Publications of PN 1

  1. 2022

    1. T. Yi, X. Chu, B. Wang, J. Wu, and G. Yang, “Numerical simulation of single bubble evolution in low gravity with fluctuation,” International Communications in Heat and Mass Transfer, vol. 130, p. 105828, Jan. 2022, doi: 10.1016/j.icheatmasstransfer.2021.105828.
    2. N. Seetha and S. M. Hassanizadeh, “A two-way coupled model for the co-transport of two different colloids in porous media,” Journal of Contaminant Hydrology, vol. 244, p. 103922, Jan. 2022, doi: 10.1016/j.jconhyd.2021.103922.
    3. D. Kempf et al., “Development of Turbulent Inflow Methods for the High Order HPC Framework FLEXI,” Cham, 2022.
    4. E. de Botton et al., “An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method,” Applied Mathematical Modelling, vol. 104, pp. 486–498, 2022, doi: 10.1016/j.apm.2021.12.001.
    5. L. Boumaiza et al., “Predicting vertical LNAPL distribution in the subsurface under the fluctuating water table effect,” Groundwater Monitoring & Remediation, 2022, doi: 10.1111/gwmr.12497.
    6. S. Aseyednezhad, L. Yan, M. Hassanizadeh, A. Raoof, and others, “An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film,” Advances in Water Resources, vol. 159, pp. 1--9, 2022, doi: 10.1016/j.advwatres.2021.104058.
    7. S. Aseyednezhad, L. Yan, S. M. Hassanizadeh, and A. Raoof, “An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film,” Advances in Water Resources, vol. 159, p. 104058, Jan. 2022, doi: 10.1016/j.advwatres.2021.104058.
  2. 2021

