Publications of PN 1

Publications

  1. 2024

    1. J. Potyka and K. Schulte, “A volume of fluid method for three dimensional direct numerical simulations of immiscible droplet collisions,” International Journal of Multiphase Flow, vol. 170, p. 104654, Jan. 2024, doi: 10.1016/j.ijmultiphaseflow.2023.104654.
  2. 2023

    1. J. L. Stober, J. Potyka, M. Ibach, B. Weigand, and K. Schulte, “DNS of the Early Phase of Oblique Droplet Impact on Thin Films with FS3D,” High Performance Computing in Science and Engineering ’23, Springer International Publishing, 2023. [Online]. Available: /brokenurl# https://doi.org/10.48550/arXiv.2311.17690
    2. A. Schlottke, M. Ibach, J. Steigerwald, and B. Weigand, “Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 239--257. doi: 10.1007/978-3-031-17937-2_14.
    3. J. Härter, D. S. Martínez, R. Poser, B. Weigand, and G. Lamanna, “Coupling between a turbulent outer flow and an adjacent porous medium : High resolved Particle Image Velocimetry measurements,” Physics of Fluids, vol. 35, no. 2, Art. no. 2, 2023, doi: 10.1063/5.0132193.
    4. S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental evaluation of fluid connectivity in two-phase flow in porous media,” Advances in Water Resources, vol. 172, p. 104378, Feb. 2023, doi: 10.1016/j.advwatres.2023.104378.
    5. H. Mandler and B. Weigand, “Feature importance in neural networks as a means of interpretation for data-driven turbulence models,” Computers & Fluids, p. 105993, Jul. 2023, doi: 10.1016/j.compfluid.2023.105993.
    6. M. Soundaranathan et al., “Modelling the Evolution of Pore Structure during the Disintegration of Pharmaceutical Tablets,” Pharmaceutics, vol. 15, no. 2, Art. no. 2, 2023, doi: 10.3390/pharmaceutics15020489.
    7. V. Artemov et al., “The Three-Phase Contact Potential Difference Modulates the Water Surface Charge,” The Journal of Physical Chemistry Letters, vol. 14, no. 20, Art. no. 20, May 2023, doi: 10.1021/acs.jpclett.3c00479.
    8. H. Class, L. Keim, L. Schirmer, B. Strauch, K. Wendel, and M. Zimmer, “Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond with Aqueous Concentrations in a Stagnant Water Column,” Geosciences, vol. 13, no. 2, Art. no. 2, 2023, doi: 10.3390/geosciences13020051.
    9. A. Straub, G. K. Karch, J. Steigerwald, F. Sadlo, B. Weigand, and T. Ertl, “Visual Analysis of Interface Deformation in Multiphase Flow,” Journal of Visualization, vol. 26, no. 6, Art. no. 6, 2023, doi: 10.1007/s12650-023-00939-x.
    10. J. Potyka, K. Schulte, and C. Planchette, “Liquid distribution after head-on separation of two colliding immiscible liquid droplets,” Physics of Fluids, vol. 35, no. 10, Art. no. 10, Oct. 2023, doi: 10.1063/5.0168080.
    11. J. Jayaraj, N. Seetha, and S. M. Hassanizadeh, “Modeling the Transport and Retention of Nanoparticles in a Single Partially Saturated Pore in Soil,” Water Resources Research, vol. 59, no. 6, Art. no. 6, Jun. 2023, doi: 10.1029/2022wr034302.
    12. J. Kromer, J. Potyka, K. Schulte, and D. Bothe, “Efficient sequential PLIC interface positioning for enhanced performance of the three-phase VoF method,” Computers & Fluids, vol. 266, p. 106051, Nov. 2023, doi: 10.1016/j.compfluid.2023.106051.
    13. L. Yan, M. H. Golestan, W. Zhou, S. M. Hassanizadeh, C. F. Berg, and A. Raoof, “Direct Evidence of Salinity Difference Effect on Water Transport in Oil: Pore–Scale Mechanisms,” Energy &amp$\mathsemicolon$ Fuels, Sep. 2023, doi: 10.1021/acs.energyfuels.3c02245.
    14. A. Straub, N. Karadimitriou, G. Reina, S. Frey, H. Steeb, and T. Ertl, “Visual Analysis of Displacement Processes in Porous Media using Spatio-Temporal Flow Graphs,” IEEE Transactions on Visualization and Computer Graphics, 2023, doi: 10.1109/TVCG.2023.3326931.
    15. L. Zhuang, S. M. Hassanizadeh, and C.-Z. Qin, “Experimental determination of in-plane permeability of nonwoven thin fibrous materials,” Textile Research Journal, vol. 93, no. 19–20, Art. no. 19–20, Jun. 2023, doi: 10.1177/00405175231181089.
  3. 2022

