1. 2022

    1. S. Liese, A. Schlaich, and R. R. Netz, “Dielectric Constant of Aqueous Solutions of Proteins and Organic Polymers from Molecular Dynamics Simulations,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0089397.
    2. S. Gravelle, C. Holm, and A. Schlaich, “Transport of thin water films: from thermally activated random walks to hydrodynamics,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0099646.
  2. 2021

    1. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, Nov. 2021, doi: 10.1038/s41563-021-01121-0.
    2. G. Gonella et al., “Water at charged interfaces,” Nature Reviews Chemistry, vol. 5, no. 7, Art. no. 7, Jul. 2021, doi: 10.1038/s41570-021-00293-2.
    3. I. Tischler, A. Schlaich, and C. Holm, “The Presence of a Wall Enhances the Probability for Ring-Closing Metathesis: Insights from Classical Polymer Theory and Atomistic Simulations,” Macromolecular Theory and Simulations, vol. 30, no. 2, Art. no. 2, 2021, doi: 10.1002/mats.202000076.
  3. 2020

    1. P. Loche, C. Ayaz, A. Wolde-Kidan, A. Schlaich, and R. R. Netz, “Universal and Nonuniversal Aspects of Electrostatics in Aqueous Nanoconfinement,” The Journal of Physical Chemistry B, vol. 124, no. 21, Art. no. 21, 2020, doi: 10.1021/acs.jpcb.0c01967.
    2. J. C. F. Schulz, A. Schlaich, M. Heyden, R. R. Netz, and J. Kappler, “Molecular interpretation of the non-Newtonian viscoelastic behavior of liquid water at high frequencies,” Phys. Rev. Fluids, vol. 5, no. 10, Art. no. 10, Oct. 2020, doi: 10.1103/PhysRevFluids.5.103301.
To the top of the page