Publications of PN 1

Publications

  1. 2024

    1. M. Gao, P. Mossier, and C.-D. Munz, “Shock capturing for a high-order ALE discontinuous Galerkin method with applications to fluid flows in time-dependent domains,” Computers & fluids, vol. 269, p. 106124, Jan. 2024, doi: 10.1016/j.compfluid.2023.106124.
    2. J. Potyka and K. Schulte, “A volume of fluid method for three dimensional direct numerical simulations of immiscible droplet collisions,” International Journal of Multiphase Flow, vol. 170, p. 104654, Jan. 2024, doi: 10.1016/j.ijmultiphaseflow.2023.104654.
    3. J. Magiera and C. Rohde, “A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate,” Communications in  Applied Mathematics and  Computation, 2024, doi: 0.1007/s42967-023-00349-8.
    4. M. Hörl and C. Rohde, “Rigorous Derivation of Discrete Fracture Models for Darcy Flow in the Limit of Vanishing Aperture,” Networks and  Heterogeneous Media, vol. 19, no. 1, Art. no. 1, 2024, doi: 10.3934/nhm.2024006.
    5. Y. Miao, C. Rohde, and H. Tang, “Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities,” Stochastic Partial Differential Equations: Analysis & Computation, vol. 12, no. 1, Art. no. 1, 2024, doi: 10.1007/s40072-023-00291-z.
    6. M. Alkämper, J. Magiera, and C. Rohde, “An Interface-Preserving Moving Mesh in Multiple Space  Dimensions,” ACM Transactions in  Mathematical Software, vol. 50, no. 1, Art. no. 1, Mar. 2024, doi: 10.1145/3630000.
  2. 2023

