Publications
2025
- M. Kurz et al., “GALÆXI: Solving complex compressible flows with high-order discontinuous Galerkin methods on accelerator-based systems,” Computer Physics Communications, vol. 306, p. 109388, Jan. 2025, doi: 10.1016/j.cpc.2024.109388.
- P. Mossier, S. Jöns, S. Chiocchetti, A. D. Beck, and C.-D. Munz, “Numerical simulation of phase transition with the hyperbolic Godunov-Peshkov-Romenski model,” Journal of Computational Physics, vol. 520, p. 113514, Jan. 2025, doi: 10.1016/j.jcp.2024.113514.
- P. Palmetshofer, J. Wurst, A. K. Geppert, K. Schulte, G. E. Cossali, and B. Weigand, “Wetting behavior in the inertial phase of droplet impacts onto sub-millimeter microstructured surfaces,” Journal of Colloid and Interface Science, vol. 682, pp. 413–422, Mar. 2025, doi: 10.1016/j.jcis.2024.11.154.
- L. Keim and H. Class, “Rayleigh Invariance Allows the Estimation of Effective CO2 Fluxes Due To Convective Dissolution Into Water‐Filled Fractures,” Water Resources Research, vol. 61, no. 2, Art. no. 2, Jan. 2025, doi: 10.1029/2024wr037778.
2024
- M. Gao, P. Mossier, and C.-D. Munz, “Shock capturing for a high-order ALE discontinuous Galerkin method with applications to fluid flows in time-dependent domains,” Computers & fluids, vol. 269, p. 106124, Jan. 2024, doi: 10.1016/j.compfluid.2023.106124.
- J. Potyka and K. Schulte, “A volume of fluid method for three dimensional direct numerical simulations of immiscible droplet collisions,” International Journal of Multiphase Flow, vol. 170, p. 104654, Jan. 2024, doi: 10.1016/j.ijmultiphaseflow.2023.104654.
- H. Mandler and B. Weigand, “A review and benchmark of feature importance methods for neural networks,” ACM Computing Surveys, vol. 56, no. 12, Art. no. 12, Oct. 2024, doi: https://doi.org/10.1145/3679012.
- M. Kelm, C. Bringedal, and B. Flemisch, “Upscaling and Effective Behavior for Two-Phase Porous-Medium Flow Using a Diffuse Interface Model,” Transport in Porous Media, vol. 151, no. 9, Art. no. 9, Jul. 2024, doi: 10.1007/s11242-024-02097-6.
- J. Magiera and C. Rohde, “A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate,” Communications in Applied Mathematics and Computation, 2024, doi: 0.1007/s42967-023-00349-8.
- M. Hörl and C. Rohde, “Rigorous Derivation of Discrete Fracture Models for Darcy Flow in the Limit of Vanishing Aperture,” Networks and Heterogeneous Media, vol. 19, no. 1, Art. no. 1, 2024, doi: 10.3934/nhm.2024006.
- C. Aricò, R. Helmig, D. Puleo, and M. Schneider, “A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction,” Computer Methods in Applied Mechanics and Engineering, vol. 419, p. 116655, Feb. 2024, doi: 10.1016/j.cma.2023.116655.
- H. Mandler and B. Weigand, “Generalized field inversion strategies for data-driven turbulence closure modeling,” Physics of Fluids, vol. 36, p. 105188, Oct. 2024, doi: https://doi.org/10.1063/5.0231494.
- B. Jose and F. Hampp, “Machine learning based spray process quantification,” International journal of multiphase flow, vol. 172, no. February, Art. no. February, 2024, doi: 10.1016/j.ijmultiphaseflow.2023.104702.
- M. Boon, I. Buntic, K. Ahmed, N. Dopffel, C. Peters, and H. Hajibeygi, “Microbial induced wettability alteration with implications for Underground Hydrogen Storage,” Scientific Reports, vol. 14, no. 1, Art. no. 1, 2024, doi: 10.1038/s41598-024-58951-6.
- Y. Miao, C. Rohde, and H. Tang, “Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities,” Stochastic Partial Differential Equations: Analysis & Computation, vol. 12, no. 1, Art. no. 1, 2024, doi: 10.1007/s40072-023-00291-z.
