H. Gilbergs, N. Wengert, K. Frenner, P. Eberhard, and W. Osten, “Inverse calculation of position and tilt errors of optical components from wavefront data,” Proc. SPIE, vol. 8083, p. 808314, 2011, doi: 10.1117/12.889521.
    194. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” Proceedings Book of, 2011, doi: 10.1201/b14172-34.
    195. G. Gassner, M. Dumbser, F. Hindenlang, and C.-D. Munz, “Explicit One-Step Time Discretizations for Discontinuous Galerkin and Finite Volume Schemes Based on Local Predictors,” Journal of Computational Physics, vol. 230, no. 11, Art. no. 11, 2011, doi: 10.1016/j.jcp.2010.10.024.
    196. J. Fritz, B. Flemisch, and R. Helmig, “Decoupled and multiphysics models for non-isothermal compositional two-phases flow in porous media,” International Journal of Numerical Analysis and Modeling, vol. 9, pp. 17--28, 2011, [Online]. Available: http://www.math.ualberta.ca/ijnam/Volume-9-2012/No-1-12/2012-01-02.pdf
    197. S. Frey, T. Schl?mer, S. Grottel, C. Dachsbacher, O. Deussen, and T. Ertl, “Loose capacity-constrained representatives for the qualitative visual analysis in molecular dynamics,” IEEE Pacific Visualization Symposium, pp. 51--58, 2011, doi: 10.1109/PACIFICVIS.2011.5742372.
    198. S. Frey and T. Ertl, “Load Balancing Utilizing Data Redundancy in Distributed Volume Rendering,” Eurographics Symposium on Parallel Graphics and Visualization (EGPGV11), vol. 0, 2011, doi: 10.2312/EGPGV/EGPGV11/051-060.
    199. B. Flemisch et al., “DUMUX: DUNE for Multi - Phase, Component, Scale, Physics, ... Flow and Transport in Porous Media,” Advances in Water Resources, vol. 34, no. 9, Art. no. 9, 2011, doi: 10.1016/j.advwatres.2011.03.007.
    200. A. Fischer and P. Eberhard, “Simulation-based Stability Analysis of a Thin-Walled Cylinder during Turning with Improvements using an Adaptronic Turning Chisel,” Archive of Mechanical Engineering, vol. LVIII, pp. 367--391, 2011, doi: 10.2478/v10180-011-0023-5.
    201. A. Ferrari, C.-D. Munz, and B. Weigand, “A High Order Sharp Interface Method with Local Time Stepping for Compressible Multiphase Flows,” Communications in Computational Physics, vol. 9, no. 1, Art. no. 1, 2011, doi: 10.4208/cicp.090310.050510a.
    202. J. Fehr and P. Eberhard, “Simulation Process of Flexible Multibody Systems with Non-modal Model Order Reduction Techniques,” Multibody System Dynamics, vol. 25, no. 3, Art. no. 3, 2011, doi: 10.1007/s11044-010-9238-3.
    203. C. Fehling, F. Leymann, R. Retter, D. Schumm, and W. Schupeck, “An Architectural Pattern Language of Cloud-based Applications,” Proceedings of the 18th Conference on Pattern Languages of Programs, PLoP 2011, 2011, doi: 10.1145/2578903.2579140.
    204. C. Fehling, R. Konrad, F. Leymann, R. Mietzner, M. Pauly, and D. Schumm, “Flexible Process-based Applications in Hybrid Clouds,” Proceedings of the 2011 IEEE International Conference on Cloud Computing (CLOUD 2011), 2011, doi: 10.1109/CLOUD.2011.37.
    205. M. Falk, M. Klann, M. Ott, H. Koeppl, and T. Ertl, “Parallelized Agent-based Simulation on CPU and Graphics Hardware for Spatial and Stochastic Models in Biology,” International Conference on Computational Methods in Systems Biology (CMSB 2011), pp. 73--82, 2011, doi: 10.1145/2037509.2037521.
    206. M. Falk, M. Daub, G. Schneider, and T. Ertl, “Modeling and Visualization of Receptor Clustering on the Cellular Membrane,” IEEE Symposium on Biological Data Visualization (BioVis 2011), pp. 9--15, 2011, doi: 10.1109/BioVis.2011.6094042.
    207. E. I. Ergueta, R. Seifried, and R. Horowitz, “A Robust Approach to Dynamic Feedback Linearization for a Steerable Nips Mechanism,” Journal of Dynamic Systems, Measurement, and Control, vol. 133, no. 2, Art. no. 2, 2011, doi: 10.1115/1.4003261.
    208. C. Ergenzinger, R. Seifried, and P. Eberhard, “A discrete element model to describe failure of strong rock in uniaxial compression,” Granular Matter, vol. 13, no. 4, Art. no. 4, 2011, doi: 10.1007/s10035-010-0230-7.
    209. W. Ehlers, B. Martkert, and A. Acartürk, “Swelling phenomena in electro-chemically active hydrated porous media,” Multiscale Methods in Computational Mechanics - Lecture Notes in Applied and Computational Mechanics, pp. 405--424, 2011, doi: 10.1007/978-90-481-9809-2_20.
    210. W. Ehlers, R. Krause, and B. Markert, “Modelling and remodelling of biological tissue in the framework of continuum biomechanics,” Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 35--38, 2011, doi: 10.1002/pamm.201110010.
    211. W. Ehlers, O. Avci, and B. Markert, “Computation of slope movements initiated by rain-induced shear bands in small-scale tests and in situ,” Vadose Zone Journal, vol. 10, no. 2, Art. no. 2, 2011, doi: 10.2136/vzj2009.0156.
    212. W. Ehlers and O. Avci, “Stress-dependent hardening and failure surfaces of dry sand,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 0, 2011, doi: 10.1002/nag.1121.
    213. W. Ehlers and O. Avci, “Experimental and Computational Issues in the Mechanics of Multi-Physical Unsaturated Soil,” Multiscale and Multiphysics Processes in Geomechanics, pp. 125--128, 2011, doi: 10.1007/978-3-642-19630-0_32.
    214. W. Ehlers, “Recovering Micropolar Continua from Particle Mechanics by Use of Homogenisation Strategies,” Recent Developments and Innovative Applications in Computational Mechanics, pp. 179--190, 2011, doi: 10.1007/978-3-642-17484-1_20.
    215. P. Eberhard and N. Wengert, “Using Multibody Systems for the Investigation of Dynamic Aberrations in High Precision Optics,” PAMM - Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 41--42, 2011, doi: 10.1002/pamm.201110012.
    216. T. Döring, D. Kern, P. Marshall, M. Pfeiffer, J. Schöning, and A. Schmidt, “Gestural interaction on the steering wheel: reducing the visual demand,” Proceedings of the 2011 annual conference on Human factors in computing systems, vol. 0, pp. 483--492, 2011, doi: 10.1145/1978942.1979010.
    217. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion Equations,” Springer Proceedings in Mathematics, pp. 369--377, 2011, doi: 10.1007/978-3-642-20671-9_39.
    218. M. Darcis, H. Class, B. Flemisch, and R. Helmig, “Sequential Model Coupling for Feasibility Studies of CO2 Storage in Deep Saline Aquifers,” Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, vol. 66, pp. 93--103, 2011, doi: 10.2516/ogst/2010037.
    219. A. Dadalau, K. Groh, M. Reuß, and A. Verl, “Modeling linear guide systems with CoFEM - Equivalent models for rolling contact,” Production Engineering Research and Development, vol. 0, 2011, doi: 10.1007/s11740-011-0349-3.
    220. O. A. Cirpka, F. P. J. de Barros, G. Chiogna, and W. Nowak, “Probability Density Function of Steady-State Concentration in Two-Dimensional Heterogeneous Porous Media,” Water Resources Research, vol. 47, p. W11523, 2011, doi: 10.1029/2011WR010750.
    221. O. A. Cirpka, F. B. P. de Barros, G. Chiogna, and W. Nowak, “Stochastic Flux-Related Analysis of Transverse Mixing in Two-Dimensional Heterogeneous Porous Media,” Water Resources Research, vol. 47, p. W06515, 2011, doi: 10.1029/2010WR010279.
    222. T. Chichosz and M. Bischoff, “Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers,” Computer Methods in Applied Mechanics and Engineering, vol. 200 (9–12), pp. 1317--1332, 2011, doi: 10.1016/j.cma.2010.11.004.
    223. J. J. Cerda, V. Ballenegger, and C. Holm, “Particle-particle particle-mesh method for dipolar interactions: tOn error estimates and efficiency of schemes with analytical differentiation tand mesh interlacing,” J. Chem . Phys., vol. 135, p. 184110, 2011, doi: 10.1063/1.3657407.
    224. J. J. Cerda, E. Elfimova, V. Ballenegger, E. Krutikova, A. Ivanov, and C. Holm, “Study of the structure factor anisotropy and long range correlations of ferrofluids in the dilute low-coupling regime,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, Art. no. 10, 2011, doi: 10.1016/j.jmmm.2010.11.015.
    225. R. Bürger, I. Kröker, and C. Rohde, “Uncertainty Quantification for a Clarifier-Thickener Model with Random Feed,” Finite Volumes for Complex Applications VI - Problems & Perspectives, vol. 4, no. 1, Art. no. 1, 2011, doi: 10.1007/978-3-642-20671-9_21.
    226. C. Böhm, S. Yu, and F. Allgöwer, “Moving Horizon H-Infinity Control of Constrained Periodically Time-Varying Systems,” Proceedings of the 18th IFAC World Congress, pp. 10156--10161, 2011, doi: 10.3182/20110828-6-IT-1002.02479.
    227. C. Breindl, S. Waldherr, D. M. Wittmann, F. J. Theis, and F. Allgöwer, “Steady-state robustness of qualitative gene regulation networks,” International Journal of Robust and Nonlinear Control, vol. 21, no. 15, Art. no. 15, 2011, doi: 10.1002/rnc.1786.
    228. C. Breindl, D. Schittler, S. Waldherr, and F. Allgöwer, “Structural requirements and discrimination of cell differentiation networks,” IFAC World Congress, Milano, Italy, vol. 0, pp. 11767--11772, 2011, doi: 10.3182/20110828-6-IT-1002.00296.
    229. C. Bradley et al., “OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project,” Progress in Biophysics and Molecular Biology, vol. 0, 2011, doi: 10.1016/j.pbiomolbio.2011.06.015.
    230. A. Benzing, B. Koldehofe, and K. Rothermel, “Efficient support for multi-resolution queries in global sensor networks,” Proceeding COMSWARE ’11 Proceedings of the 5th International Conference on Communication System Software and Middleware, vol. 0, pp. 11:1-11:12, 2011, doi: 10.1145/2016551.2016562.
    231. R. Bauer, E. A. Jägle, W. Baumann, and E. J. Mittemeijer, “Kinetics of the allotropic hcp-fcc phase transformation in cobalt,” Philosophical Magazine, vol. 91, no. 3, Art. no. 3, 2011, doi: 10.1080/14786435.2010.525541.
    232. V. Ballenegger, J. J. Cerda, and C. Holm, “Removal of spurious self-interactions in particle-mesh methods,” Computer Physics Communications, vol. 182, no. 9, Art. no. 9, 2011, doi: 10.1016/j.cpc.2011.01.026.
    233. H. M. N. K. Balini, C. W. Scherer, and J. Witte, “Performance Enhancement for AMB Systems Using Unstable $H_ınfty$ Controllers,” IEEE T. Contr. Syst. T., vol. 19, pp. 1479–1492, 2011, [Online]. Available: https://doi.org/10.1109/TCST.2010.2097264
    234. H. M. N. K. Balini, C. W. Scherer, and J. Witte, “Performance Enhancement for AMB Systems Using Unstable H Controllers,” IEEE T. Contr. Syst, vol. 19, pp. 1479--1492, 2011, doi: 10.1109/TCST.2010.2097264.
    235. M. Bader, K. Rahnema, and C. Vigh, “Memory-efficient Sierpinski-order traversals on dynamically adaptive, recursivly structured triangular grids,” Para 2010 - State of the Art in Scientific and Parallel Computing, vol. 0, pp. 302--312, 2011, doi: 10.1007/978-3-642-28145-7_30.
    236. M. Bader, H.-J. Bungartz, and M. Mehl, “Space-Filling Curves,” Encyclopedia of Parallel Computing, pp. 1862--1867, 2011, doi: 10.1007/978-0-387-09766-4_145.
    237. A. Avci, B. Markert, and W. Ehlers, “A continuum-mechanical analysis of the influence of mechanical stimuli on biological tissue,” Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 81--82, 2011, doi: 10.1002/pamm.201110032.
    238. M. Ament, S. Frey, F. Sadlo, T. Ertl, and D. Weiskopf, “GPU-based 2D Flow Simulation Steering using Coherent Structures,” Proceedings of the Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, 2011, doi: 10.4203/ccp.95.18.
    239. F. Alt, A. Bungert, B. Pfleging, A. Schmidt, and M. Havemann, “Supporting Children with Special Needs Through Multi-perspective Behavior Analysis,” Proceedings of the 10th International Conference on Mobile and Ubiquitous Multime, pp. 81--84, 2011, doi: 10.1145/2107596.2107605.
    240. B. Ahrenholz, J. Niessner, R. Helmig, and M. Krafczyk, “Pore-scale determination of parameters for macroscale modeling of evaporation processes in porous media,” Water Resources Research, vol. 47, 2011, doi: 10.1029/2010WR009519.
    241. T. B. Adler and H.-J. Werner, “An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit,” J. Chem. Phys., vol. 135, p. 144117, 2011, doi: 10.1063/1.3647565.