    1. J. L. Stober, J. Potyka, M. Ibach, B. Weigand, and K. Schulte, “DNS of the Early Phase of Oblique Droplet Impact on Thin Films with FS3D,” High Performance Computing in Science and Engineering ’23, Springer International Publishing, 2023. [Online]. Available: /brokenurl# https://doi.org/10.48550/arXiv.2311.17690
    2. D. Appel, S. Jöns, J. Keim, C. Müller, J. Zeifang, and C.-D. Munz, “A narrow band-based dynamic load balancing scheme for the level-set ghost-fluid method,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 305--320.
    3. D. Kempf et al., “Development of turbulent inflow methods for the high order HPC framework FLEXI,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 289--304. doi: 10.1007/978-3-031-17937-2_17.
    4. A. Schlottke, M. Ibach, J. Steigerwald, and B. Weigand, “Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 239--257. doi: 10.1007/978-3-031-17937-2_14.
    5. J. Keim, A. Schwarz, S. Chiocchetti, C. Rohde, and A. Beck, “A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes,” in Finite volumes for complex applications X. Vol. 2.  Hyperbolic and related problems, in Finite volumes for complex applications X. Vol. 2.  Hyperbolic and related problems, vol. 433. Springer, Cham, 2023, pp. 209--217. doi: 10.13140/RG.2.2.18046.87363.
    6. S. Jöns and C.-D. Munz, “Riemann solvers for phase transition in a compressible sharp-interface method,” Applied mathematics and computation, vol. 440, p. 127624, 2023, doi: 10.1016/j.amc.2022.127624.
    7. J. Härter, D. S. Martínez, R. Poser, B. Weigand, and G. Lamanna, “Coupling between a turbulent outer flow and an adjacent porous medium : High resolved Particle Image Velocimetry measurements,” Physics of Fluids, vol. 35, no. 2, Art. no. 2, 2023, doi: 10.1063/5.0132193.
    8. S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental evaluation of fluid connectivity in two-phase flow in porous media,” Advances in Water Resources, vol. 172, p. 104378, Feb. 2023, doi: 10.1016/j.advwatres.2023.104378.
    9. J. Keim, C.-D. Munz, and C. Rohde, “A relaxation model for the non-isothermal Navier-Stokes-Korteweg equations in confined domains,” Journal of Computational Physics, vol. 474, p. 111830, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021999122008932?via%3Dihub
    10. M. Soundaranathan et al., “Modelling the Evolution of Pore Structure during the Disintegration of Pharmaceutical Tablets,” Pharmaceutics, vol. 15, no. 2, Art. no. 2, 2023, doi: 10.3390/pharmaceutics15020489.
    11. H. Mandler and B. Weigand, “Feature importance in neural networks as a means of interpretation for data-driven turbulence models,” Computers & Fluids, p. 105993, Jul. 2023, doi: 10.1016/j.compfluid.2023.105993.
    12. V. Artemov et al., “The Three-Phase Contact Potential Difference Modulates the Water Surface Charge,” The Journal of Physical Chemistry Letters, vol. 14, no. 20, Art. no. 20, May 2023, doi: 10.1021/acs.jpclett.3c00479.
    13. H. Class, L. Keim, L. Schirmer, B. Strauch, K. Wendel, and M. Zimmer, “Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond with Aqueous Concentrations in a Stagnant Water Column,” Geosciences, vol. 13, no. 2, Art. no. 2, 2023, doi: 10.3390/geosciences13020051.
    14. M. Gao, D. Appel, A. Beck, and C.-D. Munz, “A high-order fluid–structure interaction framework with application to shock-wave/turbulent boundary-layer interaction over an elastic panel,” Journal of Fluids and Structures, vol. 121, p. 103950, Aug. 2023, doi: 10.1016/j.jfluidstructs.2023.103950.
    15. A. Straub, G. K. Karch, J. Steigerwald, F. Sadlo, B. Weigand, and T. Ertl, “Visual Analysis of Interface Deformation in Multiphase Flow,” Journal of Visualization, vol. 26, no. 6, Art. no. 6, 2023, doi: 10.1007/s12650-023-00939-x.
    16. J. Potyka, K. Schulte, and C. Planchette, “Liquid distribution after head-on separation of two colliding immiscible liquid droplets,” Physics of Fluids, vol. 35, no. 10, Art. no. 10, Oct. 2023, doi: 10.1063/5.0168080.
    17. J. Jayaraj, N. Seetha, and S. M. Hassanizadeh, “Modeling the Transport and Retention of Nanoparticles in a Single Partially Saturated Pore in Soil,” Water Resources Research, vol. 59, no. 6, Art. no. 6, Jun. 2023, doi: 10.1029/2022wr034302.
    18. J. Kromer, J. Potyka, K. Schulte, and D. Bothe, “Efficient sequential PLIC interface positioning for enhanced performance of the three-phase VoF method,” Computers & Fluids, vol. 266, p. 106051, Nov. 2023, doi: 10.1016/j.compfluid.2023.106051.
    19. L. Yan, M. H. Golestan, W. Zhou, S. M. Hassanizadeh, C. F. Berg, and A. Raoof, “Direct Evidence of Salinity Difference Effect on Water Transport in Oil: Pore–Scale Mechanisms,” Energy &amp$\mathsemicolon$ Fuels, Sep. 2023, doi: 10.1021/acs.energyfuels.3c02245.
    20. S. Burbulla, M. Hörl, and C. Rohde, “Flow in Porous Media with Fractures of Varying Aperture,” SIAM J. Sci. Comput, vol. 45, no. 4, Art. no. 4, 2023, doi: 10.1137/22M1510406.
    21. M. Kurz, P. Offenhäuser, and A. Beck, “Deep reinforcement learning for turbulence modeling in large eddy simulations,” International Journal of Heat and Fluid Flow, vol. 99, p. 109094, Feb. 2023, doi: 10.1016/j.ijheatfluidflow.2022.109094.
    22. S. Gravelle, D. Beyer, M. Brito, A. Schlaich, and C. Holm, “Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures,” The Journal of Physical Chemistry B, vol. 127, no. 25, Art. no. 25, Jun. 2023, doi: 10.1021/acs.jpcb.3c01646.
    23. A. Straub, N. Karadimitriou, G. Reina, S. Frey, H. Steeb, and T. Ertl, “Visual Analysis of Displacement Processes in Porous Media using Spatio-Temporal Flow Graphs,” IEEE Transactions on Visualization and Computer Graphics, 2023, doi: 10.1109/TVCG.2023.3326931.
    24. L. Zhuang, S. M. Hassanizadeh, and C.-Z. Qin, “Experimental determination of in-plane permeability of nonwoven thin fibrous materials,” Textile Research Journal, vol. 93, no. 19–20, Art. no. 19–20, Jun. 2023, doi: 10.1177/00405175231181089.
    25. M. J. Gander, S. B. Lunowa, and C. Rohde, “Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations,” SIAM J. Sci. Comput., vol. 45, no. 1, Art. no. 1, 2023, doi: 10.1137/21M1415005.
    26. C. Müller, P. Mossier, and C.-D. Munz, “A sharp interface framework based on the inviscid Godunov-Peshkov-Romenski equations : Simulation of evaporating fluids,” Journal of computational physics, vol. 473, p. 111737, 2023, doi: 10.1016/j.jcp.2022.111737.
    27. P. Mossier, D. Appel, A. D. Beck, and C.-D. Munz, “An Efficient hp-Adaptive Strategy for a Level-Set Ghost-Fluid Method,” Journal of Scientific Computing, vol. 97, no. 2, Art. no. 2, Oct. 2023, doi: 10.1007/s10915-023-02363-7.
  3. 2022