- M. Alkämper, J. Magiera, and C. Rohde, “An Interface-Preserving Moving Mesh in Multiple Space Dimensions,” ACM Transactions in Mathematical Software, vol. 50, no. 1, Art. no. 1, Mar. 2024, doi: 10.1145/3630000.
- W. Wang and X. Chu, “Investigation on the performance of a torque-driven undulatory swimmer with distributed flexibility,” Physics of Fluids, Feb. 2024, doi: 10.1063/5.0191056.
- X. Chu and S. Pandey, “Non-intrusive, transferable model for coupled turbulent channel-porous media flow based upon neural networks,” Physics of Fluids, Feb. 2024, doi: 10.1063/5.0189632.
- H. Mandler and B. Weigand, “Generalization Limits of Data‑Driven Turbulence Models,” Flow, Turbulence and Combustion, 2024, doi: https://doi.org/10.1007/s10494-024-00595-7.
2023
- J. L. Stober, J. Potyka, M. Ibach, B. Weigand, and K. Schulte, “DNS of the Early Phase of Oblique Droplet Impact on Thin Films with FS3D,” High Performance Computing in Science and Engineering ’23, Springer International Publishing, 2023. [Online]. Available: /brokenurl# https://doi.org/10.48550/arXiv.2311.17690
- X. Chu, S. Pandey, Y. Liu, and B. Weigand, “Modeling of Coupled Turbulent Channel Porous Media Flow through a Deep Autoencoder Echo State Network Framework,” 2023, arXiv. doi: 10.48550/ARXIV.2312.00850.
- D. Appel, S. Jöns, J. Keim, C. Müller, J. Zeifang, and C.-D. Munz, “A narrow band-based dynamic load balancing scheme for the level-set ghost-fluid method,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 305--320.
- D. Kempf et al., “Development of turbulent inflow methods for the high order HPC framework FLEXI,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 289--304. doi: 10.1007/978-3-031-17937-2_17.
- A. Schlottke, M. Ibach, J. Steigerwald, and B. Weigand, “Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 239--257. doi: 10.1007/978-3-031-17937-2_14.
- J. Keim, A. Schwarz, S. Chiocchetti, C. Rohde, and A. Beck, “A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes,” in Finite volumes for complex applications X. Vol. 2. Hyperbolic and related problems, in Finite volumes for complex applications X. Vol. 2. Hyperbolic and related problems, vol. 433. Springer, Cham, 2023, pp. 209--217. doi: 10.13140/RG.2.2.18046.87363.
- L. Keim, H. Class, L. Schirmer, K. Wendel, B. Strauch, and M. Zimmer, “Data for: Measurement Campaign of Gaseous CO2 Concentrations in a Karst Cave with Aqueous Concentrations in a Stagnant Water Column 2021-2022.” DaRUS, 2023. doi: 10.18419/DARUS-3271.
- J. Härter, D. S. Martínez, R. Poser, B. Weigand, and G. Lamanna, “Coupling between a turbulent outer flow and an adjacent porous medium : High resolved Particle Image Velocimetry measurements,” Physics of Fluids, vol. 35, no. 2, Art. no. 2, 2023, doi: 10.1063/5.0132193.
- S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental evaluation of fluid connectivity in two-phase flow in porous media,” Advances in Water Resources, vol. 172, p. 104378, Feb. 2023, doi: 10.1016/j.advwatres.2023.104378.
- S. Jöns and C.-D. Munz, “Riemann solvers for phase transition in a compressible sharp-interface method,” Applied mathematics and computation, vol. 440, p. 127624, 2023, doi: 10.1016/j.amc.2022.127624.
- J. Keim, C.-D. Munz, and C. Rohde, “A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains,” J. Comput. Phys., vol. 474, p. 111830, 2023, doi: https://doi.org/10.1016/j.jcp.2022.111830.
- H. Mandler and B. Weigand, “Feature importance in neural networks as a means of interpretation for data-driven turbulence models,” Computers & Fluids, p. 105993, Jul. 2023, doi: 10.1016/j.compfluid.2023.105993.
- M. Soundaranathan et al., “Modelling the Evolution of Pore Structure during the Disintegration of Pharmaceutical Tablets,” Pharmaceutics, vol. 15, no. 2, Art. no. 2, 2023, doi: 10.3390/pharmaceutics15020489.