  13. 2010

    1. J. Witte, H. M. N. K. Balini, and C. W. Scherer, “Experimental results with stable and unstable LPV controllers for an Active Magnetic Bearing System,” in IEEE Multi-Conference on Control, in IEEE Multi-Conference on Control. Japan, 2010, pp. 950–955. [Online]. Available: https://doi.org/10.1109/CCA.2010.5611087
    2. J. Witte, H. M. N. K. Balini, and C. W. Scherer, “Robust and LPV control of an AMB system,” in Proc. American Control Conf., in Proc. American Control Conf. Baltimore, MD, USA, 2010, pp. 2194–2199. [Online]. Available: https://doi.org/10.1109/ACC.2010.5531273
    3. J. Veenman and C. W. Scherer, “On Robust LPV Controller Synthesis: A Dynamic Integral Quadratic Constraint based Approach,” in 49th IEEE Conf. Decision and Control, in 49th IEEE Conf. Decision and Control. Atlanta, USA, 2010, pp. 591–596. [Online]. Available: https://doi.org/10.1109/CDC.2010.5717992
    4. C. W. Scherer and I. E. Köse, “Gain-Scheduled Control Synthesis using Dynamic $D$-Scales,” in 49th IEEE Conf. Decision and Control, in 49th IEEE Conf. Decision and Control. Altanta, GA, 2010, pp. 6845–6850. [Online]. Available: https://doi.org/10.1109/CDC.2010.5717880
    5. A. Marcos et al., “Application of LPV Modeling, Design and Analysis Methods to Re-entry Vehicle,” in Proc. AIAA Guidance, Navigation and Control Conf., in Proc. AIAA Guidance, Navigation and Control Conf. Toronto, Canada, Aug. 2010. [Online]. Available: https://doi.org/10.2514/6.2010-8192
    6. P. Estevez et al., “A Haptic Tele-operated System for Microassembly,” in in: Ratchev S. (eds) Precision Assembly Technologies and Systems. IPAS 2010. IFIP Advances in Information and Communication Technology, vol. 315 Springer, in in: Ratchev S. (eds) Precision Assembly Technologies and Systems. IPAS 2010. IFIP Advances in Information and Communication Technology, vol. 315 Springer, vol. 315. 2010, pp. 13–20. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-11598-1_2
    7. H. M. N. K. Balini, J. Witte, C. W. Scherer, and S. G. Dietz, “Active magnetic bearings: Robust performance against uncertainty in rotational speed,” in 5th IFAC Symposium on Mechatrinic Systems, in 5th IFAC Symposium on Mechatrinic Systems. Cambridge, USA, 2010, pp. 355–360. [Online]. Available: https://doi.org/10.3182/20100913-3-US-2015.00059
    8. H. M. N. K. Balini, J. Witte, and C. W. Scherer, “Advanced Control for Active Magnetic Bearing Systems,” in 10th Int. Conf. of the Eur. Society for Precision Engineering and Nanotechnology, in 10th Int. Conf. of the Eur. Society for Precision Engineering and Nanotechnology. Delft, 2010, pp. 344–347.
    9. H. M. N. K. Balini, I. Houtzager, J. Witte, and C. W. Scherer, “Subspace identification and robust control of an AMB system,” in Proc. American Control Conf., in Proc. American Control Conf. Baltimore, MD, USA, 2010, pp. 2200–2205. [Online]. Available: https://doi.org/10.1109/ACC.2010.5531268
    10. C. W. Scherer and S. Weiland, “Linear Matrix Inequalities in Control,” in The Control Systems Handbook, Second Edition, W. S. Levine, Ed., in The Control Systems Handbook, Second Edition. , CRC Press, 2010, pp. 1–30. [Online]. Available: https://www.taylorfrancis.com/books/e/9781420073652/chapters/10.1201%2Fb10384-61
    11. J. Witte, H. M. N. K. Balini, and C. W. Scherer, Experimental results with stable and unstable LPV controllers for active magnetic bearing systems. IEEE Multi-Conference on Control, Japan, 2010, 2010. doi: 10.1109/CCA.2010.5611087.
    12. M. Sonntag, D. Karastoyanova, and F. Leymann, The Missing Features of Workflow Systems for Scientific Computations, vol. 0. Gesellschaft für Informatik, 2010. [Online]. Available: http://www.gi-ev.de/service/publikationen/lni/gi-edition-proceedings-2010/gi-edition-lecture-notes-in-informatics-lni-p-160.html
    13. M. Sonntag, D. Karastoyanova, and E. Deelman, Bridging The Gap Between Business And Scientific Workflows, vol. 0. IEEE Computer Society, 2010. doi: 10.1109/eScience.2010.12.
    14. M. Sonntag and D. Karastoyanova, Next Generation Interactive Scientific Experimenting Based on the Workflow Technology, vol. 0. Acta Press, 2010. [Online]. Available: http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=643
    15. M. Sonntag, K. Görlach, D. Karastoyanova, and N. Currle-Linde, Towards Simulation Workflows With BPEL: Deriving Missing Features From GriCoL, vol. 0. Acta Press, 2010. [Online]. Available: http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=643
    16. R. Seifried, W. Schiehlen, and P. Eberhard, The role of the coefficient of restitution on impact problems in multi-body dynamics, vol. 224, no. 3. 2010. doi: 10.1243/14644193JMBD239.
    17. R. Seifried, Two Approaches for Designing Minimum Phase Underactuated Multibody Systems, vol. 0. 2010. [Online]. Available: http://www.itm.uni-stuttgart.de/staff/Seifried/Includes/PAPERS/IMSD2010_seifried.pdf
    18. A. Marcos, J. Veenman, and C. W. Scherer, Application of LPV Modeling, Design and Analysis Methods to a Re-entry Vehicle, vol. 0. Proc. AIAA Guidance, Navigation and Control Conf, 2010. doi: 10.2514/6.2010-8192.
    19. A. Held and R. Seifried, A Procedure for Shape Optimization of Controlled Elastic Multibody Systems, vol. 0. 2010. doi: 10.4203/ccp.94.100.
    20. H. M. N. K. Balini, J. Witte, and C. W. Scherer, Active magnetic bearings: Robust performance against uncertainty in rotational speed. 5th IFAC Symposium on Mechatrinic Systems, 2010. doi: 10.3182/20100913-3-US-2015.00059.
    21. T. Aven and O. Renn, Risk Management and Governance. Concepts, Guidelines and Applications, vol. 0. Springer, 2010. [Online]. Available: http://www.springer.com/economics/r+%26+d/book/978-3-642-13925-3
    22. M. Üffinger, S. Frey, and T. Ertl, “Interactive High-Quality Visualization of Higher-Order Finite Elements,” Computer Graphics Forum (CGF), vol. 29, no. 2, Art. no. 2, 2010, doi: 10.1111/j.1467-8659.2009.01603.x.
    23. S. Zinatbakhsh, B. Markert, and W. Ehlers, “On the General Solution of Coupled Problems: Comparison of Monolithic and Partitioning Approaches,” Proceedings in Applied Mathematics and Mechanics, vol. 10, pp. 395--396, 2010, doi: 10.1002/pamm.201010190.
    24. Y. Yudin, T. Krasikova, Y. Dorozhko, N. Currle-Linde, and M. Resch, “An efficient workflow system in real HPC organizations,” International Workshop on Science Gateways, vol. 0, pp. 23--27, 2010, [Online]. Available: http://documents.ct.infn.it/record/485/files/iwsg10-proceedings.1.pdf
    25. S. Yu, C. Böhm, H. Chen, and F. Allgöwer, “MPC with one free control action for constrained LPV systems,” IEEE International Conference on Control Applications, pp. 1343--1348, 2010, doi: 10.1109/CCA.2010.5611145.
    26. P. Wieland, J.-S. Kim, and F. Allgöwer, “On topology and dynamics of consensus among linear high-order agents,” International Journal of Systems Science, vol. 42, pp. 1831--1842, 2010, doi: 10.1080/00207721003658202.
    27. H. Weking, J. Schlottke, M. Boger, P. Rauschenberger, B. Weigand, and C.-D. Munz, “DNS of Rising Bubbles using VOF and balanced force surface tension,” High Performance Computing on Vector Systems, vol. 0, 2010, doi: 10.1007/978-3-642-11851-7_13.
    28. H. Wang, F. Dommert, and C. Holm, “Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency,” Journal of Chemical Physics, vol. 133, no. 3, Art. no. 3, 2010, doi: 10.1063/1.3446812.
    29. S. Waldherr, J. Wu, and F. Allgöwer, “Bridging time scales in cellular decision makingwith a stochastic bistable switch,” BMC Systems Biology, vol. 4, no. 108, Art. no. 108, 2010, doi: 10.1186/1752-0509-4-108.
    30. S. Waldherr, F. Allgöwer, and N. Radde, “Generic bifurcations in the dynamics of biochemical networks,” Proceedings of IEEE Multi-Conference on Systems and Control, vol. 0, pp. 135--141, 2010, doi: 10.1109/CCA.2010.5611139.
    31. A. Wagner and W. Ehlers, “Continuum-Mechanical Analysis of Human Brain Tissue,” Proceedings in Applied Mathematics and Mechanics, vol. 10, pp. 99--100, 2010, doi: 10.1002/pamm.201010042.
    32. S. Tyagi, M. Suezen, M. Sega, M. Barbosa, S. S. Kantorovich, and C. Holm, “An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries,” Journal of Chemical Physics, vol. 132, no. 15, Art. no. 15, 2010, doi: 10.1063/1.3376011.
    33. E. J. Trottemant, C. W. Scherer, M. Weiss, and A. Vermeulen, “Robust Missile Feedback Control Strategies,” J. Guid. Control Dynam., vol. 33, no. 6, Art. no. 6, Nov. 2010, [Online]. Available: https://doi.org/10.2514/1.48844
    34. M. Troldborg, W. Nowak, N. Tuxen, P. L. Bjerg, and R. Helmig, “Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework,” Water Resources Reseach, vol. 46, 2010, doi: 10.1029/2010WR009227.
    35. C. Tobias, J. Fehr, and P. Eberhard, “Durability-based Structural Optimization with Reduced Elastic Multibody Systems,” Proceedings of the 2nd International Conference on Engineering Optimization, 2010, [Online]. Available: /brokenurl#www1.dem.ist.utl.pt/engopt2010/Book_and_CD/Papers_CD_Final_Version/pdf/01/01119-01.pdf
    36. M. A. Tariq, G. G. Koch, B. Koldehofe, I. Khan, and K. Rothermel, “Dynamic publish/subscribe to meet subscriber-defined delay and bandwidth constraints,” Lecture Notes in Computer Science, vol. 6271, pp. 458--470, 2010, doi: 10.1007/978-3-642-15277-1_44.
    37. Q. Tang and P. Eberhard, “Modeling and Motion Planning for a Population of Mobile Robots,” Proceedings of the 18th CISM-IFToMM Symposium on Robotics ROMANSY, vol. 524, pp. 409--416, 2010, doi: 10.1007/978-3-7091-0277-0_48.
    38. M. Sonntag, D. Karastoyanova, and E. Deelman, “BPEL4Pegasus: Combining Business and Scientific Workflows,” Service-Oriented Computing, vol. 6470, pp. 728--729, 2010, doi: 10.1007/978-3-642-17358-5_75.
    39. M. Sonntag, K. Görlach, D. Karastoyanova, F. Leymann, and M. Reiter, “Process Space-Based Scientific Workflow Enactment,” Business Process Integration and Management, vol. 5, no. 1, Art. no. 1, 2010, doi: 10.1504/IJBPIM.2010.033173.
    40. R. Seifried, H. Minamoto, and P. Eberhard, “Viscoplastic Effects Occurring in Impacts of Aluminum and Steel Bodies and Their Influence on the Coefficient of Restitution,” Journal of Applied Mechanics, vol. 77 /4), 2010, doi: 10.1115/1.4000912.
    41. R. Seifried, A. Held, and F. Dietmann, “Analysis of Feed-Forward Control Designs for Flexible Multibody Systems,” Proceedings of the 5th Asian Conference on Multibody Dynamics, Kyoto, vol. 5, no. 3, Art. no. 3, 2010, doi: 10.1299/jsdd.5.429.
    42. U. Schwiegelshohn et al., “Perspectives on grid computing,” Future Generation Computer Systems, vol. 26, no. 8, Art. no. 8, 2010, doi: 10.1016/j.future.2010.05.010.
    43. M. Schulz, D. Scheer, and S. Wassermann, “Neue Technik, alte Pfade? - Zur Akzeptanz der CO2-Speicherung in Deutschland,” Gaia, vol. 19, no. 4, Art. no. 4, 2010, [Online]. Available: http://www.oekom.de/fileadmin/zeitschriften/gaia_leseproben/GAIA_4_2010_Schulz.pdf
    44. G. Schneider, “Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system,” Applicable Analysis, vol. 89, no. 9, Art. no. 9, 2010, doi: 10.1080/00036810903277150.
    45. J. Schmidt et al., “Ionic Charge Reduction and Atomic Partial Charges from First-Principles Calculations of 1,3-Dimethylimidazolium Chloride,” Journal of Physical Chemistry B, vol. 114, no. 18, Art. no. 18, 2010, doi: 10.1021/jp910771q.
    46. G. S. Schmidt, J. Wu, U. Munz, and F. Allgower, “Consensus in bistable and multistable multi-agent systems,” Decision and Control, pp. 7135--7140, 2010, doi: 10.1109/CDC.2010.5717474.
    47. G. S. Schmidt, C. Ebenbauer, and F. Allgöwer, “Synchronization conditions for Lyapunov oscillators,” Decision and Control, pp. 6230--6235, 2010, doi: 10.1109/CDC.2010.5717083.
    48. A. Schmidt, “Ubiquitous Computing: Are we there yet?,” Computer, vol. 43, no. 2, Art. no. 2, 2010, doi: 10.1109/MC.2010.54.
    49. G. Schley, M. Radetzki, and A. Kohler, “Degradability Enabled Routing for Network-on-Chip Switches,” it - Information Technology, vol. 52, no. 4, Art. no. 4, 2010, doi: 10.1524/itit.2010.0592.
    50. D. Schittler, J. Hasenauer, F. Allgöwer, and S. Waldherr, “Cell differentiation modeled via a coupled two-switch regulatory network,” Chaos, vol. 20, no. 4, Art. no. 4, 2010, doi: 10.1063/1.3505000.
    51. D. Scheer, C. Benighaus, L. Benighaus, S. Gold, J. Ortleb, and O. Renn, “Communication of risk hazard from the angle of different stakeholders,” BfR-Wissenschaft, vol. 10, pp. 1--149, 2010, [Online]. Available: http://www.bfr.bund.de/cm/350/communication_of_risk_and_hazard_from_the_angle_of_different_stakeholders.pdf
    52. M. Sayar and C. Holm, “Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations,” Physical Review E, vol. 82, no. 3, Art. no. 3, 2010, doi: 10.1103/PhysRevE.82.031901.
    53. C. Rohde, “A Local and Low-Order Navier-Stokes-Korteweg System,” Contemporary Mathematics, vol. 526, pp. 315--337, 2010, doi: 10.1090/conm/526.
    54. T. Ricken, U. Dahmen, and O. Dirsch, “A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction,” Biomechanics and Modeling in Mechanobiology, vol. 9, no. 4, Art. no. 4, Aug. 2010, doi: 10.1007/s10237-009-0186-x.
