Publications of PN 1

Publications of PN 1

  1. 2024

    1. J. Potyka and K. Schulte, “A volume of fluid method for three dimensional direct numerical simulations of immiscible droplet collisions,” International Journal of Multiphase Flow, vol. 170, p. 104654, Jan. 2024, doi: 10.1016/j.ijmultiphaseflow.2023.104654.
  2. 2023

    1. L. Zhuang, S. M. Hassanizadeh, and C.-Z. Qin, “Experimental determination of in-plane permeability of nonwoven thin fibrous materials,” Textile Research Journal, vol. 93, no. 19–20, Art. no. 19–20, Jun. 2023, doi: 10.1177/00405175231181089.
    2. L. Yan, M. H. Golestan, W. Zhou, S. M. Hassanizadeh, C. F. Berg, and A. Raoof, “Direct Evidence of Salinity Difference Effect on Water Transport in Oil: Pore–Scale Mechanisms,” Energy &amp$\mathsemicolon$ Fuels, Sep. 2023, doi: 10.1021/acs.energyfuels.3c02245.
    3. A. Straub, G. K. Karch, J. Steigerwald, F. Sadlo, B. Weigand, and T. Ertl, “Visual Analysis of Interface Deformation in Multiphase Flow,” Journal of Visualization, 2023, doi: https://doi.org/10.1007/s12650-023-00939-x.
    4. A. Straub, N. Karadimitriou, G. Reina, S. Frey, H. Steeb, and T. Ertl, “Visual Analysis of Displacement Processes in Porous Media using Spatio-Temporal Flow Graphs,” IEEE Transactions on Visualization and Computer Graphics, vol. 30, no. 1, Art. no. 1, 2023, doi: 10.1109/TVCG.2023.3326931.
    5. J. L. Stober, J. Potyka, M. Ibach, B. Weigand, and K. Schulte, “DNS of the Early Phase of Oblique Droplet Impact on Thin Films with FS3D,” High Performance Computing in Science and Engineering ’23, Springer International Publishing, 2023. [Online]. Available: /brokenurl# https://doi.org/10.48550/arXiv.2311.17690
    6. M. Soundaranathan et al., “Modelling the Evolution of Pore Structure during the Disintegration of Pharmaceutical Tablets,” Pharmaceutics, vol. 15, no. 2, Art. no. 2, 2023, doi: 10.3390/pharmaceutics15020489.
    7. M. Schneider, D. Gläser, K. Weishaupt, E. Coltman, B. Flemisch, and R. Helmig, “Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems,” Journal of Computational Physics, vol. 482, p. 112042, Jun. 2023, doi: 10.1016/j.jcp.2023.112042.
    8. A. Schlottke, M. Ibach, J. Steigerwald, and B. Weigand, “Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 239--257. doi: 10.1007/978-3-031-17937-2_14.
    9. J. Potyka, K. Schulte, and C. Planchette, “Simulation and Experimental data on liquid distribution after the head-on separation of immiscible liquid droplet collisions.” 2023. doi: 10.18419/darus-3594.
    10. J. Potyka, K. Schulte, and C. Planchette, “Liquid distribution after head-on separation of two colliding immiscible liquid droplets,” Physics of Fluids, vol. 35, no. 10, Art. no. 10, Oct. 2023, doi: 10.1063/5.0168080.
    11. J. Potyka and K. Schulte, “Setups for and Outcomes of Immiscible Liquid Droplet Collision Simulations.” 2023. doi: 10.18419/darus-3557.
    12. H. Mandler and B. Weigand, “Feature importance in neural networks as a means of interpretation for data-driven turbulence models,” Computers & Fluids, p. 105993, Jul. 2023, doi: 10.1016/j.compfluid.2023.105993.
    13. M. Kurz, P. Offenhäuser, and A. Beck, “Deep reinforcement learning for turbulence modeling in large eddy simulations,” International Journal of Heat and Fluid Flow, vol. 99, p. 109094, Feb. 2023, doi: 10.1016/j.ijheatfluidflow.2022.109094.