- V. Artemov et al., “The Three-Phase Contact Potential Difference Modulates the Water Surface Charge,” The Journal of Physical Chemistry Letters, vol. 14, no. 20, Art. no. 20, May 2023, doi: 10.1021/acs.jpclett.3c00479.
- H. Class, L. Keim, L. Schirmer, B. Strauch, K. Wendel, and M. Zimmer, “Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond with Aqueous Concentrations in a Stagnant Water Column,” Geosciences, vol. 13, no. 2, Art. no. 2, 2023, doi: 10.3390/geosciences13020051.
- M. Gao, D. Appel, A. Beck, and C.-D. Munz, “A high-order fluid–structure interaction framework with application to shock-wave/turbulent boundary-layer interaction over an elastic panel,” Journal of Fluids and Structures, vol. 121, p. 103950, Aug. 2023, doi: 10.1016/j.jfluidstructs.2023.103950.
- B. Weigand, “Large-eddy simulation, convective instability, and modal causality of coaxial supersonic air–water jets considering a swirl effect,” Physics of Fluids, vol. 35, no. 6, Art. no. 6, Jun. 2023, doi: 10.1063/5.0149856.
- A. Straub, G. K. Karch, J. Steigerwald, F. Sadlo, B. Weigand, and T. Ertl, “Visual Analysis of Interface Deformation in Multiphase Flow,” Journal of Visualization, vol. 26, no. 6, Art. no. 6, 2023, doi: 10.1007/s12650-023-00939-x.
- A. Beck and M. Kurz, “Toward discretization-consistent closure schemes for large eddy simulation using reinforcement learning,” Physics of Fluids, vol. 35, no. 12, Art. no. 12, Dec. 2023, doi: 10.1063/5.0176223.
- M. Schneider, D. Gläser, K. Weishaupt, E. Coltman, B. Flemisch, and R. Helmig, “Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems,” Journal of Computational Physics, vol. 482, p. 112042, Jun. 2023, doi: 10.1016/j.jcp.2023.112042.
- J. Potyka, K. Schulte, and C. Planchette, “Liquid distribution after head-on separation of two colliding immiscible liquid droplets,” Physics of Fluids, vol. 35, no. 10, Art. no. 10, Oct. 2023, doi: 10.1063/5.0168080.
- J. Jayaraj, N. Seetha, and S. M. Hassanizadeh, “Modeling the Transport and Retention of Nanoparticles in a Single Partially Saturated Pore in Soil,” Water Resources Research, vol. 59, no. 6, Art. no. 6, Jun. 2023, doi: 10.1029/2022wr034302.
- J. Kromer, J. Potyka, K. Schulte, and D. Bothe, “Efficient sequential PLIC interface positioning for enhanced performance of the three-phase VoF method,” Computers & Fluids, vol. 266, p. 106051, Nov. 2023, doi: 10.1016/j.compfluid.2023.106051.
- L. Yan, M. H. Golestan, W. Zhou, S. M. Hassanizadeh, C. F. Berg, and A. Raoof, “Direct Evidence of Salinity Difference Effect on Water Transport in Oil: Pore–Scale Mechanisms,” Energy &$\mathsemicolon$ Fuels, Sep. 2023, doi: 10.1021/acs.energyfuels.3c02245.
- M. Kurz, P. Offenhäuser, and A. Beck, “Deep reinforcement learning for turbulence modeling in large eddy simulations,” International Journal of Heat and Fluid Flow, vol. 99, p. 109094, Feb. 2023, doi: 10.1016/j.ijheatfluidflow.2022.109094.
- S. Burbulla, M. Hörl, and C. Rohde, “Flow in Porous Media with Fractures of Varying Aperture,” SIAM J. Sci. Comput, vol. 45, no. 4, Art. no. 4, 2023, doi: 10.1137/22M1510406.
- S. Gravelle, D. Beyer, M. Brito, A. Schlaich, and C. Holm, “Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures,” The Journal of Physical Chemistry B, vol. 127, no. 25, Art. no. 25, Jun. 2023, doi: 10.1021/acs.jpcb.3c01646.