    55. T. Ricken and J. Bluhm, “Remodeling and growth of living tissue: a multiphase theory,” Archive of Applied Mechanics, vol. 80, no. 5, Art. no. 5, 2010.
    56. O. Renn, “The contribution of different types of knowledge towards understanding, sharing and communicating risk concepts,” Catalan Journal of Communication & Cultural Studies, vol. 2, no. 2, Art. no. 2, 2010, doi: 10.1386/cjcs.2.2.177_1.
    57. M. Reble and F. Allgöwer, “Stabilizing design parameters for model predictive control of constrained nonlinear time-delay systems,” 9th IFAC Workshop on Time Delay Systems, vol. 0, pp. 361--366, 2010, doi: 10.3182/20100607-3-CZ-4010.00064.
    58. M. Reble and F. Allgöwer, “General Design Parameters of Model Predictive Control for Nonlinear Time-Delay Systems,” Proc.  49th IEEE Conference on Decision and Control, vol. 0, pp. 176--181, 2010, doi: 10.1109/CDC.2010.5718067.
    59. N. Radde, “Fixed point characterization of biological networks with complex graph topology,” Bioinformatics, vol. 26, no. 22, Art. no. 22, 2010, doi: 10.1093/bioinformatics/btq517.
    60. B. Qiao, J. J. Cerda, and C. Holm, “Poly(styrenesulfonate)-Poly(diallyldimethylammonium) Mixtures: Toward the Understanding of Polyelectrolyte Complexes and Multilayers via Atomistic Simulations,” Macromolecules, vol. 43, no. 18, Art. no. 18, 2010, doi: 10.1021/ma101091k.
    61. S. Oladyshkin, H. Class, R. Helmig, and W. Nowak, “Highly efficient tool for probabilistic risk assessment of CCS joint with injection design,” Proceedings of XVIII International Conference on Water Resources, vol. 0, 2010, [Online]. Available: http://congress.cimne.com/CMWR2010/Proceedings/docs/p15.pdf
    62. P. Nuske, B. Faigle, R. Helmig, J. Niessner, and I. Neuweiler, “Modeling gas-water processes in fractures with fracture flow properties obtained through upscaling,” Water Resources Research, vol. 46, 2010, doi: 10.1029/2009WR008076.
    63. W. Nowak, F. P. J. de Barros, and Y. Rubin, “Bayesian Geostatistical Design: Task-Driven Optimal Site Investigation When the Geostatistical Model is Uncertain,” Water Resources Research, vol. 46, p. W03535, 2010, doi: 10.1029/2009WR008312.
    64. W. Nowak, “Measures of Parameter Uncertainty in Geostatistical Estimation and Geostatistical Optimal Design,” Mathematical Geosciences, vol. 42, no. 2, Art. no. 2, 2010, doi: 10.1007/s11004-009-9245-1.
    65. F. Niedermann, S. Radeschütz, and B. Mitschang, “Design-Time Process Optimization through Optimization Patterns and Process Model Matching,” Proceedings of the 12th Conference on Commerce and Enterprise Computing (CEC), 2010, doi: 10.1109/CEC.2010.9.
    66. A. Neelov and C. Holm, “Interlaced P3M algorithm with analytical and ik-differentiation,” Journal of Chemical Physics, vol. 132, no. 23, Art. no. 23, 2010, doi: 10.1063/1.3430521.
    67. P. Naghipour, M. Bartsch, L. Chernova, J. Hausmann, and H. Voggenreiter, “Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations,” Materials Science and Engineering: A, vol. 527, no. 3, Art. no. 3, 2010, doi: 10.1016/j.msea.2009.07.069.
    68. U. Münz, A. Papachristodoulou, and F. Allgöwer, “Delay robustness in consensus problems,” Automatica, vol. 46, no. 8, Art. no. 8, 2010, doi: 10.1016/j.automatica.2010.04.008.
    69. J. Möhrmann, G. Heidemann, C. Hubig, U.-P. Käppeler, and P. Levi, “Context Generation with Image Based Sensors. An Interdisciplinary Enquiry on Technical and Social Issues and their Implications for Systen Design,” WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, vol. 61, pp. 311--317, 2010, doi: 10.1.1.192.8466.
    70. M. Mottahedi, A. Dadalau, A. Hafla, and A. Verl, “Numerical analysis of relaxation test based on Prony series material model,” Integrated Systems, Design and Technology, vol. 0, 2010, doi: 10.1007/978-3-642-17384-4_8.
    71. D. Molnar, P. Binkele, S. Hocker, and S. Schmauder, “Multiscale Modelling of Nano Tensile Tests for Different Cu-Precipitation States in u000balpha-Fe,” Proceedings of the Fifth International Conference on Multiscale Materials Modeling, vol. 0, pp. 235--239, 2010, [Online]. Available: http://www.verlag.fraunhofer.de/bookshop/buch/Proceedings-of-the-Fifth-International-Conference-Multiscale-Materials-Modeling-MMM2010/234391
    72. H. Minamoto, R. Seifried, P. Eberhard, and S. Kawamuraa, “Analysis of repeated impacts on a steel rod with visco-plastic material behavior,” European Journal of Mechanics - A/Solids, vol. 30, no. 3, Art. no. 3, 2010, doi: 10.1016/j.euromechsol.2010.12.002.
    73. C. Miehe, F. Welschinger, and M. Hofacker, “Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations,” International Journal of Numerical Methods in Engineering, vol. 83, no. 10, Art. no. 10, 2010, doi: 10.1002/nme.2861.
    74. C. Miehe, F. Welschinger, and M. Hofacker, “A Phase Field Model of Electromechanical Fracture,” Journal of the Mechanics and Physics of Solids, vol. 58, no. 10, Art. no. 10, 2010, doi: 10.1016/j.jmps.2010.06.013.
    75. C. Miehe, D. Rosato, and I. Frankenreiter, “Fast estimates of evolving orientation microstructures in textured bcc polycrystals at finite plastic strains,” Acta Materialia, vol. 58, pp. 4911--4922, 2010, doi: 10.1016/j.actamat.2010.05.004.
    76. C. Miehe, M. Hofacker, and F. Welschinger, “A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits,” Computer Methods in Applied Mechanics and Engineering, vol. 199, pp. 2765--2778, 2010, doi: 10.1016/j.cma.2010.04.011.
    77. C. Miehe, J. Dettmar, and D. Zäh, “Homogenization and Two-Scale Simulations of Granular Materials for Different Microstructural Constraints,” International Journal of Numerical Methods in Engineering, vol. 83, pp. 1206--1236, 2010, doi: 10.1002/nme.2875.
    78. B. Markert, Y. Heider, and W. Ehlers, “Comparison of monolithic and splitting solution schemes for dynamic porous media problems,” International Journal for Numerical Methods in Engineering, vol. 82, no. 11, Art. no. 11, 2010, doi: 10.1002/nme.2789.
    79. J. Mabuma, B. Markert, and W. Ehlers, “Continuum-Mechanical Modelling of Hip Cartilage under Physio-Dynamical Loading,” Proceedings in Applied Mathematics and Mechanics, vol. 10, pp. 693--694, 2010, doi: 10.1002/pamm.201010331.
    80. W. Li and S. Simon, “Numerical Error Analysis for Statistical Software on Multi-Core Systems,” Proceedings of COMPSTAT’2010, vol. 0, pp. 1287--1294, 2010, [Online]. Available: http://www-roc.inria.fr/axis/COMPSTAT2010/images/contents_ebook.pdf
    81. B. Leonhardi, B. Mitschang, R. Pulido, C. Sieb, and M. Wurst, “Augmenting OLAP exploration with dynamic advanced analytics,” Proceedings of the 13th International Conference on Extending Database Technology, vol. 0, pp. 687--692, 2010, doi: 10.1145/1739041.1739127.
    82. I. E. Köse and C. W. Scherer, “Gain Scheduled Control Synthesis using Dynamic D-Scales,” 49th IEEE Conf. Decision and Control, vol. 0, 2010, doi: 10.1109/CDC.2010.5717880.
    83. H. Köröglu and C. W. Scherer, “Robust generalized asymptotic regulation against non-stationary sinusoidal disturbances with uncertain frequencies,” SO International Journal of Robust and Nonlinear Control, vol. 21, no. 21, Art. no. 21, 2010, doi: 10.1002/rnc.1634.
    84. H. Köroglu and C. W. Scherer, “Robust generalized asymptotic regulation against non-stationary sinusodial disturbances with uncertain frequencies,” Int. J. Robust Nonlin., vol. 21, pp. 883–903, 2010, [Online]. Available: https://doi.org/10.1002/rnc.1634
    85. J. Kästner and P. Sherwood, “The ribosome catalyzes peptide bond formation by providing high ionic strength,” Molecular Physics, vol. 108 (3–4), pp. 293--306, 2010, doi: 10.1080/00268970903446764.
    86. T. Kurz, P. Eberhard, C. Henninger, and W. Schiehlen, “From Neweul to Neweul-M2: Symbolical Equations of Motion for Multibody System Analysis and Synthesis,” Multibody System Dynamics, vol. 24, no. 1, Art. no. 1, 2010, doi: 10.1007/s11044-010-9187-x.
    87. C. Krekeler et al., “Electrostatic properties of liquid 1,3-dimethylimidazolium chloride: role of local polarization and effect of the bulk,” Physical Chemistry Chemical Physics, vol. 12, no. 8, Art. no. 8, 2010, doi: 10.1039/b917803c.
    88. R. Krause, B. Markert, and W. Ehlers, “A Porous Media Model for the Description of Adaptive Bone Remodelling,” Proceedings in Applied Mathematics and Mechanics, vol. 10, pp. 79--80, 2010, doi: 10.1002/pamm.201010032.
    89. M. Kranz, P. Holleis, and A. Schmidt, “Embedded interaction: Interacting with the internet of things,” IEEE Internet Computing, vol. 14, no. 2, Art. no. 2, 2010, doi: 10.1109/MIC.2009.141.
    90. A. Kramer and N. Radde, “Towards experimental design using a Bayesian framework for parameter identification in dynamic intracellular network models,” Procedia Computer Science, vol. 1, no. 1, Art. no. 1, 2010, doi: 10.1016/j.procs.2010.04.184.
    91. A. Kramer and N. Radde, “A Statistical Framework for Noise Separation in Dynamic Models of Intracellular Networks,” AIP Conf. Proc., vol. 1303, pp. 68--73, 2010, doi: 10.1063/1.3527187.
    92. A. Kramer, J. Hasenauer, F. Allgöwer, and N. Radde, “Computation of the posterior entropy in a Bayesian framework for parameter estimation in biological networks,” IEEE Multi Conference on Systems and Control, vol. 0, pp. 493--498, 2010, doi: 10.1109/CCA.2010.5611198.
    93. O. Kopp, K. Görlach, and F. Leymann, “Extending Choreography Spheres to Improve Simulations,” International Organization for Information Integration and Web-based Application and Services 2010 (iiWAS 2010), 2010, doi: 10.1145/1967486.1967598.
    94. A. Kopp, P. J. Binning, K. Johannsen, R. Helmig, and H. Class, “A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage,” Advances in Water Resources, vol. 33, no. 8, Art. no. 8, 2010, doi: 10.1016/j.advwatres.2010.05.001.
    95. I. Komarova and W. Ehlers, “A Multiphasic Model Describing the CO2 Injection Problem,” Proceedings in Applied Mathematics and Mechanics, vol. 10, pp. 373--374, 2010, doi: 10.1002/pamm.201010179.
    96. A. Kohler, G. Schley, and M. Radetzki, “Fault Tolerant Network on Chip Switching with Graceful Performance Degradation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 6, Art. no. 6, 2010, doi: 10.1109/TCAD.2010.2048399.
    97. F. Kissling and C. Rohde, “The computation of nonclassical shock waves with a heterogeneous multiscale method,” Networks and Heterogeneous Media, vol. 5, no. 3, Art. no. 3, 2010, doi: 10.3934/nhm.2010.5.661.
    98. D. Kern, P. Marshall, and A. Schmidt, “Gazemarks: gaze-based visual placeholders to ease attention switching,” Proceedings of the 28th international conference on Human factors in computing systems, pp. 2093--2102, 2010, doi: 10.1145/1753326.1753646.
    99. D. Kauker, H. Sanftmann, S. Frey, and T. Ertl, “Memory Saving Fourier Transform on GPUs,” Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on, pp. 1152--1157, 2010, doi: 10.1109/CIT.2010.209.
    100. D. Karastoyanova and F. Leymann, “Making Scientific Applications on the Grid Reliable Through Flexibility Approaches Borrowed from Service Compositions,” Handbook of Research on P2P and Grid Systems for Service-Oriented Computing: Models, Methodologies and Applications, pp. 635--656, 2010, doi: 10.4018/978-1-61520-686-5.ch027.
    101. D. Karastoyanova, “On Scientific Experiments and Flexible Service Compositions,” From Active Data Management to Event-Based Systems and More, vol. 6462, pp. 175--194, 2010, doi: 10.1007/978-3-642-17226-7_11.
    102. A. Kaplanyan and C. Dachsbacher, “Cascaded Light Propagation Volumes for Real-Time Indirect Illumination,” Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, vol. 0, 2010, doi: 10.1145/1730804.1730821.
    103. F. Jaegle, O. Cabrit, S. Mendez, and T. Poinsot, “Implementation methods of wall functions in cell-vertex numerical solvers,” Flow, Turbulence and Combustion, vol. 85, no. 2, Art. no. 2, 2010, doi: 10.1007/s10494-010-9276-1.
    104. E. A. Jaegle and E. J. Mittemeijer, “Predicting microstructures from phase transformation kinetics: the case of isochronal heating and cooling from a supersaturated matrix,” Modelling and Simulation in Materials Science and Engineering, vol. 18, p. 065010, 2010, doi: 10.1088/0965-0393/18/6/065010.
    105. T. B. Ionescu, A. Piater, W. Scheuermann, and E. Laurien, “An Aspect-Oriented Approach for the Development of Complex Simulation Software,” Journal of Object Technology, vol. 9, no. 1, Art. no. 1, 2010, [Online]. Available: http://www.jot.fm/issues/issue_2010_01/article4.pdf
    106. P. Hypko, M. Tilebein, and R. Gleich, “Benefits and uncertainties of performance-based contracting in manufacturing industries: An agency theory perspective,” Journal of Service Management, vol. 21, no. 4, Art. no. 4, 2010, doi: 10.1108/09564231011066114.