    1. J. Potyka et al., “Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D,” High Performance Computing in Science and Engineering ’22, Springer International Publishing, 2022. [Online]. Available: https://arxiv.org/abs/2212.09727
    2. J. Härter, R. Poser, B. Weigand, and G. Lamanna, “Impact of Porous-Media Topology on Turbulent Fluid Flow: Time-Resolved PIV Measurements,” in 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics, in 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics. 2022. doi: 10.55037/lxlaser.20th.80.
    3. T. Wenzel, M. Kurz, A. Beck, G. Santin, and B. Haasdonk, “Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Cham: Springer International Publishing, 2022, pp. 410--418.
    4. J. Magiera and C. Rohde, “A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces,” Journal of  Computational Physics, p. 111551, 2022, doi: https://doi.org/10.1016/j.jcp.2022.111551.
    5. D. Kempf and C.-D. Munz, “Zonal direct-hybrid aeroacoustic simulation of trailing edge noise using a high-order discontinuous Galerkin spectral element method,” Acta Acustica, vol. 6, p. 39, 2022, doi: 10.1051/aacus/2022030.
    6. P. Mossier, A. Beck, and C.-D. Munz, “A p-adaptive discontinuous Galerkin method with hp-shock capturing,” Joural of Scientific Computing, vol. 91, no. 4, Art. no. 4, 2022, doi: 10.1007/s10915-022-01770-6.
    7. L. Yan et al., “A quantitative study of salinity effect on water diffusion in n-alkane phases: From pore-scale experiments to molecular dynamic simulation,” Fuel, vol. 324, p. 124716, Sep. 2022, doi: 10.1016/j.fuel.2022.124716.
    8. N. Seetha and S. M. Hassanizadeh, “A two-way coupled model for the co-transport of two different colloids in porous media,” Journal of Contaminant Hydrology, vol. 244, p. 103922, 2022, doi: 10.1016/j.jconhyd.2021.103922.
    9. L. Boumaiza et al., “Predicting Vertical LNAPL Distribution in the Subsurface under the Fluctuating Water Table Effect,” Groundwater Monitoring & Remediation, 2022, doi: 10.1111/gwmr.12497.
    10. V. Vaikuntanathan et al., “An Analytical Study on the Mechanism of Grouping of Droplets,” Fluids, vol. 7, no. 5, Art. no. 5, 2022, doi: 10.3390/fluids7050172.
    11. S. Aseyednezhad, L. Yan, S. M. Hassanizadeh, and A. Raoof, “An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film,” Advances in Water Resources, vol. 159, pp. 1--9, 2022, doi: 10.1016/j.advwatres.2021.104058.
    12. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions,” Transport in Porous Media, Nov. 2022, doi: 10.1007/s11242-022-01879-0.
    13. S. Liese, A. Schlaich, and R. R. Netz, “Dielectric Constant of Aqueous Solutions of Proteins and Organic Polymers from Molecular Dynamics Simulations,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0089397.
    14. M. Kelm, S. Gärttner, C. Bringedal, B. Flemisch, P. Knabner, and N. Ray, “Comparison study of phase-field and level-set method for three-phase systems including two minerals,” Computational Geosciences, vol. 26, no. 3, Art. no. 3, 2022, doi: 10.1007/s10596-022-10142-w.
    15. S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental Evaluation of Fluid Connectivity in Two-Phase Flow in Porous Media During Drainage,” Water Resources Research, vol. 58, no. 11, Art. no. 11, Nov. 2022, doi: 10.1029/2022wr033451.
    16. Y. S. R. Krishna, N. Seetha, and S. M. Hassanizadeh, “Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media,” Journal of Contaminant Hydrology, vol. 251, p. 104079, Dec. 2022, doi: 10.1016/j.jconhyd.2022.104079.
    17. H. Mandler and B. Weigand, “On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application,” International Journal of Heat and Fluid Flow, vol. 97, p. 109017, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109017.
    18. R. Cui, S. M. Hassanizadeh, and S. Sun, “Pore-network modeling of flow in shale nanopores : Network structure, flow principles, and computational algorithms,” Earth science reviews, vol. 234, no. November, Art. no. November, 2022, doi: 10.1016/j.earscirev.2022.104203.
    19. D. Lee, N. Karadimitriou, M. Ruf, and H. Steeb, “Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods,” Solid Earth, vol. 13, pp. 1475--1494, 2022, doi: 10.5194/se-13-1475-2022.
    20. A. Gonzalez-Nicolas et al., “Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities,” Transport in Porous Media, vol. 143, no. 2, Art. no. 2, 2022, doi: 10.1007/s11242-022-01777-5.
    21. M. Gao, T. Kuhn, and C. Munz, “On the investigation of oblique shock‐wave/turbulent boundary‐layer interactions with a high‐order discontinuous Galerkin method,” International Journal for Numerical Methods in Fluids, vol. 94, no. 8, Art. no. 8, Apr. 2022, doi: 10.1002/fld.5091.
    22. S. Gravelle, C. Holm, and A. Schlaich, “Transport of thin water films: from thermally activated random walks to hydrodynamics,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0099646.
    23. S. Frey et al., “Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media,” Computer graphics forum, vol. 41, no. 1, Art. no. 1, 2022, doi: 10.1111/cgf.14432.
    24. M. Ibach, V. Vaikuntanathan, A. Arad, D. Katoshevski, J. B. Greenberg, and B. Weigand, “Investigation of droplet grouping in monodisperse streams by direct numerical simulations,” Physics of Fluids, vol. 34, no. 8, Art. no. 8, 2022, doi: 10.1063/5.0097551.
    25. M. S. Walczak, H. Erfani, N. K. Karadimitriou, I. Zarikos, S. M. Hassanizadeh, and V. Niasar, “Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion,” Water Resources Research, vol. 58, no. 6, Art. no. 6, Jun. 2022, doi: 10.1029/2021wr030426.
    26. E. de Botton et al., “An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method,” Applied Mathematical Modelling, vol. 104, pp. 486–498, 2022, doi: 10.1016/j.apm.2021.12.001.
    27. H. Mandler and B. Weigand, “A realizable and scale-consistent data-driven non-linear eddy viscosity modeling framework for arbitrary regression algorithms,” International Journal of Heat and Fluid Flow, vol. 97, p. 109018, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109018.
    28. M. Kurz, P. Offenhäuser, D. Viola, O. Shcherbakov, M. Resch, and A. Beck, “Deep reinforcement learning for computational fluid dynamics on HPC systems,” Journal of Computational Science, vol. 65, p. 101884, Nov. 2022, doi: 10.1016/j.jocs.2022.101884.
    29. A. Schwarz, P. Kopper, J. Keim, H. Sommerfeld, C. Koch, and A. Beck, “A neural network based framework to model particle rebound and fracture,” Wear, vol. 508–509, p. 204476, Nov. 2022, doi: 10.1016/j.wear.2022.204476.
  4. 2021