- A. Straub, N. Karadimitriou, G. Reina, S. Frey, H. Steeb, and T. Ertl, “Visual Analysis of Displacement Processes in Porous Media using Spatio-Temporal Flow Graphs,” IEEE Transactions on Visualization and Computer Graphics, 2023, doi: 10.1109/TVCG.2023.3326931.
- L. Zhuang, S. M. Hassanizadeh, and C.-Z. Qin, “Experimental determination of in-plane permeability of nonwoven thin fibrous materials,” Textile Research Journal, vol. 93, no. 19–20, Art. no. 19–20, Jun. 2023, doi: 10.1177/00405175231181089.
- C. Müller, P. Mossier, and C.-D. Munz, “A sharp interface framework based on the inviscid Godunov-Peshkov-Romenski equations : Simulation of evaporating fluids,” Journal of computational physics, vol. 473, p. 111737, 2023, doi: 10.1016/j.jcp.2022.111737.
- M. J. Gander, S. B. Lunowa, and C. Rohde, “Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations,” SIAM J. Sci. Comput., vol. 45, no. 1, Art. no. 1, 2023, doi: 10.1137/21M1415005.
- P. Mossier, D. Appel, A. D. Beck, and C.-D. Munz, “An Efficient hp-Adaptive Strategy for a Level-Set Ghost-Fluid Method,” Journal of Scientific Computing, vol. 97, no. 2, Art. no. 2, Oct. 2023, doi: 10.1007/s10915-023-02363-7.
- Y. Liu, W. Wang, G. Yang, H. Nemati, and X. Chu, “The interfacial modes and modal causality in a dispersed bubbly turbulent flow,” Physics of Fluids, vol. 35, no. 8, Art. no. 8, Aug. 2023, doi: 10.1063/5.0159886.
2022
- J. Potyka et al., “Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D,” High Performance Computing in Science and Engineering ’22, Springer International Publishing, 2022. [Online]. Available: https://arxiv.org/abs/2212.09727
- J. Härter, R. Poser, B. Weigand, and G. Lamanna, “Impact of Porous-Media Topology on Turbulent Fluid Flow: Time-Resolved PIV Measurements,” in 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics, in 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics. 2022. doi: 10.55037/lxlaser.20th.80.
- T. Wenzel, M. Kurz, A. Beck, G. Santin, and B. Haasdonk, “Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Cham: Springer International Publishing, 2022, pp. 410--418.
- N. Seetha and S. M. Hassanizadeh, “A two-way coupled model for the co-transport of two different colloids in porous media,” Journal of Contaminant Hydrology, vol. 244, p. 103922, 2022, doi: 10.1016/j.jconhyd.2021.103922.
- L. Yan et al., “A quantitative study of salinity effect on water diffusion in n-alkane phases: From pore-scale experiments to molecular dynamic simulation,” Fuel, vol. 324, p. 124716, Sep. 2022, doi: 10.1016/j.fuel.2022.124716.
- D. Kempf and C.-D. Munz, “Zonal direct-hybrid aeroacoustic simulation of trailing edge noise using a high-order discontinuous Galerkin spectral element method,” Acta Acustica, vol. 6, p. 39, 2022, doi: 10.1051/aacus/2022030.
- P. Mossier, A. Beck, and C.-D. Munz, “A p-adaptive discontinuous Galerkin method with hp-shock capturing,” Joural of Scientific Computing, vol. 91, no. 4, Art. no. 4, 2022, doi: 10.1007/s10915-022-01770-6.
- J. Magiera and C. Rohde, “A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces,” Journal of Computational Physics, p. 111551, 2022, doi: https://doi.org/10.1016/j.jcp.2022.111551.
- W. Wang, A. Lozano-Durán, R. Helmig, and X. Chu, “Spatial and spectral characteristics of information flux between turbulent boundary layers and porous media,” Journal of Fluid Mechanics, vol. 949, Sep. 2022, doi: 10.1017/jfm.2022.770.
- L. Boumaiza et al., “Predicting Vertical LNAPL Distribution in the Subsurface under the Fluctuating Water Table Effect,” Groundwater Monitoring & Remediation, 2022, doi: 10.1111/gwmr.12497.
- S. Aseyednezhad, L. Yan, S. M. Hassanizadeh, and A. Raoof, “An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film,” Advances in Water Resources, vol. 159, pp. 1--9, 2022, doi: 10.1016/j.advwatres.2021.104058.