    107. C. Hubig, “Leistungen und Grenzen der Virtualität beim Wissenserwerb,” Kornwachs, K.(Hrsg.): Technologisches Wissen., vol. 0, 2010, [Online]. Available: http://www.springer.com/engineering/book/978-3-642-14371-7
    108. C. Huber, H. Gomaa, and B. Weigand, “Application of a Novel Turbulence Generator to Multiphase Flows Computations,” High Performance Computing in Science and Engineering ’ 10: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2010, vol. 0, pp. 273--286, 2010, doi: 10.1007/978-3-642-15748-6_21.
    109. O. A. Hickey, C. Holm, J. L. Harden, and G. W. Slater, “Implicit Method for Simulating Electrohydrodynamics of Polyelectrolytes,” Physical Review Letters, vol. 105, no. 14, Art. no. 14, 2010, doi: 10.1103/PhysRevLett.105.148301.
    110. R. Helmig, J. Niessner, B. Flemisch, M. Wolff, and J. Fritz, “E?cient Modeling of Flow and Transport in Porous Media Using Multiphysics and Multiscale Approaches,” Handbook of Geomathematics, vol. 0, pp. 417--457, 2010, doi: 10.1007/978-3-642-01546-5_15.
    111. R. Helmig, J. Niessner, and H. Class, “Recent advances in finite element methods for multi-phase flow processes in porous media,” International Journal of Computational Fluid Dynamics, vol. 20, pp. 245--252, 2010, doi: 10.1080/00036810600792154.
    112. Y. Heider, B. Markert, and W. Ehlers, “Dynamic Wave Propagation in Porous Media Semi-Infinite Domains,” Proceedings in Applied Mathematics and Mechanics, vol. 10, pp. 499--500, 2010, doi: 10.1002/pamm.201010242.
    113. J. Hasenauer, S. Waldherr, K. Wagner, and F. Allgöwer, “Parameter Identification, Experimental Design and Model Falsification for Biological Network Models Using Semidefinite Programming,” IET Syst. Biol., vol. 4, no. 2, Art. no. 2, 2010, doi: 10.1049/iet-syb.2009.0030.
    114. J. Hasenauer, S. Waldherr, N. Radde, M. Doszczak, P. Scheurich, and F. Allgöwer, “A maximum likelihood estimator for parameter distributions in heterogeneous cell populations,” Procedia Computer Science, vol. 1, no. 1, Art. no. 1, 2010, doi: 10.1016/j.procs.2010.04.185.
    115. J. Hasenauer, S. Waldherr, M. Doszczak, P. Scheurich, and F. Allgöwer, “Density-based modeling and identification of biochemical networks in cell populations,” Proc. of 9th Int. Symp. on Dynamics and Control of Process Syst. (DYCOPS), Leuven, Belgium, vol. 9, pp. 320--325, 2010, doi: 10.3182/20100705-3-BE-2011.00053.
    116. J. Hasenauer, P. Rumschinski, S. Waldherr, S. Borchers, F. Allgöwer, and R. Findeisen, “Guaranteed steady state bounds for uncertain (bio-)chemical processes using infeasibility certificates,” J. Process Control, vol. 20, no. 9, Art. no. 9, 2010, doi: 10.1016/j.jprocont.2010.06.004.
    117. J. Hasenauer, C. Breindl, S. Waldherr, and F. Allgöwer, “Approximative classification of regions in parameter spaces of nonlinear ODEs yielding different qualitative behavior,” Proceedings of the IEEE Conference on Decision and Control (CDC), Atlanta, USA, vol. 0, pp. 4114--4119, 2010, doi: 10.1109/CDC.2010.5718044.
    118. H. Harbrecht, “Finite element based second moment analysis for elliptic problems in stochastic domains,” Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2009, vol. 0, pp. 433--442, 2010, doi: 10.1007/978-3-642-11795-4_46.
    119. H. Harbrecht, “On Output Functionals of Boundary Value Problems on Stochastic Domains,” Mathematical Methods in the Applied Sciences, vol. 33, no. 1, Art. no. 1, 2010, doi: 10.1002/mma.1153.
    120. H. Harbrecht, “A finite element method for elliptic problems with stochastic input data,” Applied Numerical Mathematics, vol. 60, no. 3, Art. no. 3, 2010, doi: 10.1016/j.apnum.2009.12.002.
    121. B. Haasdonk and E. Pekalska, “Indefinite Kernel Discriminant Analysis,” Proceedings of COMPSTAT 2010, pp. 221--230, 2010, doi: 10.1007/978-3-7908-2604-3_20.
    122. B. Haasdonk, “Effiziente und gesicherte Modellreduktion für parametrisierte dynamische Systeme,” at-Automatisierungstechnik, vol. 58, no. 8, Art. no. 8, 2010, doi: 10.1524/auto.2010.0861.
    123. M. Günther and S. Schmitt, “A macroscopic ansatz to deduce the Hill relation,” Journal of Theoretical Biology, vol. 263, no. 4, Art. no. 4, 2010, doi: 10.1016/j.jtbi.2009.12.027.
    124. A.-Y. Guo, J. Sun, P. Jia, and Z. Zhao, “A Novel microRNA and transcription factor mediated regulatory network in schizophrenia,” BMC Systems Biology, vol. 4, no. 10, Art. no. 10, 2010, doi: 10.1186/1752-0509-4-10.
    125. C. C. Gruber and J. Pleiss, “Systematic benchmarking of large molecular dynamics simulations employing GROMACS on massive multiprocessing facilities.,” Journal of Computational Chemistry, vol. 32, no. 4, Art. no. 4, 2010, doi: 10.1002/jcc.21645.
    126. K. Grass and C. Holm, “Mesoscale modelling of polyelectrolyte electrophoresis,” Faraday Discussions, vol. 144, 2010, doi: 10.1039/b902011j.
    127. T. P. M. Goumans and J. Kästner, “Hydrogen Atom Tunneling Could Contribute to H2 Formation in Space,” Angew. Chem. Int. Ed., vol. 49, no. 40, Art. no. 40, 2010, doi: 10.1002/anie.201001311.
    128. H. Gomaa, N. Roth, J. Schlottke, and B. Weigand, “DNS Calculations for the Modelling of Real Industrial Applications,” Atomization and Sprays, vol. 20, no. 4, Art. no. 4, 2010, doi: 10.1615/AtomizSpr.v20.i4.
    129. H. Gilbergs, K. Frenner, P. Eberhard, and W. Osten, “Modellgestützte Rekonstruktion der Lage von dezentrierten Linsen in optischen Systemen,” DGaO-Proceedings, vol. 111, 2010, [Online]. Available: http://www.dgao-proceedings.de/abstract/abstract_only.php?id=1166
    130. M. Gerken et al., “Fluorescence correlation spectroscopy reveals topological segregation of the two tumor necrosis factor membrane receptors,” Biochimica et Biophysica Acta, vol. 1798, no. 6, Art. no. 6, 2010, doi: 10.1016/j.bbamem.2010.02.021.
    131. E. Gabriel, S. Feki, K. Benkert, and M. Resch, “Towards performance portability through runtime adaptation for high performance computing applications,” Concurrency and Computation: Practice and Experience, vol. 22, no. 16, Art. no. 16, 2010, doi: 10.1002/cpe.1586.
    132. A. Freuer, M. Reble, C. Böhm, and F. Allgöwer, “Efficient Model Predictive Control for Linear Periodic Systems,” Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, pp. 1403--1409, 2010, [Online]. Available: http://www.conferences.hu/mtns2010/proceedings/Papers/240_066.pdf
    133. F. Fleissner, A. Lehnart, and P. Eberhard, “Dynamic simulation of sloshing fluid and granular cargo in transport vehicles,” Vehicle System Dynamics, vol. 48, no. 1, Art. no. 1, 2010, doi: 10.1080/00423110903042717.
    134. J. Fehr and P. Eberhard, “Error-controlled Model Reduction in Flexible Multibody Dynamics,” ASME Journal of Computational and Nonlinear Dynamics, vol. 5, no. 3, Art. no. 3, 2010, doi: 10.1115/1.4001372.
    135. M. Falk, M. Klann, M. Reuss, and T. Ertl, “3D Visualization of Concentrations from Stochastic Agent-based Signal Transduction Simulations,” Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI ’10), vol. 0, pp. 1301--1304, 2010, [Online]. Available: http://dx.doi.org/10.1109/ISBI.2010.5490235
    136. W. Ehlers, “Homogenisation of discrete media towards micropolar continua: a computational approach,” AIP Proceedings, vol. 1227, pp. 306--313, 2010, doi: 10.1063/1.3435400.
    137. C. Eck, B. Jadamba, and P. Knabner, “Error estimates for a finite element dicretization of a phase field model for mixtures,” SIAM Journal of Numerical Analysis, vol. 47, no. 6, Art. no. 6, 2010, doi: 10.1137/050637984.
    138. R. Echter and M. Bischoff, “Numerical efficiency, locking and unlocking of NURBS finite elements,” Computer Methods in Applied Mechanics and Engineering, vol. 199 (5–8), pp. 374--382, 2010, doi: 10.1016/j.cma.2009.02.035.
    139. F. Dommert et al., “Towards multiscale modeling of ionic liquids: From electronic structure to bulk properties,” Journal of Molecular Liquids, vol. 152 (1–3), pp. 2--8, 2010, doi: 10.1016/j.molliq.2009.06.014.
    140. S. G. Dietz and C. W. Scherer, “Robust output feedback control against disturbance filter uncertainty described by dynamic integral quadratic constraints,” Int. J. Robust Nonlin., vol. 20, no. 17, Art. no. 17, Nov. 2010, [Online]. Available: https://doi.org/10.1002/rnc.1554
    141. M. Daub, S. Waldherr, F. Allgöwer, P. Scheurich, and G. Schneider, “Death wins against life in a spatially extended model of the caspase-3/8 feedback loop,” BioSystems, vol. 108, pp. 45--51, 2010, doi: 10.1016/j.biosystems.2012.01.006.
    142. D. DAndrea, C.-D. Munz, and R. Schneider, “Modeling of Long-Range Intra- and Inter-Species Charged Particle Collisions for PIC Simulations,” Communications in Computational Physics, vol. 7, pp. 877--903, 2010, doi: 10.4208/cicp.2009.09.094.
    143. A. Dadalau, M. Mottahedi, K. Groh, and A. Verl, “Parametric Modeling of ball screw spindles,” Production Engineering Research and Development, vol. 4, no. 6, Art. no. 6, 2010, doi: 10.1007/s11740-010-0264-z.
    144. J. J. Cerda, E. Elfimova, V. Ballenegger, E. Krutikova, A. Ivanov, and C. Holm, “Behavior of bulky ferrofluids in the diluted low-coupling regime: Theory and simulation,” Physical Review E, vol. 81, no. 1, Art. no. 1, 2010, doi: 10.1103/PhysRevE.81.011501.
    145. M. Bürger, G. Schmidt, and F. Allgöwer, “Preference Based Group Agreement in Cooperative Control,” IFAC Symposium on Nonlinear Control Systems (NOLCOS), vol. 0, pp. 149--154, 2010, doi: 10.3182/20100901-3-IT-2016.00176.
    146. M. Bürger and M. Guay, “Robust Constraint Satisfaction for Continuous-Time Nonlinear Systems in Strict Feedback Form,” IEEE Transactions on Automatic Control, vol. 55, no. 11, Art. no. 11, 2010, doi: 10.1109/TAC.2010.2061090.
    147. C. Böhm, M. Lazar, and F. Allgöwer, “A relaxation of Lyapunov conditions and controller synthesis for discrete-time periodic systems,” 49th IEEE Conference on Decision and Control, pp. 3277--3282, 2010, doi: 10.1109/CDC.2010.5717076.
    148. C. Böhm, M. Lazar, and F. Allgöwer, “Stability analysis of periodically time-varying systems using periodic tLyapunov functions,” IFAC Workshop on Periodic Control Systems, pp. 57--62, 2010, doi: 10.3182/20100826-3-TR-4016.00014.
    149. C. Böhm, R. Findeisen, and F. Allgöwer, “Robust control of constrained sector bounded Lure systems with applications to nonlinear model predictive control,” Dynamics of Continuous, Discrete and Impulsive Systems - Series B, vol. 17, no. 6, Art. no. 6, 2010, [Online]. Available: http://online.watsci.org/contents2010/v17n6b.html
    150. C. Böhm and F. Allgöwer, “Efficient offline model predictive control of constrained nonlinear tperiodic systems,” IFAC Workshop on Periodic Control Systems, pp. 12--17, 2010, doi: 10.3182/20100826-3-TR-4016.00006.
    151. C. Breindl, S. Waldherr, and F. Allgöwer, “A robustness measure for the stationary behavior of qualitative gene regulation networks,” Proceedings of the 11th International Symposium on Computer Applications in Biotechnology (CAB 2010), vol. 11, pp. 36--41, 2010, doi: 10.3182/20100707-3-BE-2012.0031.
    152. C. Braun and H.-J. Wunderlich, “Algorithmen-basierte Fehlertoleranz für Many-Core-Architekturen,” it - Information Technology, vol. 52, no. 4, Art. no. 4, 2010, doi: 10.1524/itit.2010.0593.
    153. V. Boschert, A. Krippner-Heidenreich, M. Branschädel, J. Tepperink, A. Aird, and P. Scheurich, “Single chain TNF derivatives with individually mutated receptor binding sites reveal differential stoichiometry of ligand receptor complex formation for TNFR1 and TNFR2,” Cellular Signalling, vol. 22, no. 7, Art. no. 7, 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20206684
    154. A. Benzing, B. Koldehofe, M. Völz, and K. Rothermel, “Multilevel Predictions for the Aggregation of Data in Global Sensor Networks,” Proceedings of the 14th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications, vol. 0, pp. 169--178, 2010, doi: 10.1109/DS-RT.2010.26.
    155. M. Bader, C. Beck, J. Schwaiger, and C. Vigh, “Dynamically Adaptive Simulations with Minimal Memory Requirement-Solving the Shallow Water Equations Using Sierpinski Curves,” SIAM Journal on Scientific Computing, vol. 32, no. 1, Art. no. 1, 2010, doi: 10.1137/080728871.
    156. O. Avci and W. Ehlers, “Stress-dependent Failure Surface of Granular Materials,” Proceedings in Applied Mathematics and Mechanics, vol. 10, pp. 697--698, 2010, doi: 10.1002/pamm.201010333.