    1. L. Zhuang, S. M. Hassanizadeh, D. Bhatt, and C. van Duijn, “Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling,” Transport in Porous Media, vol. 139, no. 2, Art. no. 2, 2021, doi: 10.1007/s11242-021-01670-7.
    2. J. Zeifang and A. Beck, “A data-driven high order sub-cell artificial viscosity for the discontinuous Galerkin spectral element method,” Journal of Computational Physics, vol. 441, p. 110475, Sep. 2021, doi: 10.1016/j.jcp.2021.110475.
    3. A. Yiotis, N. Karadimitriou, I. Zarikos, and H. Steeb, “Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains,” Scientific Reports, vol. 11, no. 1, Art. no. 1, 2021, doi: 10.1038/s41598-021-83065-8.
    4. G. Yang et al., “A superhydrophilic metal--organic framework thin film for enhancing capillary-driven boiling heat transfer,” Journal of Materials Chemistry A, vol. 9, no. 45, Art. no. 45, 2021, doi: 10.1039/D1TA06826A.
    5. T. Wenzel, M. Kurz, A. Beck, G. Santin, and B. Haasdonk, “Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows,” 2021. [Online]. Available: https://arxiv.org/pdf/2103.13655.pdf
    6. F. Weinhardt, H. Class, S. Vahid Dastjerdi, N. Karadimitriou, D. Lee, and H. Steeb, “Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell,” Water Resources Research, vol. 57, no. 3, Art. no. 3, 2021, doi: 10.1029/2020WR029361.
    7. W. Wang, G. Yang, C. Evrim, A. Terzis, R. Helmig, and X. Chu, “An assessment of turbulence transportation near regular and random permeable interfaces,” Physics of Fluids, vol. 33, p. 115103, 2021, doi: 10.1063/5.0069311.
    8. W. Wang, X. Chu, A. Lozano-Durán, R. Helmig, and B. Weigand, “Information transfer between turbulent boundary layers and porous media,” Journal of Fluid Mechanics, vol. 920, pp. A21--, 2021, doi: DOI: 10.1017/jfm.2021.445.
    9. A. Wagner et al., “Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods,” Transport in Porous Media, vol. 138, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-021-01586-2.
    10. J. Steigerwald, M. Ibach, J. Reutzsch, and B. Weigand, “Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions,” in High Performance Computing in Science and Engineering ’20, 2021, pp. 261–279. doi: https://doi.org/10.1007/978-3-030-80602-6_17.
    11. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature materials, pp. 1--9, 2021, doi: 10.1038/s41563-021-01121-0.
    12. C. Rohde and H. Tang, “On the stochastic Dullin--Gottwald--Holm equation: global existence and wave-breaking phenomena,” Nonlinear Differential Equations and Applications NoDEA, vol. 28, no. 5, Art. no. 5, 2021, doi: 10.1007/s00030-020-00661-9.
    13. M. Osorno, M. Schirwon, N. Kijanski, R. Sivanesapillai, H. Steeb, and D. Göddeke, “A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media,” Computer Physics Communications, vol. 267, no. 108059, Art. no. 108059, Oct. 2021, doi: 10.1016/j.cpc.2021.108059.
    14. Y. Liu, A. Geppert, X. Chu, B. Heine, and B. Weigand, “Simulation of an annular liquid jet with a coaxial supersonic gas jet in a medical inhaler,” Atomization and Sprays, vol. 31, no. 9, Art. no. 9, 2021, doi: 10.1615/AtomizSpr.2021037223.
    15. S. Konangi, N. K. Palakurthi, N. K. Karadimitriou, K. Comer, and U. Ghia, “Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions,” Advances in Water Resources, vol. 147, p. 103792, 2021, doi: 10.1016/j.advwatres.2020.103792.
    16. T. Koch et al., “DuMux 3--an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling,” Computers & Mathematics with Applications, vol. 81, pp. 423--443, 2021, doi: 10.1016/j.camwa.2020.02.012.
    17. M. Ibach et al., “Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions,” in ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, 2021, vol. Edinburgh, UK, 29 Aug.-2 Sept. 2021. doi: https://doi.org/10.2218/iclass.2021.5815.
    18. M. Ibach et al., “Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions,” in International Conference on Liquid Atomization and Spray Systems (ICLASS), 2021, vol. 1, no. 1. doi: 10.2218/iclass.2021.5815.
    19. T. Hitz, S. Jöns, M. Heinen, J. Vrabec, and C.-D. Munz, “Comparison of macro-and microscopic solutions of the Riemann problem II. Two-phase shock tube,” Journal of Computational Physics, vol. 429, p. 110027, 2021, doi: 10.1016/j.jcp.2020.110027.
    20. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer,” Water Resources Research, vol. 57, no. 6, Art. no. 6, 2021, doi: 10.1029/2020WR028572.
    21. H. Gao, A. Tatomir, N. Karadimitriou, H. Steeb, and M. Sauter, “Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes,” Advances in Water Resources, vol. 157, p. 104044, 2021, doi: 10.1016/j.advwatres.2021.104044.
    22. B. Gao, E. Coltman, J. Farnsworth, R. Helmig, and K. M. Smits, “Determination of Vapor and Momentum Roughness Lengths Above an Undulating Soil Surface Based on PIV-Measured Velocity Profiles,” Water Resources Research, vol. 57, no. 7, Art. no. 7, 2021, doi: https://doi.org/10.1029/2021WR029578.
    23. C. Evrim, X. Chu, F. E. Silber, A. Isaev, S. Weihe, and E. Laurien, “Flow features and thermal stress evaluation in turbulent mixing flows,” vol. 178, p. 121605, Oct. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121605.
    24. J. Dürrwächter, M. Kurz, P. Kopper, D. Kempf, C.-D. Munz, and A. Beck, “An efficient sliding mesh interface method for high-order discontinuous Galerkin schemes,” Computers & Fluids, vol. 217, p. 104825, Mar. 2021, doi: 10.1016/j.compfluid.2020.104825.
    25. C. Dingler, H. Müller, M. Wieland, D. Fauser, H. Steeb, and S. Ludwigs, “Actuators: From Understanding Mechanical Behavior to Curvature Prediction of Humidity-Triggered Bilayer Actuators (Adv. Mater. 9/2021),” Advanced Materials, vol. 33, no. 9, Art. no. 9, 2021, doi: 10.1002/adma.202170067.
    26. D. de Winter et al., “The complexity of porous media flow characterized in a microfluidic model based on confocal laser scanning microscopy and micro-piv,” Transport in Porous Media, vol. 136, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-020-01515-9.
    27. X. Chu, W. Wang, G. Yang, A. Terzis, R. Helmig, and B. Weigand, “Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation,” Transport in Porous Media, vol. 136, no. 1, Art. no. 1, Jan. 2021, doi: 10.1007/s11242-020-01506-w.
    28. X. Chu, W. Wang, J. Müller, H. V. Schöning, Y. Liu, and B. Weigand, “Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media,” in High Performance Computing in Science and Engineering’20, Springer, 2021, pp. 373--386. doi: 10.1007/978-3-030-80602-6_24.
    29. Y. Chen et al., “Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging,” Science advances, vol. 7, no. 52, Art. no. 52, 2021, doi: 10.1126/sciadv.abj0960.
    30. A. Beck and M. Kurz, “A perspective on machine learning methods in turbulence modeling,” GAMM-Mitteilungen, vol. 44, no. 1, Art. no. 1, Mar. 2021, doi: 10.1002/gamm.202100002.
    31. A. Beck et al., “Increasing the flexibility of the high order discontinuous Galerkin framework FLEXI towards large scale industrial applications,” in High Performance Computing in Science and Engineering ’20, Cham, 2021.
    32. H. Aslannejad, S. Loginov, B. van der Hoek, E. Schoonderwoerd, H. Gerritsen, and S. Hassanizadeh, “Liquid droplet imbibition into a thin coating layer: direct pore-scale modeling and experimental observations,” Progress in Organic Coatings, vol. 151, p. 106054, 2021, doi: 10.1016/j.porgcoat.2020.106054.
    33. D. Alonso-Orán, C. Rohde, and H. Tang, “A Local-in-Time Theory for Singular SDEs with Applications to Fluid Models with Transport Noise,” Journal of Nonlinear Science, 2021, doi: https://doi.org/10.1007/s00332-021-09755-9.
  3. 2020