    14. J. Kromer, J. Potyka, K. Schulte, and D. Bothe, “Efficient sequential PLIC interface positioning for enhanced performance of the three-phase VoF method,” Computers & Fluids, vol. 266, p. 106051, Nov. 2023, doi: 10.1016/j.compfluid.2023.106051.
    15. D. Kempf et al., “Development of turbulent inflow methods for the high order HPC framework FLEXI,” in High Performance Computing in Science and Engineering ’21, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’21. Cham: Springer International Publishing, 2023, pp. 289--304. doi: 10.1007/978-3-031-17937-2_17.
    16. J. Jayaraj, N. Seetha, and S. M. Hassanizadeh, “Modeling the Transport and Retention of Nanoparticles in a Single Partially Saturated Pore in Soil,” Water Resources Research, vol. 59, no. 6, Art. no. 6, Jun. 2023, doi: 10.1029/2022wr034302.
    17. M. Ibach, V. Vaikuntanathan, Al. Arad, D. Katoshevski, B. Greenberg, and B. Weigand, “Numerical Study of Oscillating Droplets and their Relevance to Grouping in Streams,” presented at the ILASS-Europe 2023, 32nd Conference on Liquid Atomization and Spray Systems, 4-7 September 2023, 2023.
    18. M. Ibach, J. Steigerwald, and B. Weigand, “Thixotropic effects in oscillating droplets,” presented at the 11th International Conference on Multiphase Flow (ICMF), April 2–7, 2023, 2023.
    19. J. Härter, D. S. Martínez, R. Poser, B. Weigand, and G. Lamanna, “Coupling between a turbulent outer flow and an adjacent porous medium : High resolved Particle Image Velocimetry measurements,” Physics of fluids, vol. 35, no. 2, Art. no. 2, 2023, doi: 10.1063/5.0132193.
    20. S. Gravelle, D. Beyer, M. Brito, A. Schlaich, and C. Holm, “Assessing the validity of NMR relaxation rates obtained from coarse-grained simulations of PEG-water mixtures,” Jun. 2023, doi: 10.26434/chemrxiv-2022-f90tv-v4.
    21. M. J. Gander, S. B. Lunowa, and C. Rohde, “Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations,” SIAM J. Sci. Comput., vol. 45, no. 1, Art. no. 1, 2023, doi: 10.1137/21M1415005.
    22. T. Fuhrmann, R. Poser, B. Weigand, and L. Grazia, “Interfacial interaction of a porous periodic topology adjacent to a turbulent fluid flow by highly resolved PIV measurements,” in Book of Abstracts of 15th Annual International Conference on Porous Media, in Book of Abstracts of 15th Annual International Conference on Porous Media. 2023, pp. 333–334.
    23. S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental evaluation of fluid connectivity in two-phase flow in porous media,” Advances in Water Resources, vol. 172, p. 104378, Feb. 2023, doi: 10.1016/j.advwatres.2023.104378.
    24. H. Class, L. Keim, L. Schirmer, B. Strauch, K. Wendel, and M. Zimmer, “Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond with Aqueous Concentrations in a Stagnant Water Column,” Geosciences, vol. 13, no. 2, Art. no. 2, 2023, doi: 10.3390/geosciences13020051.
    25. S. Burbulla, M. Hörl, and C. Rohde, “Flow in Porous Media with Fractures of Varying Aperture,” Accepted by SIAM J. Sci. Comput, 2023, [Online]. Available: https://doi.org/10.48550/arXiv.2207.09301
    26. S. Bolik et al., “The possible role of lipid bilayer properties in the evolutionary disappearance of betaine lipids in seed plants.,” bioRxiv, 2023, doi: 10.1101/2023.01.24.525350.
    27. V. Artemov et al., “The Three-Phase Contact Potential Difference Modulates the Water Surface Charge,” The Journal of Physical Chemistry Letters, vol. 14, no. 20, Art. no. 20, May 2023, doi: 10.1021/acs.jpclett.3c00479.
  3. 2022