    157. E. Arnold, “Can the Best-Alternative-Justification solve Hume`s Problem? On the Limits of a Promising Approach.,” Philosophy of Science, vol. 77, no. 4, Art. no. 4, 2010, doi: 10.1086/656010.
  14. 2009

    1. P. Viccione, C. W. Scherer, and M. Innocenti, “LPV Synthesis with Integral Quadratic Constraints for Distributed Control of Interconnected Systems,” in 6th IFAC Symposium on Robust Control Design, in 6th IFAC Symposium on Robust Control Design. Haifa, 2009. [Online]. Available: https://doi.org/10.3182/20090616-3-IL-2002.00003
    2. J. Veenman, H. Köroglu, and C. W. Scherer, “IQC-Based LPV Controller Synthesis for the NASA HL20 Atmospheric Re-entry Vehicle,” in Proc. AIAA Guidance, Navigation and Control Conf., in Proc. AIAA Guidance, Navigation and Control Conf. 2009. [Online]. Available: https://doi.org/10.2514/6.2009-5636
    3. J. Veenman, H. Köroglu, and C. W. Scherer, “Analysis of the controlled NASA HL20 atmospheric re-entry vehicle based on Dynamic IQCs,” in Proc. AIAA Guidance, Navigation and Control Conf., in Proc. AIAA Guidance, Navigation and Control Conf. 2009. [Online]. Available: https://doi.org/10.2514/6.2009-5637
    4. C. Scherer, “Robust Controller Synthesis is Convex for Systems without Control Channel Uncertainties,” in Model-Based Control: Bridging Rigorous Theory and Advanced Technology, P. M. J. V. den Hof, C. W. Scherer, and P. S. C. Heunberger, Eds., in Model-Based Control: Bridging Rigorous Theory and Advanced Technology. , Springer US, 2009, pp. 13–30. [Online]. Available: https://doi.org/10.1007/978-1-4419-0895-7
    5. P. Wieland and F. Allgöwer, An Internal Model Principle for Synchronization, vol. 0. 2009. doi: 10.1109/ICCA.2009.5410591.
    6. P. M. J. V. den Hof, C. W. Scherer, and P. S. C. Heunberger, Model-Based Control: Bridging Rigorous Theory and Advanced Technology. Springer-Verlag, 2009. [Online]. Available: https://link.springer.com/book/10.1007%2F978-1-4419-0895-7
    7. S. Yu, H. Chen, C. Böhm, and F. Allgöwer, “Enlarging the Terminal Region of NMPC with Parameter-Dependent Terminal Control Law,” Nonlinear Model Predictive Control - Towards New Challenging Applications. LNCIS., vol. 384, pp. 69--78, 2009, doi: 10.1007/978-3-642-01094-1_5.
    8. S. Yu, C. Böhm, H. Chen, and F. Allgöwer, “Moving horizon l2 control of LPV systems subject to constraints,” 14th Conference on Methods and Models in Automation and Robotics, vol. 14, no. 1, Art. no. 1, 2009, doi: 10.3182/20090819-3-PL-3002.00062.
    9. S. Yu, C. Böhm, H. Chen, and F. Allgöwer, “Stabilizing Model Predictive Control for LPV Systems Subject to Constraints with Parameter-Dependent Control Law,” American Control Conference, vol. 0, pp. 3118--3123, 2009, doi: 10.1109/ACC.2009.5160398.
    10. S. Xiao, W. Stacklies, M. Cetinkaya, B. Markert, and F. Gräter, “Mechanical Response of Silk Crystalline Units from Force-Distribution Analysis,” Biophysical Journal, vol. 96, no. 10, Art. no. 10, 2009, doi: 10.1016/j.bpj.2009.02.052.
    11. P. Wieland and F. Allgöwer, “An Internal Model Principle for Consensus in Heterogeneous Linear Multi-Agent Systems,” Estimation and Control of Networked Systems, vol. 0, pp. 7--12, 2009, doi: 10.3182/20090924-3-IT-4005.00002.
    12. M. Wieland, K. Görlach, D. Schumm, and F. Leymann, “Towards Reference Passing in Web Service and Workflow-based Applications,” Enterprise Distributed Object Computing Conference, vol. 0, pp. 109--118, 2009, doi: 10.1109/EDOC.2009.17.
    13. H. Weking, C. Huber, and B. Weigand, “Direct Numerical Simulation of Single Gaseous Bubbles in Viscous Liquids,” High Performance Computing in Science and Engineering ’ 09: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2009, vol. 0, pp. 273--286, 2009, doi: 10.1007/978-3-642-04665-0_20.
    14. A. Weiss and B. Wohlmuth, “A posteriori error estimator and error control for contact problems,” Math. Comp., vol. 78, no. 267, Art. no. 267, 2009, [Online]. Available: http://www.ams.org/journals/mcom/2009-78-267/S0025-5718-09-02235-2/home.html
    15. S. Waldherr, J. Hasenauer, and F. Allgöwer, “Estimation of biochemical network parameter distributions in cell populations,” In Proc. of 15th IFAC Symposium on System Identification, 2009, vol. 15, no. 1, Art. no. 1, 2009, doi: 10.3182/20090706-3-FR-2004.00210.
    16. S. Waldherr, F. Allgöwer, and E. W. Jacobsen, “Kinetic perturbations as robustness analysis tool for biochemical reaction networks,” Proc. of the IEEE Conf. Dec. Contr. (CDC), vol. 48, pp. 4572--4577, 2009, doi: 10.1109/CDC.2009.5400939.
    17. H.-R. Trebin et al., “Simulating structure and physical properties of complex metallic alloys,” Properties and applications of complex intermetallics, vol. 0, pp. 291--329, 2009, [Online]. Available: http://ebooks.worldscinet.com/ISBN/9789814261647/9789814261647_0008.html
    18. A. Taube, M. Dumbser, C.-D. Munz, and R. Schneider, “A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 22, no. 1, Art. no. 1, 2009, doi: 10.1002/jnm.700.
    19. M. Suezen, M. Sega, and C. Holm, “Ensemble inequivalence in single-molecule experiments,” Physical Review E, vol. 79, no. 5, Art. no. 5, 2009, doi: 10.1103/PhysRevE.79.051118.
    20. M. Strengert, C. Müller, C. Dachsbacher, and T. Ertl, “A compute unified system architecture for graphics clusters incorporating data locality,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 4, Art. no. 4, 2009, doi: 10.1109/TVCG.2008.188.
    21. V. Stolarski and M. Tilebein, “Diversity as a knowledge resource in top management teams - a framework for agent based modelling,” 42nd Hawaii International Conference on System Science, pp. 1--10, 2009, doi: 10.1109/HICSS.2009.164.
    22. I. Steinwart, D. Hush, and C. Scovel, “Learning from dependent observations,” Journal of Multivariate Analysis, vol. 100, pp. 175--194, 2009, doi: 10.1016/j.jmva.2008.04.001.
    23. I. Steinwart and M. Anghel, “An SVM approach for forecasting the evolution of an unknown ergodic dynamical system from observations with unknown noise,” Annals of Statistics, vol. 37, no. 2, Art. no. 2, 2009, doi: 10.1214/07-AOS562.
    24. J. Smiatek, M. Sega, C. Holm, U. D. Schiller, and F. Schmid, “Mesoscopic simulations of the counterion-induced electro-osmotic flow: A comparative study,” Journal of Chemical Physics, vol. 130, no. 24, Art. no. 24, 2009, doi: 10.1063/1.3152844.
    25. P. Sekler and A. Verl, “Real-Time Computation of the System Behaviour of Lightweight Machines,” IEEE Computer Society, Simul 2009, vol. 1, pp. 144--147, 2009, doi: 10.1109/SIMUL.2009.14.
    26. M. Schweitzer, “An adaptive hp-version of the multilevel particle-partition of unity method,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 13, Art. no. 13, 2009, doi: 10.1016/j.cma.2008.01.009.
    27. M. Schweitzer, “An Algebraic Treatment of Essential Boundary Conditions in the Particle-Partition of Unity Method,” SIAM Journal on Scientific Computing, vol. 31, no. 2, Art. no. 2, 2009, doi: 10.1137/080716499.
    28. G. S. Schmidt, U. Münz, and F. Allgöwer, “Multi-Agent Speed Consensus using Delayed Position  Feedback with Application to Kuramoto Oscillators,” Proceedings of the European Control Conference, vol. 0, pp. 2464--2469, 2009, [Online]. Available: http://ieeexplore.ieee.org/abstract/document/7074775/
    29. H. Schmid et al., “Impact of transmural heterogeneities on arterial adaptation - Application to aneurysm formation,” Biomechanics and Modeling in Mechanobiology, vol. 9, no. 3, Art. no. 3, 2009, doi: 10.1007/s10237-009-0177-y.
    30. J. Schlottke, E. Dülger, and B. Weigand, “A VOF-Based 3D Numerical Investigation of evaporating, deformed Droplets,” Progress In Computational Fluid Dynamics, vol. 9 (6/7), pp. 426--435, 2009, doi: 10.1504/PCFD.2009.027374.
    31. W. Schiehlen, P. Eberhard, C. Henninger, and T. Kurz, “Symbolical Equations of Motion for Vehicle System Analysis and Synthesis,” Proceedings of 7th EUROMECH Solid Mechanics Conference, vol. 0, 2009, [Online]. Available: http://web.univ-ubs.fr/limatb/EG2M/Disc_Seminaire/ESMC2009/papers/MS-29/pap_0285_MS-29.pdf
    32. H. Saini, J. N. Waddell, A. J. Pullan, and O. Röhrle, “Automatically Generating Subject-Specific Functional Tooth Surfaces Using Virtual Mastication,” Annals of Biomedical Engineering, vol. 37, no. 8, Art. no. 8, 2009, doi: 10.1007/s10439-009-9725-y.
    33. F. Rösch and H.-R. Trebin, “Crack front propagation by kink formation,” EPL, vol. 87, no. 6, Art. no. 6, 2009, doi: 10.1209/0295-5075/87/66004.
    34. F. Rösch and H.-R. Trebin, “Brittle fracture in a complex metallic compound from an atomistic viewpoint: NbCr2, a case study,” EPL, vol. 85, no. 5, Art. no. 5, 2009, doi: 10.1209/0295-5075/85/56002.
    35. O. Röhrle, J. N. Waddell, K. D. Foster, H. Saini, and A. J. Pullan, “Using a Motion-Capture System to Record Dynamic Articulation for Application in CAD/CAM Software,” Journal of Prosthodontics, vol. 18, no. 8, Art. no. 8, 2009, doi: 10.1111/j.1532-849X.2009.00510.x.
    36. O. Röhrle, “Simulating the Electro-Mechanical Behavior of Skeletal Muscles,” Computing in Science and Engineering, vol. 12, no. 6, Art. no. 6, 2009, doi: 10.1109/MCSE.2010.30.
    37. S. Roller, M. Resch, M. Galle, and W. Bez, “The Teraflop Workbench - Enhancing High Sustained Performance on Vector Systems,” GSIS Interdisciplinary Information Sciences, 2009, doi: 10.4036/iis.2009.45.
    38. M. Resch and E. Gabriel, “Supercomputers in grids,” International Journal of Grid and High Performance Computing, vol. 1, no. 1, Art. no. 1, 2009, doi: 10.4018/jghpc.2009010101.
    39. O. Renn, J. Deuschle, A. Jäger, and W. Weimer-Jehle, “A normative-functional concept of sustainability and its indicators,” International Journal of Global Environmental Issues, vol. 9, no. 4, Art. no. 4, 2009, doi: 10.1504/IJGENVI.2009.027260.
    40. M. Reble, C. Böhm, and F. Allgöwer, “Nonlinear Model Predictive Control for Periodic Systems using LMIs,” Proceedings of the European Control Conference, vol. 0, pp. 3365--3370, 2009, [Online]. Available: http://ieeexplore.ieee.org/abstract/document/7074925/
    41. G. Rauhut, G. Knizia, and H.-J. Werner, “Accurate calculation of anharmonic vibrational frequencies using explicitly correlated coupled-cluster theory,” Journal of Chemical Physics, vol. 130, no. 5, Art. no. 5, 2009, doi: 10.1063/1.3070236.
    42. S. Rafler, M. Petschow, U. Seifert, K. Frenner, J. Göckeritz, and W. Osten, “Effects of pupil discretization and Littrow illumination in the simulation of bright-field defect detection,” Optics Letters, vol. 34, no. 12, Art. no. 12, 2009, doi: 10.1364/OL.34.001840.
    43. S. Radeschütz and B. Mitschang, “Extended Analysis Techniques for a Comprehensive Business Process Optimization,” Proc. of the International Conference on Knowledge Management and Information Sharing (KMIS), 2009, doi: 10.5220/0002269000770082.
    44. N. Radde, N. S. Bar, and A. Tresch, “A comparison of likelihoods for dynamic stochastic models of biological networks,” Proceedings of Workshop of Computational Biology (WCSB09), vol. 0, pp. 131--134, 2009, [Online]. Available: http://www.cs.tut.fi/wcsb09/wcsb2009proceedings.pdf
    45. N. Radde, N. S. Bar, and M. Banaji, “Graphical methods for analysing feedback in biological networks - A survey,” International Journal Systems Science, vol. 41, no. 1, Art. no. 1, 2009, doi: 10.1080/00207720903151326.
    46. I. S. Pop, C. J. van Duijn, J. Niessner, and S. M. Hassanizadeh, “Horizontal redistribution of fluids in a porous medium: The role of interfacial area in modeling hysteresis,” Advances in Water Resources, vol. 32, pp. 383--390, 2009, doi: 10.1016/j.advwatres.2008.12.006.
    47. E. Pekalska and B. Haasdonk, “Kernel Quadratic Discriminant Analysis for Positive Definite and Indefinite Kernels,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 31, no. 6, Art. no. 6, 2009, doi: 10.1109/TPAMI.2008.290.
    48. W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, and H. Bloess, “Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER,” AIP Proc., vol. 1173, no. 1, Art. no. 1, 2009, doi: 10.1063/1.3251253.
    49. W. Nowak, “Best Unbiased Ensemble Linearization and the Quasi-Linear Kalman Ensemble Generator,” Water Resources Research, vol. 45, p. W04431, 2009, doi: 10.1029/2008WR007328.
    50. J. Niessner and R. Helmig, “Multi-physics modeling of flow and transport in porous media using a downscaling approach,” Advances in Water Resources, vol. 32, no. 6, Art. no. 6, 2009, doi: 10.1016/j.advwatres.2009.02.007.