    1. J. Potyka et al., “Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D,” High Performance Computing in Science and Engineering ’22, Springer International Publishing, 2022. [Online]. Available: https://arxiv.org/abs/2212.09727
    2. J. Härter, R. Poser, B. Weigand, and G. Lamanna, “Impact of Porous-Media Topology on Turbulent Fluid Flow: Time-Resolved PIV Measurements,” in 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics, in 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics. 2022. doi: 10.55037/lxlaser.20th.80.
    3. L. Yan et al., “A quantitative study of salinity effect on water diffusion in n-alkane phases: From pore-scale experiments to molecular dynamic simulation,” Fuel, vol. 324, p. 124716, Sep. 2022, doi: 10.1016/j.fuel.2022.124716.
    4. N. Seetha and S. M. Hassanizadeh, “A two-way coupled model for the co-transport of two different colloids in porous media,” Journal of Contaminant Hydrology, vol. 244, p. 103922, 2022, doi: 10.1016/j.jconhyd.2021.103922.
    5. L. Boumaiza et al., “Predicting Vertical LNAPL Distribution in the Subsurface under the Fluctuating Water Table Effect,” Groundwater Monitoring & Remediation, 2022, doi: 10.1111/gwmr.12497.
    6. V. Vaikuntanathan et al., “An Analytical Study on the Mechanism of Grouping of Droplets,” Fluids, vol. 7, no. 5, Art. no. 5, 2022, doi: 10.3390/fluids7050172.
    7. S. Aseyednezhad, L. Yan, S. M. Hassanizadeh, and A. Raoof, “An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film,” Advances in Water Resources, vol. 159, pp. 1--9, 2022, doi: 10.1016/j.advwatres.2021.104058.
    8. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions,” Transport in Porous Media, Nov. 2022, doi: 10.1007/s11242-022-01879-0.
    9. M. Kelm, S. Gärttner, C. Bringedal, B. Flemisch, P. Knabner, and N. Ray, “Comparison study of phase-field and level-set method for three-phase systems including two minerals,” Computational Geosciences, vol. 26, no. 3, Art. no. 3, 2022, doi: 10.1007/s10596-022-10142-w.
    10. S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental Evaluation of Fluid Connectivity in Two-Phase Flow in Porous Media During Drainage,” Water Resources Research, vol. 58, no. 11, Art. no. 11, Nov. 2022, doi: 10.1029/2022wr033451.
    11. Y. S. R. Krishna, N. Seetha, and S. M. Hassanizadeh, “Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media,” Journal of Contaminant Hydrology, vol. 251, p. 104079, Dec. 2022, doi: 10.1016/j.jconhyd.2022.104079.
    12. S. Liese, A. Schlaich, and R. R. Netz, “Dielectric Constant of Aqueous Solutions of Proteins and Organic Polymers from Molecular Dynamics Simulations,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0089397.
    13. H. Mandler and B. Weigand, “On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application,” International Journal of Heat and Fluid Flow, vol. 97, p. 109017, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109017.
    14. R. Cui, S. M. Hassanizadeh, and S. Sun, “Pore-network modeling of flow in shale nanopores : Network structure, flow principles, and computational algorithms,” Earth science reviews, vol. 234, no. November, Art. no. November, 2022, doi: 10.1016/j.earscirev.2022.104203.
    15. D. Lee, N. Karadimitriou, M. Ruf, and H. Steeb, “Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods,” Solid Earth, vol. 13, pp. 1475--1494, 2022, doi: 10.5194/se-13-1475-2022.
    16. A. Gonzalez-Nicolas et al., “Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities,” Transport in Porous Media, vol. 143, no. 2, Art. no. 2, 2022, doi: 10.1007/s11242-022-01777-5.
    17. S. Frey et al., “Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media,” Computer graphics forum, vol. 41, no. 1, Art. no. 1, 2022, doi: 10.1111/cgf.14432.
    18. M. Ibach, V. Vaikuntanathan, A. Arad, D. Katoshevski, J. B. Greenberg, and B. Weigand, “Investigation of droplet grouping in monodisperse streams by direct numerical simulations,” Physics of Fluids, vol. 34, no. 8, Art. no. 8, 2022, doi: 10.1063/5.0097551.
    19. M. S. Walczak, H. Erfani, N. K. Karadimitriou, I. Zarikos, S. M. Hassanizadeh, and V. Niasar, “Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion,” Water Resources Research, vol. 58, no. 6, Art. no. 6, Jun. 2022, doi: 10.1029/2021wr030426.
    20. E. de Botton et al., “An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method,” Applied Mathematical Modelling, vol. 104, pp. 486–498, 2022, doi: 10.1016/j.apm.2021.12.001.
    21. H. Mandler and B. Weigand, “A realizable and scale-consistent data-driven non-linear eddy viscosity modeling framework for arbitrary regression algorithms,” International Journal of Heat and Fluid Flow, vol. 97, p. 109018, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109018.
  4. 2021