    1. T. Yi, X. Chu, B. Wang, J. Wu, and G. Yang, “Numerical simulation of single bubble evolution in low gravity with fluctuation,” International Communications in Heat and Mass Transfer, vol. 130, p. 105828, Jan. 2022, doi: 10.1016/j.icheatmasstransfer.2021.105828.
    2. L. Yan et al., “A quantitative study of salinity effect on water diffusion in n-alkane phases: From pore-scale experiments to molecular dynamic simulation,” Fuel, vol. 324, p. 124716, Sep. 2022, doi: 10.1016/j.fuel.2022.124716.
    3. T. Wenzel, M. Kurz, A. Beck, G. Santin, and B. Haasdonk, “Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Cham: Springer International Publishing, 2022, pp. 410--418.
    4. M. S. Walczak, H. Erfani, N. K. Karadimitriou, I. Zarikos, S. M. Hassanizadeh, and V. Niasar, “Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion,” Water Resources Research, vol. 58, no. 6, Art. no. 6, Jun. 2022, doi: 10.1029/2021wr030426.
    5. V. Vaikuntanathan et al., “An Analytical Study on the Mechanism of Grouping of Droplets,” Fluids, vol. 7, no. 5, Art. no. 5, 2022, doi: 10.3390/fluids7050172.
    6. N. Seetha and S. M. Hassanizadeh, “A two-way coupled model for the co-transport of two different colloids in porous media,” Journal of Contaminant Hydrology, vol. 244, p. 103922, 2022, doi: 10.1016/j.jconhyd.2021.103922.
    7. A. Schwarz, P. Kopper, J. Keim, H. Sommerfeld, C. Koch, and A. Beck, “A neural network based framework to model particle rebound and fracture,” Wear, vol. 508–509, p. 204476, Nov. 2022, doi: 10.1016/j.wear.2022.204476.
    8. J. Potyka et al., “Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D,” High Performance Computing in Science and Engineering ’22, Springer International Publishing, 2022. [Online]. Available: https://arxiv.org/abs/2212.09727
    9. P. Mossier, A. Beck, and C.-D. Munz, “A p-adaptive discontinuous Galerkin method with hp-shock capturing,” Joural of Scientific Computing, vol. 91, no. 4, Art. no. 4, 2022, doi: 10.1007/s10915-022-01770-6.
    10. H. Mandler and B. Weigand, “A realizable and scale-consistent data-driven non-linear eddy viscosity modeling framework for arbitrary regression algorithms,” International Journal of Heat and Fluid Flow, vol. 97, p. 109018, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109018.
    11. H. Mandler and B. Weigand, “On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application,” International Journal of Heat and Fluid Flow, vol. 97, p. 109017, 2022, doi: https://doi.org/10.1016/j.ijheatfluidflow.2022.109017.
    12. S. Liese, A. Schlaich, and R. R. Netz, “Dielectric Constant of Aqueous Solutions of Proteins and Organic Polymers from Molecular Dynamics Simulations,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0089397.
    13. D. Lee, N. Karadimitriou, M. Ruf, and H. Steeb, “Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods,” Solid Earth, vol. 13, pp. 1475--1494, 2022, doi: 10.5194/se-13-1475-2022.
    14. M. Kurz, P. Offenhäuser, D. Viola, O. Shcherbakov, M. Resch, and A. Beck, “Deep reinforcement learning for computational fluid dynamics on HPC systems,” Journal of Computational Science, vol. 65, p. 101884, Nov. 2022, doi: 10.1016/j.jocs.2022.101884.
    15. M. Kurz, P. Offenhäuser, D. Viola, M. Resch, and A. Beck, “Relexi — A scalable open source reinforcement learning framework for high-performance computing,” Software Impacts, vol. 14, p. 100422, Dec. 2022, doi: 10.1016/j.simpa.2022.100422.
    16. Y. S. R. Krishna, N. Seetha, and S. M. Hassanizadeh, “Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media,” Journal of Contaminant Hydrology, vol. 251, p. 104079, Dec. 2022, doi: 10.1016/j.jconhyd.2022.104079.
    17. M. Kelm, S. Gärttner, C. Bringedal, B. Flemisch, P. Knabner, and N. Ray, “Comparison study of phase-field and level-set method for three-phase systems including two minerals,” Computational Geosciences, vol. 26, no. 3, Art. no. 3, 2022, doi: 10.1007/s10596-022-10142-w.
    18. M. Ibach et al., “Numerical Investigation of Multiple Droplet Streams and the Effect on Grouping Behavior,” presented at the ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, 2022.
    19. M. Ibach, V. Vaikuntanathan, A. Arad, D. Katoshevski, J. B. Greenberg, and B. Weigand, “Investigation of droplet grouping in monodisperse streams by direct numerical simulations,” Physics of Fluids, vol. 34, no. 8, Art. no. 8, 2022, doi: 10.1063/5.0097551.
    20. J. Härter, R. Poser, B. Weigand, and G. Lamanna, “Impact of Porous-Media Topology on Turbulent Fluid Flow: Time-Resolved PIV Measurements,” 2022.
    21. S. Gravelle, C. Holm, and A. Schlaich, “Transport of thin water films: from thermally activated random walks to hydrodynamics,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0099646.
    22. A. Gonzalez-Nicolas et al., “Optimal Exposure Time in Gamma-Ray Attenuation Experiments for Monitoring Time-Dependent Densities,” Transport in Porous Media, vol. 143, no. 2, Art. no. 2, 2022, doi: 10.1007/s11242-022-01777-5.
    23. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions,” Transport in Porous Media, Nov. 2022, doi: 10.1007/s11242-022-01879-0.
    24. S. Frey et al., “Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media,” Computer graphics forum, vol. 41, no. 1, Art. no. 1, 2022, doi: 10.1111/cgf.14432.
    25. E. de Botton et al., “An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method,” Applied Mathematical Modelling, vol. 104, pp. 486–498, 2022, doi: 10.1016/j.apm.2021.12.001.
    26. S. V. Dastjerdi, N. Karadimitriou, S. M. Hassanizadeh, and H. Steeb, “Experimental Evaluation of Fluid Connectivity in Two-Phase Flow in Porous Media During Drainage,” Water Resources Research, vol. 58, no. 11, Art. no. 11, Nov. 2022, doi: 10.1029/2022wr033451.
    27. R. Cui, S. M. Hassanizadeh, and S. Sun, “Pore-network modeling of flow in shale nanopores : Network structure, flow principles, and computational algorithms,” Earth science reviews, vol. 234, no. November, Art. no. November, 2022, doi: 10.1016/j.earscirev.2022.104203.
    28. L. Boumaiza et al., “Predicting Vertical LNAPL Distribution in the Subsurface under the Fluctuating Water Table Effect,” Groundwater Monitoring & Remediation, 2022, doi: 10.1111/gwmr.12497.
    29. S. Aseyednezhad, L. Yan, S. M. Hassanizadeh, and A. Raoof, “An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film,” Advances in Water Resources, vol. 159, pp. 1--9, 2022, doi: 10.1016/j.advwatres.2021.104058.
    30. A. Arad, V. Vaikuntanathan, M. Ibach, J. B. Greenberg, B. Weigand, and D. Katoshevski, “CFD Simulations of Droplet Grouping in Acoustic Standing Waves,” presented at the ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, 2022.
  4. 2021