- H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions,” Transport in Porous Media, Nov. 2022, doi: 10.1007/s11242-022-01879-0.
- S. Liese, A. Schlaich, and R. R. Netz, “Dielectric Constant of Aqueous Solutions of Proteins and Organic Polymers from Molecular Dynamics Simulations,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0089397.
- J. Eller, T. Sauerborn, B. Becker, I. Buntic, J. Gross, and R. Helmig, “Modeling Subsurface Hydrogen Storage With Transport Properties From Entropy Scaling Using the PC‐SAFT Equation of State,” Water Resources Research, vol. 58, no. 4, Art. no. 4, 2022, doi: 10.1029/2021wr030885.
- M. Kelm, S. Gärttner, C. Bringedal, B. Flemisch, P. Knabner, and N. Ray, “Comparison study of phase-field and level-set method for three-phase systems including two minerals,” Computational Geosciences, vol. 26, no. 3, Art. no. 3, 2022, doi: 10.1007/s10596-022-10142-w.
- S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental Evaluation of Fluid Connectivity in Two-Phase Flow in Porous Media During Drainage,” Water Resources Research, vol. 58, no. 11, Art. no. 11, Nov. 2022, doi: 10.1029/2022wr033451.
- Y. S. R. Krishna, N. Seetha, and S. M. Hassanizadeh, “Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media,” Journal of Contaminant Hydrology, vol. 251, p. 104079, Dec. 2022, doi: 10.1016/j.jconhyd.2022.104079.
- H. Mandler and B. Weigand, “On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application,” International Journal of Heat and Fluid Flow, vol. 97, p. 109017, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109017.
- R. Cui, S. M. Hassanizadeh, and S. Sun, “Pore-network modeling of flow in shale nanopores : Network structure, flow principles, and computational algorithms,” Earth science reviews, vol. 234, no. November, Art. no. November, 2022, doi: 10.1016/j.earscirev.2022.104203.
- D. Lee, N. Karadimitriou, M. Ruf, and H. Steeb, “Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods,” Solid Earth, vol. 13, pp. 1475--1494, 2022, doi: 10.5194/se-13-1475-2022.
- A. Gonzalez-Nicolas et al., “Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities,” Transport in Porous Media, vol. 143, no. 2, Art. no. 2, 2022, doi: 10.1007/s11242-022-01777-5.
- M. Gao, T. Kuhn, and C. Munz, “On the investigation of oblique shock‐wave/turbulent boundary‐layer interactions with a high‐order discontinuous Galerkin method,” International Journal for Numerical Methods in Fluids, vol. 94, no. 8, Art. no. 8, Apr. 2022, doi: 10.1002/fld.5091.
- S. Gravelle, C. Holm, and A. Schlaich, “Transport of thin water films: from thermally activated random walks to hydrodynamics,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0099646.
- S. Frey et al., “Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media,” Computer graphics forum, vol. 41, no. 1, Art. no. 1, 2022, doi: 10.1111/cgf.14432.
- M. Ibach, V. Vaikuntanathan, A. Arad, D. Katoshevski, J. B. Greenberg, and B. Weigand, “Investigation of droplet grouping in monodisperse streams by direct numerical simulations,” Physics of Fluids, vol. 34, no. 8, Art. no. 8, 2022, doi: 10.1063/5.0097551.
- M. S. Walczak, H. Erfani, N. K. Karadimitriou, I. Zarikos, S. M. Hassanizadeh, and V. Niasar, “Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion,” Water Resources Research, vol. 58, no. 6, Art. no. 6, Jun. 2022, doi: 10.1029/2021wr030426.
- E. de Botton et al., “An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method,” Applied Mathematical Modelling, vol. 104, pp. 486–498, 2022, doi: 10.1016/j.apm.2021.12.001.
- H. Mandler and B. Weigand, “A realizable and scale-consistent data-driven non-linear eddy viscosity modeling framework for arbitrary regression algorithms,” International Journal of Heat and Fluid Flow, vol. 97, p. 109018, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109018.
- M. Kurz, P. Offenhäuser, D. Viola, O. Shcherbakov, M. Resch, and A. Beck, “Deep reinforcement learning for computational fluid dynamics on HPC systems,” Journal of Computational Science, vol. 65, p. 101884, Nov. 2022, doi: 10.1016/j.jocs.2022.101884.