    1. S. Jöns, C. Müller, J. Zeifang, and C.-D. Munz, “Recent Advances and Complex Applications of the Compressible Ghost-Fl uid Method,” in Recent Advances in Numerical Methods for Hyperbolic PDE Systems, M. L. Muñoz-Ruiz, C. Parés, and G. Russo, Eds., in Recent Advances in Numerical Methods for Hyperbolic PDE Systems. Cham: Springer International Publishing, 2021, pp. 155--176.
    2. J. Steigerwald, M. Ibach, J. Reutzsch, and B. Weigand, “Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions,” in High Performance Computing in Science and Engineering ’20, in High Performance Computing in Science and Engineering ’20. Springer, 2021, pp. 261--279. doi: 10.1007/978-3-030-80602-6_17.
    3. A. Beck et al., “Increasing the Flexibility of the High Order Discontinuous Galerkin Framework FLEXI Towards Large Scale Industrial Applications,” in High Performance Computing in Science and Engineering’20, in High Performance Computing in Science and Engineering’20. , Springer, 2021, pp. 343--358. doi: 10.1007/978-3-030-80602-6_22.
    4. C. Rohde and H. Tang, “On a stochastic Camassa-Holm type equation with higher order nonlinearities,” J. Dynam. Differential Equations, vol. 33, pp. 1823–1852, 2021, doi: https://doi.org/10.1007/s10884-020-09872-1.
    5. Y. Chen et al., “Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging,” Science Advances, vol. 7, no. 52, Art. no. 52, 2021, doi: 10.1126/sciadv.abj0960.
    6. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer,” Water Resources Research, vol. 57, no. 6, Art. no. 6, 2021, doi: 10.1029/2020WR028572.
    7. S. Konangi, N. K. Palakurthi, N. K. Karadimitriou, K. Comer, and U. Ghia, “Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions,” Advances in Water Resources, vol. 147, p. 103792, 2021, doi: 10.1016/j.advwatres.2020.103792.
    8. L. Zhuang, S. M. Hassanizadeh, D. Bhatt, and C. van Duijn, “Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling,” Transport in Porous Media, vol. 139, no. 2, Art. no. 2, 2021, doi: 10.1007/s11242-021-01670-7.
    9. H. Gao, A. Tatomir, N. Karadimitriou, H. Steeb, and M. Sauter, “Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes,” Advances in Water Resources, vol. 157, p. 104044, 2021, doi: 10.1016/j.advwatres.2021.104044.
    10. A. Wagner et al., “Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods,” Transport in Porous Media, vol. 138, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-021-01586-2.
    11. T. Hitz, S. Jöns, M. Heinen, J. Vrabec, and C.-D. Munz, “Comparison of macro- and microscopic solutions of the Riemann problem II. Two-phase shock tube,” Journal of Computational Physics, vol. 429, p. 110027, Mar. 2021, doi: 10.1016/j.jcp.2020.110027.
    12. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, Nov. 2021, doi: 10.1038/s41563-021-01121-0.
    13. A. Yiotis, N. Karadimitriou, I. Zarikos, and H. Steeb, “Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains,” Scientific Reports, vol. 11, no. 1, Art. no. 1, 2021, doi: 10.1038/s41598-021-83065-8.
    14. D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise,” Journal of  Nonlinear Science, vol. 31, p. Paper No. 98, 55, 2021.
    15. C. Rohde and H. Tang, “On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena,” Nonlinear Differential Equations and Applications, vol. 28, no. 1, Art. no. 1, 2021, doi: 10.1007/s00030-020-00661-9.
  5. 2020