    1. L. Zhuang, S. M. Hassanizadeh, D. Bhatt, and C. van Duijn, “Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling,” Transport in Porous Media, vol. 139, no. 2, Art. no. 2, 2021, doi: 10.1007/s11242-021-01670-7.
    2. J. Zeifang and A. Beck, “A Data-Driven High Order Sub-Cell Artificial Viscosity for the Discontinuous Galerkin Spectral Element Method,” Journal of Computational Physics, vol. 441, p. Article 110475, 2021, doi: 10.1016/j.jcp.2021.110475.
    3. A. Yiotis, N. Karadimitriou, I. Zarikos, and H. Steeb, “Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains,” Scientific Reports, vol. 11, no. 1, Art. no. 1, 2021, doi: 10.1038/s41598-021-83065-8.
    4. G. Yang et al., “A superhydrophilic metal--organic framework thin film for enhancing capillary-driven boiling heat transfer,” Journal of Materials Chemistry A, vol. 9, no. 45, Art. no. 45, 2021, doi: 10.1039/D1TA06826A.
    5. F. Weinhardt, H. Class, S. Vahid Dastjerdi, N. Karadimitriou, D. Lee, and H. Steeb, “Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell,” Water Resources Research, vol. 57, no. 3, Art. no. 3, 2021, doi: 10.1029/2020WR029361.
    6. W. Wang, G. Yang, C. Evrim, A. Terzis, R. Helmig, and X. Chu, “An assessment of turbulence transportation near regular and random permeable interfaces,” Physics of Fluids, vol. 33, p. 115103, 2021, doi: 10.1063/5.0069311.
    7. W. Wang, X. Chu, A. Lozano-Durán, R. Helmig, and B. Weigand, “Information transfer between turbulent boundary layers and porous media,” Journal of Fluid Mechanics, vol. 920, pp. A21--, 2021, doi: DOI: 10.1017/jfm.2021.445.
    8. A. Wagner et al., “Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods,” Transport in Porous Media, vol. 138, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-021-01586-2.
    9. J. Steigerwald, M. Ibach, J. Reutzsch, and B. Weigand, “Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions,” in High Performance Computing in Science and Engineering ’20, in High Performance Computing in Science and Engineering ’20. Springer, 2021, pp. 261--279. doi: 10.1007/978-3-030-80602-6_17.
    10. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, Nov. 2021, doi: 10.1038/s41563-021-01121-0.
    11. C. Rohde and H. Tang, “On the stochastic Dullin--Gottwald--Holm equation: global existence and wave-breaking phenomena,” Nonlinear Differential Equations and Applications NoDEA, vol. 28, no. 5, Art. no. 5, 2021, doi: 10.1007/s00030-020-00661-9.
    12. M. Osorno, M. Schirwon, N. Kijanski, R. Sivanesapillai, H. Steeb, and D. Göddeke, “A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media,” Computer Physics Communications, vol. 267, no. 108059, Art. no. 108059, Oct. 2021, doi: 10.1016/j.cpc.2021.108059.
    13. Y. Liu, A. Geppert, X. Chu, B. Heine, and B. Weigand, “Simulation of an annular liquid jet with a coaxial supersonic gas jet in a medical inhaler,” Atomization and Sprays, vol. 31, no. 9, Art. no. 9, 2021, doi: 10.1615/AtomizSpr.2021037223.
    14. S. Konangi, N. K. Palakurthi, N. K. Karadimitriou, K. Comer, and U. Ghia, “Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions,” Advances in Water Resources, vol. 147, p. 103792, 2021, doi: 10.1016/j.advwatres.2020.103792.
    15. T. Koch et al., “DuMux 3--an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling,” Computers & Mathematics with Applications, vol. 81, pp. 423--443, 2021, doi: 10.1016/j.camwa.2020.02.012.
    16. M. Ibach et al., “Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions,” in International Conference on Liquid Atomization and Spray Systems (ICLASS), in International Conference on Liquid Atomization and Spray Systems (ICLASS), vol. 1. 2021. doi: 10.2218/iclass.2021.5815.