- A. Schwarz, P. Kopper, J. Keim, H. Sommerfeld, C. Koch, and A. Beck, “A neural network based framework to model particle rebound and fracture,” Wear, vol. 508–509, p. 204476, Nov. 2022, doi: 10.1016/j.wear.2022.204476.
- V. Vaikuntanathan et al., “An Analytical Study on the Mechanism of Grouping of Droplets,” Fluids, vol. 7, no. 5, Art. no. 5, 2022, doi: 10.3390/fluids7050172.
- T. Yi, X. Chu, B. Wang, J. Wu, and G. Yang, “Numerical simulation of single bubble evolution in low gravity with fluctuation,” International Communications in Heat and Mass Transfer, vol. 130, p. 105828, Jan. 2022, doi: 10.1016/j.icheatmasstransfer.2021.105828.
2021
- S. Jöns, C. Müller, J. Zeifang, and C.-D. Munz, “Recent Advances and Complex Applications of the Compressible Ghost-Fl uid Method,” in Recent Advances in Numerical Methods for Hyperbolic PDE Systems, M. L. Muñoz-Ruiz, C. Parés, and G. Russo, Eds., in Recent Advances in Numerical Methods for Hyperbolic PDE Systems. Cham: Springer International Publishing, 2021, pp. 155--176.
- J. Steigerwald, M. Ibach, J. Reutzsch, and B. Weigand, “Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions,” in High Performance Computing in Science and Engineering ’20, in High Performance Computing in Science and Engineering ’20. Springer, 2021, pp. 261--279. doi: 10.1007/978-3-030-80602-6_17.
- A. Beck et al., “Increasing the Flexibility of the High Order Discontinuous Galerkin Framework FLEXI Towards Large Scale Industrial Applications,” in High Performance Computing in Science and Engineering’20, in High Performance Computing in Science and Engineering’20. , Springer, 2021, pp. 343--358. doi: 10.1007/978-3-030-80602-6_22.
- Y. Chen et al., “Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging,” Science Advances, vol. 7, no. 52, Art. no. 52, 2021, doi: 10.1126/sciadv.abj0960.
- H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer,” Water Resources Research, vol. 57, no. 6, Art. no. 6, 2021, doi: 10.1029/2020WR028572.
- C. Rohde and H. Tang, “On a stochastic Camassa-Holm type equation with higher order nonlinearities,” J. Dynam. Differential Equations, vol. 33, pp. 1823–1852, 2021, doi: https://doi.org/10.1007/s10884-020-09872-1.
- Y. Liu, A. Geppert, X. Chu, B. Heine, and B. Weigand, “SIMULATION OF AN ANNULAR LIQUID JET WITH A COAXIAL SUPERSONIC GAS JET IN A MEDICAL INHALER,” vol. 31, no. 9, Art. no. 9, 2021, doi: 10.1615/atomizspr.2021037223.
- S. Konangi, N. K. Palakurthi, N. K. Karadimitriou, K. Comer, and U. Ghia, “Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions,” Advances in Water Resources, vol. 147, p. 103792, 2021, doi: 10.1016/j.advwatres.2020.103792.
- L. Zhuang, S. M. Hassanizadeh, D. Bhatt, and C. van Duijn, “Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling,” Transport in Porous Media, vol. 139, no. 2, Art. no. 2, 2021, doi: 10.1007/s11242-021-01670-7.
- H. Gao, A. Tatomir, N. Karadimitriou, H. Steeb, and M. Sauter, “Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes,” Advances in Water Resources, vol. 157, p. 104044, 2021, doi: 10.1016/j.advwatres.2021.104044.
- C. Evrim, X. Chu, F. E. Silber, A. Isaev, S. Weihe, and E. Laurien, “Flow features and thermal stress evaluation in turbulent mixing flows,” International Journal of Heat and Mass Transfer, vol. 178, p. 121605, Oct. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121605.
- W. Wang, X. Chu, A. Lozano-Durán, R. Helmig, and B. Weigand, “Information transfer between turbulent boundary layers and porous media,” vol. 920, Jun. 2021, doi: 10.1017/jfm.2021.445.