    1. S. Hasan et al., “Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography,” Proceedings of the National Academy of Sciences, vol. 117, no. 38, Art. no. 38, 2020, doi: 10.1073/pnas.2011716117.
    2. T. Hitz, J. Keim, C.-D. Munz, and C. Rohde, “A parabolic relaxation model for the Navier-Stokes-Korteweg equations,” Journal of  Computational Physics, vol. 421, p. 109714, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109714.
  6. 2019

    1. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty quantification for direct aeroacoustic simulations of cavity flows,” J. Theor. Comput. Acoust., vol. 27, no. 1, Art. no. 1, 2019, doi: https://doi.org/10.1142/S2591728518500445.
    2. H. Steeb and J. Renner, “Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables,” Transport in Porous Media, vol. 120, no. 2, Art. no. 2, 2019, doi: 10.1007/s11242-019-01319-6.

Published software

    Published data

    1. 2023

      1. J. Potyka, K. Schulte, and C. Planchette, “Simulation and Experimental data on liquid distribution after the head-on separation of immiscible liquid droplet collisions.” 2023. doi: 10.18419/darus-3594.
      2. J. Potyka and K. Schulte, “Setups for and Outcomes of Immiscible Liquid Droplet Collision Simulations.” 2023. doi: 10.18419/darus-3557.
      3. F. Huber, P.-C. Bürkner, D. Göddeke, and M. Schulte, “Experimental Data and Models for ‘Knowledge-Based Modeling of Simulation Behavior for Bayesian Optimization.’” 2023. doi: 10.18419/darus-3550.

    Project Network Coordinators

    This image shows Andrea Beck

    Andrea Beck

    Prof. Dr.-Ing.

    Numerical Methods in Fluid Mechanics

    This image shows Holger Steeb

    Holger Steeb

    Prof. Dr.-Ing.

    Continuum Mechanics | Director of SC SimTech

    This image shows Bernhard Weigand

    Bernhard Weigand

    Prof. Dr.-Ing. habil.

    Aerospace Thermodynamics

    To the top of the page