    17. T. Hitz, S. Jöns, M. Heinen, J. Vrabec, and C.-D. Munz, “Comparison of macro-and microscopic solutions of the Riemann problem II. Two-phase shock tube,” Journal of Computational Physics, vol. 429, p. 110027, 2021, doi: 10.1016/j.jcp.2020.110027.
    18. H. Gao, A. B. Tatomir, N. K. Karadimitriou, H. Steeb, and M. Sauter, “A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer,” Water Resources Research, vol. 57, no. 6, Art. no. 6, 2021, doi: 10.1029/2020WR028572.
    19. H. Gao, A. Tatomir, N. Karadimitriou, H. Steeb, and M. Sauter, “Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes,” Advances in Water Resources, vol. 157, p. 104044, 2021, doi: 10.1016/j.advwatres.2021.104044.
    20. B. Gao, E. Coltman, J. Farnsworth, R. Helmig, and K. M. Smits, “Determination of Vapor and Momentum Roughness Lengths Above an Undulating Soil Surface Based on PIV-Measured Velocity Profiles,” Water Resources Research, vol. 57, no. 7, Art. no. 7, 2021, doi: https://doi.org/10.1029/2021WR029578.
    21. C. Evrim, X. Chu, F. E. Silber, A. Isaev, S. Weihe, and E. Laurien, “Flow features and thermal stress evaluation in turbulent mixing flows,” vol. 178, p. 121605, Oct. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121605.
    22. J. Dürrwächter, M. Kurz, P. Kopper, D. Kempf, C.-D. Munz, and A. Beck, “An efficient sliding mesh interface method for high-order discontinuous Galerkin schemes,” Computers & Fluids, vol. 217, p. 104825, Mar. 2021, doi: 10.1016/j.compfluid.2020.104825.
    23. C. Dingler, H. Müller, M. Wieland, D. Fauser, H. Steeb, and S. Ludwigs, “Actuators: From Understanding Mechanical Behavior to Curvature Prediction of Humidity-Triggered Bilayer Actuators (Adv. Mater. 9/2021),” Advanced Materials, vol. 33, no. 9, Art. no. 9, 2021, doi: 10.1002/adma.202170067.
    24. D. de Winter et al., “The complexity of porous media flow characterized in a microfluidic model based on confocal laser scanning microscopy and micro-piv,” Transport in Porous Media, vol. 136, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-020-01515-9.
    25. X. Chu, W. Wang, G. Yang, A. Terzis, R. Helmig, and B. Weigand, “Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation,” Transport in Porous Media, vol. 136, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-020-01506-w.
    26. X. Chu, W. Wang, J. Müller, H. V. Schöning, Y. Liu, and B. Weigand, “Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media,” in High Performance Computing in Science and Engineering’20, in High Performance Computing in Science and Engineering’20. , Springer, 2021, pp. 373--386. doi: 10.1007/978-3-030-80602-6_24.
    27. Y. Chen et al., “Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging,” Science advances, vol. 7, no. 52, Art. no. 52, 2021, doi: 10.1126/sciadv.abj0960.
    28. A. Beck and M. Kurz, “A perspective on machine learning methods in turbulence modeling,” GAMM-Mitteilungen, vol. 44, no. 1, Art. no. 1, Mar. 2021, doi: 10.1002/gamm.202100002.
    29. A. Beck et al., “Increasing the flexibility of the high order discontinuous Galerkin framework FLEXI towards large scale industrial applications,” in High Performance Computing in Science and Engineering ’20, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’20. Cham: Springer International Publishing, 2021.
    30. A. Arad, D. Katoshevski, V. Vaikuntanathan, M. Ibach, J. B. Greenberg, and B. Weigand, “Longitudinal and Lateral Grouping in Droplet Streams using the Eulerian-Lagrangian Approach,” Dec. 2021.
    31. D. Alonso-Orán, C. Rohde, and H. Tang, “A Local-in-Time Theory for Singular SDEs with Applications to Fluid Models with Transport Noise,” Journal of Nonlinear Science, pp. 1–32, 2021, doi: 10.1007/s00332-021-09755-9.
  5. 2020