    51. J. Niessner and S. M. Hassanizadeh, “Non-equilibrium interphase heat and mass transfer during two-phase flow in porous media-Theoretical considerations and modeling,” Advances in Water Resources, vol. 32, pp. 1756--1766, 2009, doi: 10.1016/j.advwatres.2009.09.007.
    52. J. Niessner and M. Hassanizadeh, “Modeling Kinetic Interphase Mass Transfer for Two-Phase Flow in Porous Media Including Fluid-Fluid Interfacial Area,” Transport in Porous Media, vol. 80, pp. 329--344, 2009, doi: 10.1007/s11242-009-9358-5.
    53. P. Naghipour, J. Schneider, M. Bartsch, J. Hausmann, and H. Voggenreiter, “Fracture simulation of CFRP laminates in mixed mode bending,” Engineering Fracture Mechanics, vol. 76, no. 18, Art. no. 18, 2009, doi: 10.1016/j.engfracmech.2009.05.009.
    54. U. Münz, A. Papachristodoulou, and F. Allgöwer, “Generalized Nyquist Consensus Condition for Linear Multi-Agent Systems with Heterogeneous Delays,” Proc. 1st IFAC Workshop on Estimation and Control of Networked Systems (NecSys ’09), vol. 0, pp. 24--29, 2009, doi: 10.3182/20090924-3-IT-4005.00005.
    55. U. Münz, A. Papachristodoulou, and F. Allgöwer, “Consensus reaching in multi-agent packet-switched networks with non-linear coupling,” International Journal of Control, vol. 82, no. 9, Art. no. 9, 2009, doi: 10.1080/00207170802398018.
    56. U. Münz, C. Böhm, J. Eck, M. Reble, P. Schumm, and F. Allgöwer, “A Matlab-Based Game for Advanced Automatic Control Education,” Proc.  8th IFAC Conference on Advances in Control Education, vol. 0, pp. 140--145, 2009, doi: 10.3182/20091021-3-JP-2009.00027.
    57. C. Miehe, S. Göktepe, and J. Mendez Diez, “Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space,” International Journal of Solids and Structures, vol. 46, no. 1, Art. no. 1, 2009, doi: 10.1016/j.ijsolstr.2008.08.029.
    58. S. Meyer, H. Simon, and M. Tilebein, “Applying agent based modelling to integrate bounded rationality in organizational management research,” 42nd Hawaii International Conference on System Science, pp. 1--10, 2009, doi: 10.1109/HICSS.2009.76.
    59. I. Masubuchi and C. W. Scherer, “A recursive algorithm of exactness verification of relaxations for robust SDPs,” Syst. Control Lett., vol. 58, pp. 592–601, 2009, [Online]. Available: https://doi.org/10.1016/j.sysconle.2009.04.002
    60. C. Linder and F. Armero, “Finite elements with embedded branching,” Finite Elements in Analysis and Design, vol. 45, no. 4, Art. no. 4, 2009, doi: 10.1016/j.finel.2008.10.012.
    61. M. Lang, S. Waldherr, and F. Allgöwer, “Amplitude distribution of stochastic oscillations in biochemical networks due to intrinsic noise,” PMC Biophysics, vol. 2, p. 10, 2009, doi: 10.1186/1757-5036-2-10.
    62. A. Lachenmann, K. Herrmann, K. Rothermel, and P. J. Marrón, “On meeting lifetime goals and providing constant application quality,” ACM Transactions on Sensor Networks, vol. 5, no. 4, Art. no. 4, 2009, doi: 10.1145/1614379.1614388.
    63. H. Köroglu and C. W. Scherer, “Generalized asymptotic regulation with guaranteed $H_2$ performance: An LMI solution,” Automatica, vol. 45, pp. 823–829, 2009, [Online]. Available: https://doi.org/10.1016/j.automatica.2008.10.026
    64. J. Kästner, “Umbrella integration in two or more reaction coordinates,” J.Chem. Phys., vol. 131, no. 3, Art. no. 3, 2009, doi: 10.1063/1.3175798.
    65. T. Kurz and P. Eberhard, “Symbolic Modeling and Analysis of Elastic Multibody Systems,” Proceedings of International Symposium on Coupled Methods in Numerical Dynamics, vol. 0, 2009, [Online]. Available: http://www.cmnd2009.fsb.hr/proc/kurz.pdf
    66. I. E. Kose and C. W. Scherer, “Robust $L_2$-gain feedforward control of uncertain systems using dynamic IQCs,” Int. J. Robust Nonlin., vol. 19, no. 11, Art. no. 11, Jul. 2009, [Online]. Available: https://doi.org/10.1002/rnc.1374
    67. A. Kohler and M. Radetzki, “Fault-Tolerant Architecture and Deflection Routing for Degradable NoC Switches,” Proceedings of the 3rd ACM/IEEE International Symposium on Networks-on-Chip, vol. 0, pp. 22--31, 2009, doi: 10.1109/NOCS.2009.5071441.
    68. A. Kohler and M. Radetzki, “A SystemC TLM2 Model of Communication in Wormhole Switched Networks-on-Chip,” Proceedings of the Forum on Specification and Design Languages, vol. 0, pp. 1--4, 2009, [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5404048
    69. A. Kohler and M. Radetzki, “Modellierung und Simulation von Networks-on-Chip mit OSCI TLM2,” Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, vol. 0, pp. 207--216, 2009, [Online]. Available: http://books.google.de/books?id=0Fh9m8o26zcC&pg=PA207&lpg=PA207&dq=modellierung+und+simulation+networks-on-chip+osci+tlm2&source=bl&ots=rnpAidPRXi&sig=gHpZMNM2EyexMlqInvmkdMezp1U&hl=en&ei=_BVwS5bcAYv6_Aaa3LXJBg&sa=X&oi=book_result&ct=result&resnum=3&ved=0
    70. H. Klimach, S. P. Roller, and C.-D. Munz, “Heterogeneous Parallelism of Aero-Acoustic Applications using PACX-MPI,” Interdisciplinary Information Sciences, vol. 15, no. 1, Art. no. 1, 2009, doi: 10.4036/iis.2009.79.
    71. F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of Non-Local Conservation Laws,” Journal of Differential Equations, vol. 247, no. 12, Art. no. 12, 2009, doi: 10.1016/j.jde.2009.05.006.
    72. J. Kelkel and C. Surulescu, “A weak solution approach to a reaction-diffusion system modeling pattern formation on seashells,” Mathematical Methods in the Applied Sciences, vol. 32, no. 17, Art. no. 17, 2009, doi: 10.1002/mma.1133.
    73. J. Kelkel and C. Surulescu, “On a stochastic reaction-diffusion system modeling pattern formation on seashells,” Journal of Mathematical Biology, vol. 60, no. 6, Art. no. 6, 2009, doi: 10.1007/s00285-009-0284-5.
    74. D. Karastoyanova and F. Leymann, “BPELn Aspects: Adapting Service Orchestration Logic,” Web Services, pp. 222--229, 2009, doi: 10.1109/ICWS.2009.75.
    75. N. Jung, B. Haasdonk, and D. Kröner, “Reduced Basis Method for Quadratically Nonlinear Transport Equations,” IJCSM, International Journal of Computing Science and Mathematics, vol. 2, no. 4, Art. no. 4, 2009, doi: 10.1504/IJCSM.2009.030912.
    76. T. B. Ionescu, A. Piater, W. Scheuermann, E. Laurien, and A. Iosup, “An Aspect-Oriented Approach for Disaster Prevention Simulation Workflows on Supercomputers, Clusters, and Grids,” Proceedings of the 13th IEEE/ACM Symposium on Distributed Simulation and Real-Time Applications - ISBN 978-0-7695-3868-6, ISSN 1550-6525, vol. 13, pp. 21--30, 2009, doi: 10.1109/DS-RT.2009.35.
    77. J. Heinrich and D. Weiskopf, “Continuous Parallel Coordinates,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, Art. no. 6, 2009, doi: 10.1109/TVCG.2009.131.
    78. J. Hasenauer, P. Rumschinski, S. Waldherr, S. Borchers, F. Allgöwer, and R. Findeisen, “Guaranteed Steady-State Bounds for Uncertain Chemical Processes,” In Proc. of the International Symposium on Advanced Control of Chemical Processes, vol. 0, pp. 674--679, 2009, doi: 10.3182/20090712-4-TR-2008.00104.
    79. C. Hager and B. Wohlmuth, “Nonlinear complementarity functions for plasticity problems with frictional contact,” Computer Methods in Applied Mechanics and Engineering, vol. 198 (41–44), pp. 3411--3427, 2009, doi: 10.1016/j.cma.2009.06.021.
    80. B. Haasdonk and M. Ohlberger, “Reduced basis method for explicit finite volume approximations of nonlinear conservation laws,” Proceedings of Symposia in Applied Mathematics, pp. 605--614, 2009, doi: 10.1090/psapm/067.2/2605256.
    81. B. Haasdonk and M. Ohlberger, “Space-Adaptive Reduced Basis Simulation for Time-Dependent Problems,” Proceedings MATHMOD 09 Vienna - Full Papers CD Volume, vol. 0, 2009, [Online]. Available: https://ivv5hpp.uni-muenster.de/u/mohlb_01/postscript/mathmod2009_haasdonk_ohlberger_Nadapt_proceedings.pdf
    82. B. Haasdonk and M. Ohlberger, “Efficient Reduced Models for Parametrized Dynamical Systems by Offline/Online Decomposition,” Proceedings MATHMOD 09 Vienna - Full Papers CD Volume, vol. 0, 2009, [Online]. Available: http://wwwmath1.uni-muenster.de/num/publications/2009/HO09a/mathmod2009_haasdonk_ohlberger_PMOR_proceedings.pdf
    83. E. Gürses and C. Miehe, “A computational framework of three-dimensional configurational-force-driven brittle crack propagation,” Computer Methods in Applied Mechanics and Engineering, vol. 198, pp. 1413--1428, 2009, doi: 10.1016/j.cma.2008.12.028.
    84. K. Groh and S. Röck, “A Contribution to Collision-Free Trajectory Planning for Handling Systems in Varying Environments,” Production Engineering Research & Development, vol. 4, no. 1, Art. no. 1, 2009, doi: 10.1007/s11740-009-0202-0.
    85. K. Grass, C. Holm, and G. W. Slater, “Optimizing End-Labeled Free-Solution Electrophoresis by Increasing the Hydrodynamic Friction of the Drag Tag,” Macromolecules, vol. 42, no. 14, Art. no. 14, 2009, doi: 10.1021/ma9003067.
    86. J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” Mathematical Modelling and Numerical Analysis, vol. 43, no. 6, Art. no. 6, 2009, doi: 10.1051/m2an/2009013.
    87. S. Geiger, S. Matthäi, J. Niessner, and R. Helmig, “Black-Oil Simulations for Three-Component, Three-Phase Flow in Fractured Porous Media,” SPE Journal, vol. 14, pp. 338--354, 2009, doi: 10.2118/107485-PA.
    88. M. Gauger, P. J. Marrón, D. Kauker, and K. Rothermel, “Low Overhead Assignment of Symbolic Coordinates in Sensor Networks,” Telecommunication Systems, vol. 40 (3–4), pp. 117--128, 2009, doi: 10.1007/s11235-008-9133-x.
    89. G. Gassner, F. Lörcher, C.-D. Munz, and J. S. Hesthaven, “Polymorphic Nodal Elements and their Application in Discontinuous Galerkin Methods,” Journal of Computational Physics, vol. 228, no. 5, Art. no. 5, 2009, doi: 10.1016/j.jcp.2008.11.012.
    90. G. Gassner, C. Altmann, F. Hindenlang, M. Staudenmaier, and C.-D. Munz, “Explicit Discontinuous Galerkin Schemes with Adaption in Space and Time,” VKI Lecture Series, vol. 0, 2009, [Online]. Available: https://www.researchgate.net/profile/Gregor_Gassner/publication/267221767_Explicit_Discontinuous_Galerkin_Schemes_with_Adaptation_in_Space_and_Time/links/547d8d3c0cf2cfe203c21ce8.pdf
    91. J. Fritz, I. Neuweiler, and W. Nowak, “Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems,” Mathematical Geosciences, vol. 51, no. 5, Art. no. 5, 2009, doi: 10.1007/s11004-009-9220-x.
    92. S. Frey, C. Mueller, M. Strengert, and T. Ertl, “Concurrent CT Reconstruction and Visual Analysis using Hybrid Multi-Resolution Raycasting in a Cluster Environment,” ISVC 09 Proceedings of the 5th International Symposium on Advances in Visual Computing, vol. 0, 2009, doi: 10.1007/978-3-642-10331-5_34.
    93. F. Fleissner, T. Haag, M. Hanss, and P. Eberhard, “Uncertainty Analysis for a Particle Model of Granular Chute Flow,” Computer Modeling in Engineering and Sciences, vol. 52, no. 2, Art. no. 2, 2009, doi: 10.3970/cmes.2009.052.181.
    94. M. Falk, M. Klann, M. Reuss, and T. Ertl, “Visualization of Signal Transduction Processes in the Crowded Environment of the Cell,” Proceedings of IEEE Pacific Visualization Symposium 2009 (PacificVis ’09), vol. 0, pp. 169--176, 2009, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4906853&tag=1
    95. R. M. Esfanjani, M. Reble, U. Münz, S. K. Y. Nikravesh, and F. Allgöwer, “Model Predictive Control of Constrained Nonlinear Time-Delay Systems,” Proc.  IEEE Conference on Decision and Control, vol. 0, pp. 1324--1329, 2009, doi: 10.1109/CDC.2009.5400584.
    96. W. Ehlers, B. Markert, and O. Röhrle, “Computational Continuum Biomechanics with Application to Swelling Media and Growth Phenomena,” GAMM-Mitteilungen, vol. 32, no. 2, Art. no. 2, 2009, doi: 10.1002/gamm.200910013.
    97. W. Ehlers, N. Karajan, and B. Markert, “An Extended Biphasic Model for Charged Hydrated Tissues with Application to the Intervertebral Disc,” Biomechanics and Modeling in Mechanobiology, vol. 8, no. 3, Art. no. 3, 2009, doi: 10.1007/s10237-008-0129-y.
    98. W. Ehlers, A. Acartürk, and N. Karajan, “Advances in Modelling Saturated Biological Soft Tissues and Chemically Active Gels,” Archive of Applied Mechanics, vol. 80, no. 5, Art. no. 5, 2009, doi: 10.1007/s00419-009-0386-y.