    1. G. (杨光) Yang et al., “Droplet mobilization at the walls of a microfluidic channel,” Physics of Fluids, vol. 32, no. 1, Art. no. 1, 2020, doi: 10.1063/1.5139308.
    2. J. Steigerwald, M. Ibach, J. Reutzsch, and B. Weigand, “Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions,” High Performance Computing in Science and Engineering ’20. Springer, 2020.
    3. M. Schneider, K. Weishaupt, D. Gläser, W. M. Boon, and R. Helmig, “Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems,” Journal of Computational Physics, vol. 401, p. 109012, 2020, doi: 10.1016/j.jcp.2019.109012.
    4. K. Schlottke, J. Reutzsch, C. Kieffer-Roth, and B. Weigand, “Direct Numerical Simulations of Evaporating Droplets at Higher Temperatures: Application of a Consistent Numerical Approach,” in Droplet Interactions and Spray Processes, 2020, pp. 287–299.
    5. L. L. Schepp et al., “Digital rock physics and laboratory considerations on a high-porosity volcanic rock: micro-XRCT data sets,” DaRUS. 2020. doi: 10.18419/DARUS-680.
    6. L. L. Schepp et al., “Digital rock physics and laboratory considerations on a high-porosity volcanic rock,” Scientific Reports, vol. 10, no. 1, Art. no. 1, 2020.
    7. C. Rohde and H. Tang, “On a stochastic Camassa--Holm type equation with higher order nonlinearities,” Journal of Dynamics and Differential Equations, vol. 33, pp. 1823–1852, 2020, doi: 10.1007/s10884-020-09872-1.
    8. J. Reutzsch, C. Kieffer-Roth, and B. Weigand, “A consistent method for direct numerical simulation of droplet evaporation,” Journal of Computational Physics, p. 109455, Jul. 2020, doi: 10.1016/j.jcp.2020.109455.
    9. M. Kurz and A. Beck, “A machine learning framework for LES closure terms.” 2020. [Online]. Available: http://arxiv.org/abs/2010.03030
    10. K. Heck, E. Coltman, J. Schneider, and R. Helmig, “Influence of Radiation on Evaporation Rates: A Numerical Analysis,” Water Resources Research, vol. 56, no. 10, Art. no. 10, Oct. 2020, doi: 10.1029/2020wr027332.
    11. S. Hasan et al., “Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography,” Proceedings of the National Academy of Sciences, vol. 117, no. 38, Art. no. 38, 2020, doi: 10.1073/pnas.2011716117.
    12. E. Coltman, M. Lipp, A. Vescovini, and R. Helmig, “Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces,” Transport in Porous Media, Jul. 2020, doi: 10.1007/s11242-020-01445-6.
    13. X. (初旭) Chu, Y. (刘雁超) Liu, W. (王文康) Wang, G. (杨光) Yang, B. Weigand, and H. Nemati, “Turbulence, pseudo-turbulence, and local flow topology in dispersed bubbly flow,” Physics of Fluids, vol. 32, no. 8, Art. no. 8, 2020, doi: 10.1063/5.0014833.
    14. X. Chu, Y. Wu, U. Rist, and B. Weigand, “Instability and transition in an elementary porous medium,” Phys. Rev. Fluids, vol. 5, no. 4, Art. no. 4, Apr. 2020, doi: 10.1103/PhysRevFluids.5.044304.
    15. L. M. Bahlmann, K. M. Smits, K. Heck, E. Coltman, R. Helmig, and I. Neuweiler, “Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling,” Water Resources Research, vol. 56, no. 9, Art. no. 9, 2020, doi: https://doi.org/10.1029/2020WR027600.
    16. D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise,” arXiv preprint arXiv:2010.09972, pp. 1–32, 2020, doi: 10.1007/s00332-021-09755-9.
    17. D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise,” arXiv preprint arXiv:2010.09972, pp. 1–32, 2020, doi: 10.1007/s00332-021-09755-9.
  4. 2019

    1. A. Terzis et al., “Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow,” Physics of Fluids, vol. 31, no. 4, Art. no. 4, Apr. 2019, doi: 10.1063/1.5092169.
    2. H. Steeb and J. Renner, “Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables,” Transport in Porous Media, vol. 130, no. 2, Art. no. 2, 2019.
    3. J. Reutzsch et al., “Direct Numerical Simulations of Oscillating Liquid Droplets: a Method to Extract Shape Characteristics,” ILASS-Europe 2019, 29th Conference on Liquid Atomization and Spray Systems, vol. Paris, France, 2019.
    4. X. Chu, G. Yang, S. Pandey, and B. Weigand, “Direct numerical simulation of convective heat transfer in porous media,” International Journal of Heat and Mass Transfer, vol. 133, pp. 11--20, Apr. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.172.

Project Network Coordinators

This image shows Rainer Helmig

Rainer Helmig

Prof. Dr.-Ing.

Bernhard Weigand

Prof. Dr.-Ing. habil.
To the top of the page