    1. G. (杨光) Yang et al., “Droplet mobilization at the walls of a microfluidic channel,” Physics of Fluids, vol. 32, no. 1, Art. no. 1, 2020, doi: 10.1063/1.5139308.
    2. M. Schneider, K. Weishaupt, D. Gläser, W. M. Boon, and R. Helmig, “Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems,” Journal of Computational Physics, vol. 401, p. 109012, 2020, doi: 10.1016/j.jcp.2019.109012.
    3. K. Schlottke, J. Reutzsch, C. Kieffer-Roth, and B. Weigand, “Direct Numerical Simulations of Evaporating Droplets at Higher Temperatures: Application of a Consistent Numerical Approach,” in Droplet Interactions and Spray Processes, in Droplet Interactions and Spray Processes. Springer International Publishing, 2020, pp. 287–299.
    4. L. L. Schepp et al., “Digital rock physics and laboratory considerations on a high-porosity volcanic rock: micro-XRCT data sets,” DaRUS. in DaRUS. 2020. doi: 10.18419/DARUS-680.
    5. L. L. Schepp et al., “Digital rock physics and laboratory considerations on a high-porosity volcanic rock,” Scientific Reports, vol. 10, no. 1, Art. no. 1, 2020.
    6. C. Rohde and H. Tang, “On a stochastic Camassa--Holm type equation with higher order nonlinearities,” Journal of Dynamics and Differential Equations, vol. 33, pp. 1823–1852, 2020, doi: 10.1007/s10884-020-09872-1.
    7. J. Reutzsch, C. Kieffer-Roth, and B. Weigand, “A consistent method for direct numerical simulation of droplet evaporation,” Journal of Computational Physics, p. 109455, Jul. 2020, doi: 10.1016/j.jcp.2020.109455.
    8. M. Kurz and A. Beck, “A machine learning framework for LES closure terms,” ETNA - Electronic Transactions on Numerical Analysis, pp. 117–137, Sep. 2020, doi: 10.1553/etna_vol56s117.
    9. K. Heck, E. Coltman, J. Schneider, and R. Helmig, “Influence of Radiation on Evaporation Rates: A Numerical Analysis,” Water Resources Research, vol. 56, no. 10, Art. no. 10, Oct. 2020, doi: 10.1029/2020wr027332.
    10. S. Hasan et al., “Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography,” Proceedings of the National Academy of Sciences, vol. 117, no. 38, Art. no. 38, 2020, doi: 10.1073/pnas.2011716117.
    11. E. Coltman, M. Lipp, A. Vescovini, and R. Helmig, “Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces,” Transport in Porous Media, vol. 134, no. 2, Art. no. 2, 2020, doi: 10.1007/s11242-020-01445-6.
    12. X. (初旭) Chu, Y. (刘雁超) Liu, W. (王文康) Wang, G. (杨光) Yang, B. Weigand, and H. Nemati, “Turbulence, pseudo-turbulence, and local flow topology in dispersed bubbly flow,” Physics of Fluids, vol. 32, no. 8, Art. no. 8, 2020, doi: 10.1063/5.0014833.
    13. X. Chu, Y. Wu, U. Rist, and B. Weigand, “Instability and transition in an elementary porous medium,” Phys. Rev. Fluids, vol. 5, no. 4, Art. no. 4, Apr. 2020, doi: 10.1103/PhysRevFluids.5.044304.
    14. A. D. Beck, J. Zeifang, A. Schwarz, and D. G. Flad, “A neural network based shock detection and localization approach for discontinuous Galerkin methods,” Journal of Computational Physics, vol. 423, p. 109824, 2020, doi: 10.1016/j.jcp.2020.109824.
    15. L. M. Bahlmann, K. M. Smits, K. Heck, E. Coltman, R. Helmig, and I. Neuweiler, “Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling,” Water Resources Research, vol. 56, no. 9, Art. no. 9, 2020, doi: https://doi.org/10.1029/2020WR027600.
  6. 2019