    99. W. Ehlers and A. Acartürk, “The Role of Weakly Imposed Dirichlet Boundary Conditions for Numerically Stable Computations of Swelling Phenomena,” Computational Mechanics, vol. 43, no. 4, Art. no. 4, 2009, doi: 10.1007/s00466-008-0329-4.
    100. W. Ehlers, “Challenges of Porous Media Models in Geo- and Biomechanical Engineering including Electro-Chemically Active Polymers and Gels,” International Journal of Advances in Engineering Sciences and Applied Mathematics, vol. 1, no. 1, Art. no. 1, 2009, doi: 10.1007/s12572-009-0001-z.
    101. P. Eberhard, J. Fehr, and S. Mathuni, “Influence of Model Reduction Techniques on the Impact Force Calculation of Two Flexible Bodies,” PAMM, vol. 9, pp. 111--112, 2009, doi: 10.1002/pamm.200910030.
    102. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries,” ALGORITMY 2009, International Conference on Scientific Computation, vol. 0, pp. 111--120, 2009, [Online]. Available: http://pc2.iam.fmph.uniba.sk/amuc/_contributed/algo2009/drohmann.pdf
    103. M. Darcis, H. Class, and B. Flemisch, “Coupling Models of Different Complexity for the Simulation of CO2 Storage in Saline Aquifers,” Energy Procedia, vol. 1, pp. 1767--1774, 2009, doi: 10.1016/j.egypro.2009.01.231.
    104. A. Dadalau, A. Hafla, and A. Verl, “A new adaptive penalization scheme for topology optimization,” Production Engineering Research and Development, vol. 3 (4-5), p. 427, 2009, doi: 10.1007/s11740-009-0187-8.
    105. G. C. Claudio, K. Kremer, and C. Holm, “Comparison of a hydrogel model to the Poisson-Boltzmann cell model,” Journal of Chemical Physics, vol. 131, no. 9, Art. no. 9, 2009, doi: 10.1063/1.3207275.
    106. J. J. Cerda, B. Qiao, and C. Holm, “Modeling strategies for polyelectrolyte multilayers,” European Physical Journal-special Topics, vol. 177, no. 1, Art. no. 1, 2009, doi: 10.1140/epjst/e2009-01171-x.
    107. Y. Cao, R. Helmig, and B. Wohlmuth, “Geometrical interpretation of the multipoint flux approximation L-method,” International Journal for Numerical Methods in Fluids, vol. 60, no. 11, Art. no. 11, 2009, doi: 10.1002/fld.1926.
    108. C. Böhm, S. Yu, and F. Allgöwer, “Predictive control for constrained discrete-time periodic systems using a time-varying terminal region,” 14th Conference on Methods and Models in Automation and Robotics, vol. 14, no. 1, Art. no. 1, 2009, doi: 10.3182/20090819-3-PL-3002.00093.
    109. C. Böhm, T. Raff, M. Reble, and F. Allgöwer, “LMI-based Model Predictive Control for Linear Discrete-Time Periodic Systems,” Nonlinear Model Predictive Control - Towards New Challenging Applications. LNCIS., vol. 384, pp. 99--108, 2009, doi: 10.1007/978-3-642-01094-1_8.
    110. C. Böhm, M. Merk, W. Fichter, and F. Allgöwer, “Spacecraft Rate Damping with Predictive Control Using Magnetic Actuators Only,” Nonlinear Model Predictive Control - Towards New Challengin Applications. LNCIS., vol. 384, pp. 511--520, 2009, doi: 10.1007/978-3-642-01094-1_41.
    111. C. Böhm, F. Heß, R. Findeisen, and F. Allgöwer, “An NMPC Approach to Avoid Weakly Observable Trajectories,” Nonlinear Model Predictive Control - Towards New Challenging Applications. LNCIS., vol. 384, pp. 275--284, 2009, doi: 10.1007/978-3-642-01094-1_22.
    112. C. Böhm, R. Findeisen, and F. Allgöwer, “Predictive control for lure systems subject to constraints using LMIs,” European Control Conference, vol. 0, pp. 3389--3394, 2009, [Online]. Available: http://ieeexplore.ieee.org/abstract/document/7074929/
    113. G. Broll, E. Rukzio, M. Paolucci, M. Wagner, A. Schmidt, and H. Hussmann, “PERCI: Pervasive service interaction with the internet of things,” IEEE Internet Computing, vol. 13, no. 6, Art. no. 6, 2009, doi: 10.1109/MIC.2009.120.
    114. C. Breindl, S. Waldherr, A. Hausser, and F. Allgöwer, “Modeling cofilin mediated regulation of cell migration as a biochemical two-input switch,” Proc. of the 3rd Foundations of Systems Biology in Engineering (FOSBE), vol. 0, pp. 60--63, 2009, [Online]. Available: https://lirias.kuleuven.be/bitstream/123456789/568203/1/BreindlWal2009.pdf
    115. C. Breindl and F. Allgöwer, “Veriffication of multistability in gene regulation networks: A combinatorial approach,” Proc. IEEE Conference on Decision and Control (2009), vol. 0, pp. 5637--5642, 2009, doi: 10.1109/CDC.2009.5400809.
    116. G. Betz, “Underdetermination, Model-ensembles and Surprises -  On the Epistemology of Scenario-analysis in Climatology,” Journal for General Philosophy of Science, vol. 40, no. 1, Art. no. 1, 2009, doi: 10.1007/s10838-009-9083-3.
    117. G. Betz, “What range of future scenarios should climate policy be  based on? - Modal falsificationism and its limitations,” Philosophia naturalis, vol. 0, 2009, doi: 10.3196/003180209791291918.
    118. A. Benzing, K. Herrmann, B. Koldehofe, and K. Rothermel, “Identifying the Challenges in Reducing Latency in GSN using Predictors,” Electronic Communications of the EASST, vol. 17, 2009, [Online]. Available: http://journal.ub.tu-berlin.de/index.php/eceasst/article/viewFile/197/203
    119. K. Benkert, B. Müller, and M. Resch, “Reducing turn-around times for supernova simulations,” GSIS Interdisciplinary Information Sciences, vol. 15, no. 1, Art. no. 1, 2009, doi: 10.4036/iis.2009.91.
    120. J. Behrens and M. Bader, “Efficiency considerations in triangular adaptive mesh refinement,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1907, Art. no. 1907, 2009, doi: 10.1098/rsta.2009.0175.
    121. N. S. Bar and N. Radde, “Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model,” BMC Syst. Biol. 3:107, vol. 3, no. 107, Art. no. 107, 2009, doi: 10.1186/1752-0509-3-107.
    122. D. Balsara, T. Rumpf, M. Dumbser, and C.-D. Munz, “Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics,” Journal of Computational Physics, vol. 228, no. 7, Art. no. 7, 2009, doi: 10.1016/j.jcp.2008.12.003.
    123. T. Aven and O. Renn, “The role of quantitative risk assessments for cheracterizing risk and uncertainty and delineating appropriate risk management options, with special emphasis on terrorism risk,” Risk Analysis, vol. 29, no. 4, Art. no. 4, 2009, doi: 10.1111/j.1539-6924.2008.01175.x.
    124. F. Armero and C. Linder, “Numerical simulation of dynamic fracture using finite elements with embedded discontinuities,” International Journal of Fracture, vol. 160, no. 2, Art. no. 2, 2009, doi: 10.1007/s10704-009-9413-9.
    125. C. Altmann, G. Gassner, F. Lörcher, and C.-D. Munz, “A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations,” IEEE Transactions on Plasma Science, vol. 37, no. 4, Art. no. 4, 2009, doi: 10.1109/TPS.2009.2014869.
    126. A. Alke, D. Bothe, M. Kröger, B. Weigand, D. Weirich, and H. Weking, “Direct numerical simulation of high Schmidt number mass transfer from air bubbles rising in liquids using the Volume-of-Fluid-Method,” Dispersed Multiphase Flow: From Micro- to Maco-Scale Numerical Modelling, vol. 0, pp. 1--10, 2009, [Online]. Available: http://www.mma.tu-darmstadt.de/media/mma/bilderdateien_5/publication/directnumericalsimulationofhighschmidt.pdf
    127. T. B. Adler and H.-J. Werner, “Local explicitly correlated coupled-cluster methods: Efficient removal of the basis set incompleteness and domain errors,” Journal of Chemical Physics, vol. 130, no. 24, Art. no. 24, 2009, doi: 10.1063/1.3160675.
    128. T. B. Adler, F. R. Manby, and H.-J. Werner, “Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules,” Journal of Chemical Physics, vol. 130, no. 5, Art. no. 5, 2009, doi: 10.1063/1.3040174.
  15. 2008

    1. J. Veenman, H. Köro/uglu, and C. W. Scherer, “An IQC Approach to Robust Estimation against Perturbations of Smoothly Time-Varying Parameters,” in 47th IEEE Conf. Decision and Control, in 47th IEEE Conf. Decision and Control. Cancun, Mexico, 2008, pp. 2533–2538. [Online]. Available: https://doi.org/10.1109/CDC.2008.4739030
    2. E. J. Trottermant, C. W. Scherer, M. Weiss, and A. F. Vermeulen, “Robust Minimax Strategies for Missile Guidance Design,” in Proc. AIAA Guidance, Navigation and Control Conf., in Proc. AIAA Guidance, Navigation and Control Conf. 2008. [Online]. Available: https://doi.org/10.2514/6.2008-6493
    3. H. Nguyen Tien, C. W. Scherer, and J. M. A. Scherpen, “IQC-based robust stability analysis for LPV control of doubly-fed induction generators,” in 10th int. Conf. Control, Automation, Robotics and Vision, in 10th int. Conf. Control, Automation, Robotics and Vision. Hanoi, Vietnam, 2008. [Online]. Available: https://doi.org/10.1109/ICARCV.2008.4795804
    4. I. E. Köse and C. W. Scherer, “Reduced complexity existence conditions for robust $L_2$-gain feedforward controllers for uncertain systems using dynamic IQCs,” in 17th IFAC World Congress, in 17th IFAC World Congress. Seoul, South Korea, 2008. [Online]. Available: https://doi.org/10.3182/20080706-5-KR-1001.00674
    5. H. Köroglu and C. W. Scherer, “Robust Generalized Asymptotic Regulation against Non-Stationary Sinusoidal Disturbances,” in 47th IEEE Conf. Decision and Control, in 47th IEEE Conf. Decision and Control. 2008. [Online]. Available: https://doi.org/10.1109/CDC.2008.4739273
    6. H. Köroglu and C. W. Scherer, “Robust attenuation of non-stationary sinusoidal disturbances with uncertain frequencies,” in 17th IFAC World Congress, in 17th IFAC World Congress. Seoul, South Korea, 2008.
    7. H. Köroglu and C. W. Scherer, “LPV control for robust attenuation of non-stationary sinusodial disturbances with measurable frequencies,” in 17th IFAC World Congress, in 17th IFAC World Congress. Seoul, South Korea, 2008. [Online]. Available: https://doi.org/10.3182/20080706-5-KR-1001.00828
    8. S. G. Dietz, H. Köroglu, and C. W. Scherer, “Robust controller synthesis for disturbance filter uncertainty described by dynamic integral quadratic constraints,” in 17th IFAC World Congress, in 17th IFAC World Congress. Seoul, South Korea, 2008, pp. 1325–1330. [Online]. Available: https://doi.org/10.3182/20080706-5-KR-1001.00227
    9. S. G. Dietz, H. M. N. K. Balini, and C. W. Scherer, “Robust control against disturbance model uncertainty in active magnetic bearings,” in Proc. 11th International Symposium on Magnetic Bearings, in Proc. 11th International Symposium on Magnetic Bearings. 2008.
    10. H. M. N. K. Balini, H. Köroglu, and C. W. Scherer, “LPV Control for synchronous disturbance attenuation in active magnetic bearings,” in Proc. Dynamic Systems and Control Conf., in Proc. Dynamic Systems and Control Conf. Ann Arbor, Michigan, 2008. [Online]. Available: https://doi.org/10.1115/DSCC2008-2250
    11. O. Renn, Risk Governance. Coping with Uncertainty in a Complex World. Earthscan, 2008. [Online]. Available: http://www.earthscan.co.uk/?tabid=1113
    12. D. Möst, W. Fichtner, M. Ragwitz, and D. Veit, New methods for energy market modelling : Proceedings of the First European Workshop on Energy Market Modelling using Agent-Based Computational Economics. KIT Scientific Publishing, 2008. doi: 10.5445/KSP/1000008067.
    13. P. Wieland, J.-S. Kim, H. Scheu, and F. Allgöwer, “On Consensus in Multi-Agent Systems with Linear High-Order Agents,” Proceedings of the 17th IFAC World Congress, pp. 1541--1546, 2008, doi: 10.3182/20080706-5-KR-1001.00263.
    14. W. Weimer-Jehle, “Cross-impact balances  - Applying pair interaction systems and multi-value Kauffman nets to multidisciplinary systems analysis,” Physica A, vol. 387, pp. 3689--3700, 2008, doi: 10.1016/j.physa.2008.02.006.
    15. S. Waldherr, T. Eissing, and F. Allgöwer, “Rückkopplungen im Leben und Sterben einer Zelle: Ansätze zur systemtheoretischen Analyse,” at - Automatisierungstechnik, vol. 56, pp. 233--240, 2008, doi: 10.1524/auto.2008.0706.
    16. A. Wagner and W. Ehlers, “A Porous Media Model to Describe the Behaviour of Brain Tissue,” Proceedings in Applied Mathematics and Mechanics, vol. 8, pp. 10201--10202, 2008, doi: 10.1002/pamm.200810201.
    17. M. Vrhovnik, H. Schwarz, S. Radeschütz, and B. Mitschang, “An overview of SQL support in workflow products,” Proceedings of the 24th International Conference of Data Engineering, vol. 0, pp. 1287--1296, 2008, doi: 10.1109/ICDE.2008.4497538.
    18. M. Vrhovnik, H. Schwarz, S. Ewen, and O. Suhre, “PGM/F: A Framework for the Optimization of Data Processing in Business Processes,” Proceedings of the 24th International Conference on Data Engineering (ICDE 2008), 2008, doi: 10.1109/ICDE.2008.4497627.
    19. W. Straub, J. Schlottke, K. D. Beheng, and B. Weigand, “Numerical Investigation of Collision-Induced Breakup of Raindrops. Part II: Parameterizations of Coalescence Efficiencies and Fragment Size Distributions,” 15th International Conference on Clouds and Precipitation ICCP-2008, July 7-11, Cancun, Mexico (2008), vol. 0, pp. 1--7, 2008, doi: doi.org/10.1175/2009JAS3175.1.