- G. Yang et al., “Superhydrophilic metal-organic framework thin film for enhancing capillary-driven boiling heat transfer,” 2021, doi: 10.1039/d1ta06826a.
- T. Hitz, S. Jöns, M. Heinen, J. Vrabec, and C.-D. Munz, “Comparison of macro- and microscopic solutions of the Riemann problem II. Two-phase shock tube,” Journal of Computational Physics, vol. 429, p. 110027, Mar. 2021, doi: 10.1016/j.jcp.2020.110027.
- A. Wagner et al., “Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods,” Transport in Porous Media, vol. 138, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-021-01586-2.
- A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, Nov. 2021, doi: 10.1038/s41563-021-01121-0.
- X. Chu, W. Wang, G. Yang, A. Terzis, R. Helmig, and B. Weigand, “Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation,” Transport in Porous Media, vol. 136, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-020-01506-w.
- A. Yiotis, N. Karadimitriou, I. Zarikos, and H. Steeb, “Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains,” Scientific Reports, vol. 11, no. 1, Art. no. 1, 2021, doi: 10.1038/s41598-021-83065-8.
- D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise,” Journal of Nonlinear Science, vol. 31, p. Paper No. 98, 55, 2021.
- C. Rohde and H. Tang, “On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena,” Nonlinear Differential Equations and Applications, vol. 28, no. 1, Art. no. 1, 2021, doi: 10.1007/s00030-020-00661-9.
- W. Wang, G. Yang, C. Evrim, A. Terzis, R. Helmig, and X. Chu, “An assessment of turbulence transportation near regular and random permeable interfaces,” Physics of Fluids, vol. 33, no. 11, Art. no. 11, Nov. 2021, doi: 10.1063/5.0069311.
2020
- S. Pandey, X. Chu, B. Weigand, E. Laurien, and J. Schumacher, “Relaminarized and recovered turbulence under nonuniform body forces,” Physical Review Fluids, vol. 5, no. 10, Art. no. 10, Oct. 2020, doi: 10.1103/physrevfluids.5.104604.
- S. Hasan et al., “Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography,” Proceedings of the National Academy of Sciences, vol. 117, no. 38, Art. no. 38, 2020, doi: 10.1073/pnas.2011716117.
- T. Hitz, J. Keim, C.-D. Munz, and C. Rohde, “A parabolic relaxation model for the Navier-Stokes-Korteweg equations,” Journal of Computational Physics, vol. 421, p. 109714, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109714.
2019
- T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty quantification for direct aeroacoustic simulations of cavity flows,” J. Theor. Comput. Acoust., vol. 27, no. 1, Art. no. 1, 2019, doi: https://doi.org/10.1142/S2591728518500445.
- H. Steeb and J. Renner, “Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables,” Transport in Porous Media, vol. 120, no. 2, Art. no. 2, 2019, doi: 10.1007/s11242-019-01319-6.
- X. Chu, G. Yang, S. Pandey, and B. Weigand, “Direct numerical simulation of convective heat transfer in porous media,” International Journal of Heat and Mass Transfer, pp. 11–20, 2019.
Published data
2024
- P. Palmetshofer and J. Wurst, “Replication Data for: Wetting behavior in the inertial phase of droplet impacts onto sub-millimeter microstructured surfaces,” 2024. doi: 10.18419/darus-4178.
2023
- J. Potyka, K. Schulte, and C. Planchette, “Simulation and Experimental data on liquid distribution after the head-on separation of immiscible liquid droplet collisions,” 2023. doi: 10.18419/darus-3594.
- J. Potyka and K. Schulte, “Setups for and Outcomes of Immiscible Liquid Droplet Collision Simulations,” 2023. doi: 10.18419/darus-3557.
- F. Huber, P.-C. Bürkner, D. Göddeke, and M. Schulte, “Experimental Data and Models for ‘Knowledge-Based Modeling of Simulation Behavior for Bayesian Optimization,’” 2023. doi: 10.18419/darus-3550.
Project Network Coordinators

Andrea Beck
Prof. Dr.-Ing.Numerical Methods in Fluid Mechanics

Holger Steeb
Prof. Dr.-Ing.Continuum Mechanics | Director of SC SimTech

Bernhard Weigand
Prof. Dr.-Ing. habil.Aerospace Thermodynamics