    1. A. Terzis et al., “Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow,” Physics of Fluids, vol. 31, no. 4, Art. no. 4, Apr. 2019, doi: 10.1063/1.5092169.
    2. H. Steeb and J. Renner, “Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables,” Transport in Porous Media, vol. 120, no. 2, Art. no. 2, 2019, doi: 10.1007/s11242-019-01319-6.
    3. J. Reutzsch et al., “Direct Numerical Simulations of Oscillating Liquid Droplets: a Method to Extract Shape Characteristics,” ILASS-Europe 2019, 29th Conference on Liquid Atomization and Spray Systems, vol. Paris, France, 2019.
    4. X. Chu, G. Yang, S. Pandey, and B. Weigand, “Direct numerical simulation of convective heat transfer in porous media,” International Journal of Heat and Mass Transfer, vol. 133, pp. 11--20, Apr. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.172.

Project Network Coordinators

This image shows Andrea Beck

Andrea Beck

Prof. Dr.-Ing.

Numerical Methods in Fluid Mechanics

This image shows Holger Steeb

Holger Steeb

Prof. Dr.-Ing.

Continuum Mechanics | Director of SC SimTech

[Photo: SimTech/Max Kovalenko]

Bernhard Weigand

Prof. Dr.-Ing. habil.

Aerospace Thermodynamics

To the top of the page