Publications

Publications of our group since 2022

For comprehensive publication lists of our team members including previous stages of their career, please see the team page!

Peer-reviewed articles

  1. 2024

    1. Álvarez Chaves, M., Gupta, H. V., Ehret, U., & Guthke, A. (2024). On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data. Entropy, 26(5), Article 5. https://doi.org/10.3390/e26050387
  2. 2023

    1. Reiser, P., Aguilar, J. E., Guthke, A., & Bürkner, P.-C. (2023). Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference. ArXiv Preprint ArXiv:2312.05153, (submitted).
    2. Ejaz, F., Guthke, A., Wöhling, T., & Nowak, W. (2023). Comprehensive uncertainty analysis for surface water and groundwater projections under climate change based on a lumped geo-hydrological model. Journal of Hydrology, 626. https://doi.org/10.1016/j.jhydrol.2023.130323
    3. Banerjee, I., Guthke, A., Van De Ven, C. J., Mumford, K. G., & Nowak, W. (2023). Comparison of Four Competing Invasion Percolation Models for Gas Flow in Porous Media. Authorea Preprints.
    4. White, J. T., Fienen, M. N., Moore, C. R., & Guthke, A. (2023). Editorial: Rapid, reproducible, and robust environmental modeling for decision support: worked examples and open-source software tools. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1260581
    5. Banerjee, I., Walter, P., Guthke, A., Mumford, K. G., & Nowak, W. (2023). The method of forced probabilities : a computation trick for Bayesian model evidence. Computational Geosciences, 27(1), Article 1. https://doi.org/10.1007/s10596-022-10179-x
  3. 2022

    1. Hsueh, H.-F., Guthke, A., Wöhling, T., & Nowak, W. (2022). Diagnosis of Model Errors With a Sliding Time-Window Bayesian Analysis. Water Resources Research, 58(2), Article 2. https://doi.org/10.1029/2021WR030590
    2. Schäfer Rodrigues Silva, A., Weber, T. K., Gayler, S., Guthke, A., Höge, M., Streck, T., & Nowak, W. (2022). Diagnosing Similarities in Probabilistic Multi-Model Ensembles - an Application to Soil-Plant-Growth-Modeling. Modeling Earth Systems and Environment, 8, 5143–5175. https://doi.org/10.1007/s40808-022-01427-1

Conference talks

  1. 2024

    1. Chaves, M. Á., Espinoza, E. A., Ehret, U., & Guthke, A. (2024). Evaluating physics-based representations of hydrological systems through hybrid models and information theory. EGU General Assembly Conference Abstracts, EGU24.
    2. Guthke, A. (2024). Verbesserte Unsicherheitsabschätzung für (fehlerbehaftete) Grundwassermodelle. 29. Tagung Der Fachsektion Hydrogeologie e.V. in Der DGGV e.V.
  2. 2023

    1. Álvarez Chaves, M., Guthke, A., Ehret, U., & Gupta, H. (2023). UNITE: A toolbox for unified diagnostic evaluation of physics-based, data-driven and hybrid models based on information theory. EGU General Assembly Conference Abstracts, EGU--4039.
    2. Guthke, A. (2023). Modified Bayesian Calibration Approaches to Tackle the Erroneous-Model Problem. AGU Fall Meeting Conference Abstracts, AGU23.
  3. 2022

    1. Guthke, A., Hsueh, H.-F., Wöhling, T., & Nowak, W. (2022). Bayesian updating despite model errors? A sliding time-window approach to rescue. EGU General Assembly Conference Abstracts, EGU22--12525.
    2. Viswanathan, M., Weber, T. K., & Guthke, A. (2022). An alternative strategy for combining likelihood values in Bayesian calibration to improve model predictions. EGU General Assembly Conference Abstracts, EGU22--1210.

Poster contributions

  1. 2024

    1. Guthke, A., Reiser, P., & Bürkner, P.-C. (2024). Quantifying Uncertainty in Surrogate-based Bayesian Inference. EGU General Assembly Conference Abstracts, EGU24.
    2. Reiser, P., Aguilar, J. E., Guthke, A., & Bürkner, P.-C. (2024). Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference. SIAM Conference on Uncertainty Quantification (UQ24).
  2. 2023

    1. Reiser, P., Aguilar, J. E., Guthke, A., & Bürkner, P.-C. (2023). Quantifying Uncertainty in Surrogate-based Bayesian Inference. International Conference on Data-Integrated Simulation Science (SimTech2023).
    2. Reiser, P. (2023). Quantifying Uncertainty in Surrogate-based Bayesian Inference. Bayes Comp 2023.
To the top of the page