Publications of PN 1

  1. 2021

    1. M. Ibach et al., “Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions,” ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, vol. Edinburgh, UK, 29 Aug.-2 Sept. 2021, 2021.
    2. X. Chu, W. Wang, G. Yang, A. Terzis, R. Helmig, and B. Weigand, “Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation,” Transport in Porous Media, vol. 136, no. 1, Art. no. 1, 2021, doi: 10.1007/s11242-020-01506-w.
    3. A. Beck and M. Kurz, “A perspective on machine learning methods in turbulence modeling,” GAMM-Mitteilungen, vol. 44, no. 1, Art. no. 1, 2021, doi: 10.1002/gamm.202100002.
  2. 2020

    1. K. Schlottke, J. Reutzsch, C. Kieffer-Roth, and B. Weigand, “Direct Numerical Simulations of Evaporating Droplets at Higher Temperatures: Application of a Consistent Numerical Approach,” in Droplet Interactions and Spray Processes, 2020, pp. 287–299.
    2. L. L. Schepp et al., “Digital rock physics and laboratory considerations on a high-porosity volcanic rock: micro-XRCT data sets.” DaRUS, 2020, doi: 10.18419/DARUS-680.
    3. L. L. Schepp et al., “Digital rock physics and laboratory considerations on a high-porosity volcanic rock,” Scientific Reports, vol. 10, no. 1, Art. no. 1, 2020.
    4. J. Reutzsch, C. Kieffer-Roth, and B. Weigand, “A consistent method for direct numerical simulation of droplet evaporation,” Journal of Computational Physics, p. 109455, 2020, doi: 10.1016/j.jcp.2020.109455.
    5. J. Reutzsch, C. Kieffer-Roth, and W. Weigand, “A consistent method for direct numerical simulation of droplet evaporation,” Journal of Computational Physics, p. 109455, 2020, doi: 10.1016/j.jcp.2020.109455.
    6. M. Kurz and A. Beck, “A machine learning framework for LES closure terms,” Sep. 2020, doi: 10.13140/RG.2.2.32569.19047.
    7. K. Heck, E. Coltman, J. Schneider, and R. Helmig, “Influence of Radiation on Evaporation Rates: A Numerical Analysis,” Water Resources Research, vol. 56, no. 10, Art. no. 10, 2020, doi: 10.1029/2020wr027332.
    8. E. Coltman, M. Lipp, A. Vescovini, and R. Helmig, “Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces,” Transport in Porous Media, Jul. 2020, doi: 10.1007/s11242-020-01445-6.
    9. X. Chu, Y. Wu, U. Rist, and B. Weigand, “Instability and transition in an elementary porous medium,” Phys. Rev. Fluids, vol. 5, no. 4, Art. no. 4, 2020, doi: 10.1103/PhysRevFluids.5.044304.
    10. A. Beck and M. Kurz, “A Perspective on Machine Learning Methods in Turbulence Modelling,” Oct. 2020, doi: 10.13140/RG.2.2.17469.69608.
  3. 2019

    1. A. Terzis et al., “Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow,” Physics of Fluids, vol. 31, no. 4, Art. no. 4, 2019, doi: 10.1063/1.5092169.
    2. H. Steeb and J. Renner, “Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables,” Transport in Porous Media, vol. 130, no. 2, Art. no. 2, 2019.
    3. J. Reutzsch et al., “Direct Numerical Simulations of Oscillating Liquid Droplets: a Method to Extract Shape Characteristics,” ILASS-Europe 2019, 29th Conference on Liquid Atomization and Spray Systems, vol. Paris, France, 2019.
    4. X. Chu, G. Yang, S. Pandey, and B. Weigand, “Direct numerical simulation of convective heat transfer in porous media,” International Journal of Heat and Mass Transfer, vol. 133, pp. 11--20, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.172.

Project Network Coordinators

This picture showsRainer Helmig
Prof. Dr.-Ing.

Rainer Helmig

Prof. Dr.-Ing. habil.

Bernhard Weigand

To the top of the page