    1. J. Steigerwald, M. Ibach, J. Reutzsch, and B. Weigand, “Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions,” in High Performance Computing in Science and Engineering ’20, in High Performance Computing in Science and Engineering ’20. Springer, 2021, pp. 261--279. doi: 10.1007/978-3-030-80602-6_17.
    2. Y. Chen et al., “Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging,” Science Advances, vol. 7, no. 52, Art. no. 52, 2021, doi: 10.1126/sciadv.abj0960.
    3. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer,” Water Resources Research, vol. 57, no. 6, Art. no. 6, 2021, doi: 10.1029/2020WR028572.
    4. S. Konangi, N. K. Palakurthi, N. K. Karadimitriou, K. Comer, and U. Ghia, “Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions,” Advances in Water Resources, vol. 147, p. 103792, 2021, doi: 10.1016/j.advwatres.2020.103792.
    5. L. Zhuang, S. M. Hassanizadeh, D. Bhatt, and C. van Duijn, “Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling,” Transport in Porous Media, vol. 139, no. 2, Art. no. 2, 2021, doi: 10.1007/s11242-021-01670-7.
    6. H. Gao, A. Tatomir, N. Karadimitriou, H. Steeb, and M. Sauter, “Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes,” Advances in Water Resources, vol. 157, p. 104044, 2021, doi: 10.1016/j.advwatres.2021.104044.
    7. A. Wagner et al., “Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods,” Transport in Porous Media, vol. 138, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-021-01586-2.
    8. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, Nov. 2021, doi: 10.1038/s41563-021-01121-0.
    9. A. Yiotis, N. Karadimitriou, I. Zarikos, and H. Steeb, “Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains,” Scientific Reports, vol. 11, no. 1, Art. no. 1, 2021, doi: 10.1038/s41598-021-83065-8.
  5. 2020

    1. S. Hasan et al., “Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography,” Proceedings of the National Academy of Sciences, vol. 117, no. 38, Art. no. 38, 2020, doi: 10.1073/pnas.2011716117.
  6. 2019

    1. H. Steeb and J. Renner, “Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables,” Transport in Porous Media, vol. 120, no. 2, Art. no. 2, 2019, doi: 10.1007/s11242-019-01319-6.

Published software

    Published data

    1. 2023

      1. J. Potyka, K. Schulte, and C. Planchette, “Simulation and Experimental data on liquid distribution after the head-on separation of immiscible liquid droplet collisions.” 2023. doi: 10.18419/darus-3594.
      2. J. Potyka and K. Schulte, “Setups for and Outcomes of Immiscible Liquid Droplet Collision Simulations.” 2023. doi: 10.18419/darus-3557.

    Project Network Coordinators

    This image shows Andrea Beck

    Andrea Beck

    Prof. Dr.-Ing.

    Numerical Methods in Fluid Mechanics

    This image shows Holger Steeb

    Holger Steeb

    Prof. Dr.-Ing.

    Continuum Mechanics | Director of SC SimTech

    [Photo: SimTech/Max Kovalenko]

    This image shows Bernhard Weigand

    Bernhard Weigand

    Prof. Dr.-Ing. habil.

    Aerospace Thermodynamics

    To the top of the page