    20. T. Schuster, S. Rafler, K. Frenner, and W. Osten, “Influence of line edge roughness (LER) on angular resolved and on spectroscopic scatterometry,” Proc. SPIE, vol. 7155, 2008, doi: 10.1117/12.814532.
    21. A. Schmidt, D. Kern, S. Streng, and P. Holleis, “Magic beyond the screen,” IEEE Multimedia, vol. 15, no. 4, Art. no. 4, 2008, doi: 10.1109/MMUL.2008.93.
    22. J. Schlottke and B. Weigand, “Direct numerical simulation of evaporating droplets,” Journal of Computational Physics, vol. 227, no. 10, Art. no. 10, 2008, doi: 10.1016/j.jcp.2008.01.042.
    23. J. Schlottke, W. Straub, K. D. Beheng, and B. Weigand, “Numerical Investigation of Collision-Induced Breakup of Raindrops. Part I: Methodology as well as Dependencies on Collision Energy and Excentricity,” 15th International Conference on Clouds and Precipitation ICCP-2008, July 7-11, Cancun, Mexico, vol. 0, pp. 1--10, 2008, [Online]. Available: https://www.researchgate.net/profile/Bernhard_Weigand/publication/242223279_Numerical_Investigation_of_Collision-Induced_Breakup_of_Raindrops_Part_I_Methodology_and_Dependencies_on_Collision_Energy_and_Eccentricity/links/54d8b8bb0cf25013d03edee8.pdf
    24. C. W. Scherer and I. E. Köse, “Robustness with dynamic IQCs: An exact state-space characterization of nominal stability with applications to robust estimation,” Automatica, vol. 44, no. 7, Art. no. 7, 2008, [Online]. Available: https://doi.org/10.1016/j.automatica.2007.10.023
    25. F. Rößler, R. Botchen, and T. Ertl, “Utilizing dynamic shader generation for GPU-based multi-volume raycasting,” IEEE Computer Graphics & Applications, vol. 28, no. 5, Art. no. 5, 2008, doi: 10.1109/MCG.2008.96.
    26. F. Rösch and H.-R. Trebin, “Are Clusters Physical Entities?,” Z. Kristallogr., vol. 223, pp. 827--829, 2008, doi: 10.1524/zkri.2008.1056.
    27. O. Röhrle, J. B. Davidson, and A. J. Pullan, “Bridging Scales: A three-dimensional electromechanical finite element model of skeletal muscle,” SIAM Journal on Scientific Computing, vol. 30, no. 6, Art. no. 6, 2008, doi: 10.1137/070691504.
    28. J. M. Rieber, C. W. Scherer, and F. Allgöwer, “Robust ℓ1 performance analysis for linear systems with parametric uncertainties,” International Journal of Control, vol. 81, no. 5, Art. no. 5, 2008, doi: 10.1080/00207170701730451.
    29. J. M. Rieber, C. W. Scherer, and F. Allgower, “Robust $l_1$ performance analysis for linear systems with parametric uncertainties,” Int. J. Control, vol. 81, no. 5, Art. no. 5, 2008, [Online]. Available: https://doi.org/10.1080/00207170701730451
    30. H.-U. Rempler and W. Ehlers, “Tear Propagation in Soft Hydrated Biological Tissue,” Proceedings in Applied Mathematics and Mechanics, vol. 8, pp. 10235--10236, 2008, doi: 10.1002/pamm.200810235.
    31. S. Randandt and O. Renn, “New emerging risks,” Risks in Modern Society, pp. 259--284, 2008, [Online]. Available: http://www.springer.com/engineering/mechanical+eng/book/978-1-4020-8288-7
    32. J. Niessner and S. M. Hassanizadeh, “A model for two-phase flow in porous media including fluid-fluid interfacial area,” Water Resources Research, vol. 44, 2008, doi: 10.1029/2007WR006721.
    33. H. Minamoto, R. Seifried, P. Eberhard, and S. Kawamuraa, “EFFECTS OF STRAIN RATE DEPENDENCY OF MATERIAL PROPERTIES IN LOW VELOCITY IMPACT,” International Journal of Modern Physics B, vol. 22, p. 1165, 2008, doi: 10.1142/S0217979208046487.
    34. B. Markert, B. Monastyrskyy, and W. Ehlers, “Fluid penetration effects in porous media contact,” Continuum Mechanics and Thermodynamics, vol. 20, pp. 303--315, 2008, doi: 10.1007/s00161-008-0083-z.
    35. B. Markert, “A biphasic continuum approach for viscoelastic high-porosity foams: Comprehensive theory, numerics, and application,” Archives of Computational Methods in Engineering, vol. 15, no. 4, Art. no. 4, 2008, doi: 10.1007/s11831-008-9023-0.
    36. F. Lörcher, G. Gassner, and C.-D. Munz, “An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations,” Journal of Computational Physics, vol. 227, pp. 5649--5670, 2008, doi: 10.1016/j.jcp.2008.02.015.
    37. B. Ludescher et al., “T2- and Diffusion-Maps Reveal Diurnal Changes of Intervertebral Disc Composition: An In Vivo MRI Study at 1.5 Tesla,” Journal of Magnetic Resonance Imaging, vol. 28, pp. 252--257, 2008, doi: 10.1002/jmri.21390.
    38. H. Köroglu and C. W. Scherer, “An LMI approach to $H_ınfty$ synthesis subject to almost asymptotic regulation constraints,” Syst. Control Lett., vol. 57, no. 4, Art. no. 4, 2008, [Online]. Available: https://doi.org/10.1016/j.sysconle.2007.09.011
    39. Y. Heider, B. Markert, and W. Ehlers, “Coupled Problems of Dynamics in Materially Incompressible Saturated Porous Media,” Proceedings in Applied Mathematics and Mechanics, vol. 8, pp. 10503--10504, 2008, doi: 10.1002/pamm.200810503.
    40. J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase transition theory.,” Commun. Comput. Phys., vol. 4, pp. 860--893, 2008, doi: 10.1.1.658.8652.
    41. B. Haasdonk, M. Ohlberger, and G. Rozza, “A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators,” Electronic Transactions on Numerical Analysis (ETNA), vol. 32, pp. 145--161, 2008, [Online]. Available: http://etna.mcs.kent.edu/vol.32.2008/pp145-161.dir/
    42. P. Götz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Optics Express, vol. 16, 2008, doi: 10.1364/OE.16.017295.
    43. M. Gauger, O. Saukh, M. Handte, P. J. Marrón, A. Heydlauff, and K. Rothermel, “Sensor-based Clustering for Indoor Applications,” Proceedings of the 5th IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2008), vol. 0, 2008, doi: 10.1109/SAHCN.2008.64.
    44. M. Gauger et al., “Integrating Sensor Networks in Pervasive Computing Environments Using Symbolic Coordinates,” Proceedings of the Third International Conference on Communication System Software and Middleware (COMSWARE 2008), vol. 0, pp. 564--573, 2008, doi: 10.1109/COMSWA.2008.4554476.
    45. T. Gaugele, F. Fleissner, and P. Eberhard, “Simulation of material tests using meshfree Lagrangian particle methods,” Journal of Multi-body Dynamics, vol. 222, no. 4, Art. no. 4, 2008, doi: 10.1243/14644193JMBD167.
    46. G. Gassner, F. Lörcher, and C.-D. Munz, “A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions,” Journal of Scientific Computing, vol. 34, pp. 260--286, 2008, doi: 10.1007/s10915-007-9169-1.
    47. M. Fuchs, R. Raskar, H.-P. Seidel, and H. Lensch, “Towards passive 6D reflectance field displays,” ACM Transactions on Graphics, vol. 27, no. 3, Art. no. 3, 2008, doi: 10.1145/1399504.1360657.
    48. S. Freiboth, H. Class, R. Helmig, T. Graf, W. Ehlers, and V. Schwarz und C, “A model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation - a model concept and its validation within a code intercomparison study,” Computational Geosciences, vol. 13, no. 3, Art. no. 3, 2008, doi: 10.1007/s10596-008-9118-6.
    49. F. Fleissner and P. Eberhard, “Parallel load balanced simulation for short range interaction particle methods with hiercharchical particle grouping based on orthogonal recursive bisection,” International Journal for Numerical Methods in Engineering, vol. 74, no. 4, Art. no. 4, 2008, doi: 10.1002/nme.2184.
    50. M. Dumbser, D. Balsara, E. F. Toro, and C.-D. Munz, “A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes,” Journal of Computational Physics, vol. 227, pp. 8209--8253, 2008, doi: 10.1016/j.jcp.2008.05.025.
    51. S. G. Dietz and C. W. Scherer, “Verifying exactness of relaxations for robust semi-definite programs by solving polynomial systems,” Linear Algebra Appl., vol. 429, no. 7, Art. no. 7, 2008, [Online]. Available: https://doi.org/10.1016/j.laa.2008.05.009
    52. N. Currle-Linde and M. Resch, “Time features of computing components and the economic planning of resource transactions,” 9th IEEE/ACM International Conference on Grid Computing (GRID ’08), Tsukuba, Japan, vol. 0, p. 292, 2008, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4662811&tag=1
    53. M. Chanve, T. Eissing, and F. Allgöwer, “Bistable biological systems: A characterization through local compact input-to-state stability,” IEEE Transactions on Automatic Control, vol. 53, pp. 87--100, 2008, doi: 10.1109/TAC.2007.911328.
    54. C. Böhm, T. Raff, R. Findeisen, and F. Allgöwer, “Calculating the Terminal  Region of NMPC for Lure Systems via LMIs,” American Control Conference, vol. 0, pp. 1127--1132, 2008, doi: 10.1109/ACC.2008.4586644.
    55. C. Böhm, R. Findeisen, and F. Allgöwer, “Avoidance of poorly observable trajectories: A predictive control perspective,” Proceedings of the 17th IFAC World Congress, vol. 0, pp. 1952--1957, 2008, doi: 10.3182/20080706-5-KR-1001.00332.
    56. P. Bastian et al., “A generic grid interface for parallel and adaptive scientific computing,” Computing, vol. 82 (2–3), pp. 103--119, 2008, doi: 10.1007/s00607-008-0003-x.
    57. A. Bardossy and J. Li, “Geostatistical interpolation using copulas,” Water Resources Research, vol. 44, pp. 1--15, 2008, doi: 10.1029/2007WR006115.
    58. O. Avci and W. Ehlers, “Realisation and Modelling of Geotechnical Experiments,” Proceedings in Applied Mathematics and Mechanics, vol. 8, pp. 10401--10402, 2008, doi: 10.1002/pamm.200810401.
    59. I. Ali, S. Becker, J. Utzmann, and C.-D. Munz, “Aeroacoustic study of a forward facing step using linearized Euler equations,” Physica D: Nonlinear Phenomena, vol. 237, pp. 2184--2189, 2008, doi: 10.1016/j.physd.2007.12.002.
  16. 2007

    1. M. Weiss, M. Rol, W. Falkena, and C. W. Scherer, “Guidance performance analysis in the presence of model uncertainties,” in Proc. AIAA Guidance, Navigation and Control Conf., in Proc. AIAA Guidance, Navigation and Control Conf., vol. 5. 2007, pp. 4422–4433. [Online]. Available: https://doi.org/10.2514/6.2007-6786
    2. C. W. Scherer and I. E. Köse, “Gain-scheduling synthesis with dynamic $D$-scalings,” in 46th IEEE Conf. Decision and Control, in 46th IEEE Conf. Decision and Control. 2007. [Online]. Available: https://doi.org/10.1109/CDC.2007.4434648
    3. C. W. Scherer and I. E. Köse, “On robust controller synthesis with dynamic $D$-scalings,” in 46th IEEE Conf. Decision and Control, in 46th IEEE Conf. Decision and Control. 2007. [Online]. Available: https://doi.org/10.1109/CDC.2007.4434634
    4. H. Nguyen Tien, C. W. Scherer, and J. M. A. Scherpen, “Self-scheduled LPV controller synthesis for doubly-fed induction generators,” in Proc. Windpower, in Proc. Windpower. Los Angeles, 2007.
    5. H. Nguyen Tien, C. W. Scherer, and J. M. A. Scherpen, “Robust performance of self-scheduled LPV control of doubly-fed induction generator in wind energy conversion systems,” in Eur. Conf. on Power Electronics and Applications, in Eur. Conf. on Power Electronics and Applications. 2007. [Online]. Available: https://doi.org/10.1109/EPE.2007.4417460
    6. I. E. Köse and C. W. Scherer, “Robust feedforward control of uncertain systems using dynamic IQCs,” in 46th IEEE Conf. Decision and Control, in 46th IEEE Conf. Decision and Control. 2007, pp. 2181–2186. [Online]. Available: https://doi.org/10.1109/CDC.2007.4434631
    7. H. Köroglu and C. W. Scherer, “An LPV control approach to asymptotic rejection of non-stationary disturbances with guaranteed worst-case performance,” in Proc. American Control Conf., in Proc. American Control Conf. 2007, pp. 6085–6090. [Online]. Available: https://doi.org/10.1109/ACC.2007.4282141
    8. H. Köroglu and C. W. Scherer, “Asymptotic Rejection of Non-Stationary Sinusodial Disturbances with Guaranteed Worst-Case Performance,” in Philips Conf. Appl. of Cont. Tech., in Philips Conf. Appl. of Cont. Tech. 2007, pp. 126–130.
    9. S. Dietz, C. W. Scherer, and H. Köroglu, “Robust control adainst disturbance model uncertainty: a convex solution,” in 46th IEEE Conf. Decision and Control, in 46th IEEE Conf. Decision and Control. New Orleans, LA, 2007. [Online]. Available: https://doi.org/10.1109/CDC.2007.4434642
    10. S. Waldherr and F. Allgöwer, “Searching bifurcations in high-dimensional parameter space via a feedback loop breaking approach,” International Journal of Systems Science, vol. 40, no. 7, Art. no. 7, 2007, doi: 10.1080/00207720902957269.
    11. H. Köroglu and C. W. Scherer, “Robust Performance Analysis for Structured Linear Time-Varying Perturbations with Bounded Rates-of-Variation,” IEEE T. Automat. Contr., vol. 52, no. 2, Art. no. 2, 2007, [Online]. Available: https://doi.org/10.1109/TAC.2006.890482
To the top of the page