Publications of our group since 2022
For comprehensive publication lists of our team members including previous stages of their career, please see the team page!
Peer-reviewed articles
2024
- Álvarez Chaves, M., Gupta, H. V., Ehret, U., & Guthke, A. (2024). On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data. Entropy, 26(5), Article 5. https://doi.org/10.3390/e26050387
2023
- Reiser, P., Aguilar, J. E., Guthke, A., & Bürkner, P.-C. (2023). Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference. ArXiv Preprint ArXiv:2312.05153, (submitted).
- Ejaz, F., Guthke, A., Wöhling, T., & Nowak, W. (2023). Comprehensive uncertainty analysis for surface water and groundwater projections under climate change based on a lumped geo-hydrological model. Journal of Hydrology, 626. https://doi.org/10.1016/j.jhydrol.2023.130323
- Banerjee, I., Guthke, A., Van De Ven, C. J., Mumford, K. G., & Nowak, W. (2023). Comparison of Four Competing Invasion Percolation Models for Gas Flow in Porous Media. Authorea Preprints.
- White, J. T., Fienen, M. N., Moore, C. R., & Guthke, A. (2023). Editorial: Rapid, reproducible, and robust environmental modeling for decision support: worked examples and open-source software tools. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1260581
- Banerjee, I., Walter, P., Guthke, A., Mumford, K. G., & Nowak, W. (2023). The method of forced probabilities : a computation trick for Bayesian model evidence. Computational Geosciences, 27(1), Article 1. https://doi.org/10.1007/s10596-022-10179-x
2022
- Hsueh, H.-F., Guthke, A., Wöhling, T., & Nowak, W. (2022). Diagnosis of Model Errors With a Sliding Time-Window Bayesian Analysis. Water Resources Research, 58(2), Article 2. https://doi.org/10.1029/2021WR030590
- Schäfer Rodrigues Silva, A., Weber, T. K., Gayler, S., Guthke, A., Höge, M., Streck, T., & Nowak, W. (2022). Diagnosing Similarities in Probabilistic Multi-Model Ensembles - an Application to Soil-Plant-Growth-Modeling. Modeling Earth Systems and Environment, 8, 5143–5175. https://doi.org/10.1007/s40808-022-01427-1
Conference talks
2024
- Chaves, M. Á., Espinoza, E. A., Ehret, U., & Guthke, A. (2024). Evaluating physics-based representations of hydrological systems through hybrid models and information theory. EGU General Assembly Conference Abstracts, EGU24.
- Guthke, A. (2024). Verbesserte Unsicherheitsabschätzung für (fehlerbehaftete) Grundwassermodelle. 29. Tagung Der Fachsektion Hydrogeologie e.V. in Der DGGV e.V.
2023
- Álvarez Chaves, M., Guthke, A., Ehret, U., & Gupta, H. (2023). UNITE: A toolbox for unified diagnostic evaluation of physics-based, data-driven and hybrid models based on information theory. EGU General Assembly Conference Abstracts, EGU--4039.
- Guthke, A. (2023). Modified Bayesian Calibration Approaches to Tackle the Erroneous-Model Problem. AGU Fall Meeting Conference Abstracts, AGU23.
2022
- Guthke, A., Hsueh, H.-F., Wöhling, T., & Nowak, W. (2022). Bayesian updating despite model errors? A sliding time-window approach to rescue. EGU General Assembly Conference Abstracts, EGU22--12525.
- Viswanathan, M., Weber, T. K., & Guthke, A. (2022). An alternative strategy for combining likelihood values in Bayesian calibration to improve model predictions. EGU General Assembly Conference Abstracts, EGU22--1210.
Poster contributions
2024
- Guthke, A., Reiser, P., & Bürkner, P.-C. (2024). Quantifying Uncertainty in Surrogate-based Bayesian Inference. EGU General Assembly Conference Abstracts, EGU24.
- Reiser, P., Aguilar, J. E., Guthke, A., & Bürkner, P.-C. (2024). Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference. SIAM Conference on Uncertainty Quantification (UQ24).
2023
- Reiser, P., Aguilar, J. E., Guthke, A., & Bürkner, P.-C. (2023). Quantifying Uncertainty in Surrogate-based Bayesian Inference. International Conference on Data-Integrated Simulation Science (SimTech2023).
- Reiser, P. (2023). Quantifying Uncertainty in Surrogate-based Bayesian Inference. Bayes Comp 2023.