Publications of PN 4

  1. 2024

    1. M. Rosenfelder, H. Ebel, and P. Eberhard, “Force-Based Organization and Control Scheme for the Non-Prehensile Cooperative Transportation of Objects,” Robotica, vol. 42, no. 2, Art. no. 2, 2024, doi: 10.1017/S0263574723001704.
    2. T. J. Meijer, T. Holicki, S. J. A. M. van den Eijnden, C. W. Scherer, and W. P. M. H. Heemels, “The Non-Strict Projection Lemma,” IEEE Transactions on Automatic Control, pp. 1–8, 2024, doi: 10.1109/TAC.2024.3371374.
    3. H. Häring, D. Gramlich, C. Ebenbauer, and C. W. Scherer, “Trajectory Generation for the Unicycle Model Using Semidefinite Relaxations,” in accepted for publication, in accepted for publication. 2024.
    4. M. Hertneck and F. Allgöwer, “Robust dynamic self-triggered control for nonlinear systems using hybrid Lyapunov functions,” Nonlinear Analysis: Hybrid Systems, vol. 53, p. 101485, 2024, doi: 10.1016/j.nahs.2024.101485.
    5. H. Ebel, M. Rosenfelder, and P. Eberhard, “Cooperative Object Transportation with Differential-Drive Mobile Robots: Control and Experimentation,” Robotics and Autonomous Systems, vol. 173, p. 104612, 2024, doi: 10.1016/j.robot.2023.104612.
    6. J. Chen, W. Luo, H. Ebel, and P. Eberhard, “Optimization-Based Trajectory Planning for Transport Collaboration of Heterogeneous Systems,” at - Automatisierungstechnik, vol. 72, no. 2, Art. no. 2, 2024, doi: 10.1515/auto-2023-0078.
  2. 2023

    1. X. Wang, J. Sun, J. Berberich, G. Wang, F. Allgöwer, and J. Chen, “Data-driven Control of Dynamic Event-triggered Systems with Delays,” Int. J. Robust and Nonlinear Control, vol. 33, pp. 7071–7093, 2023, doi: 10.1002/rnc.6740.
    2. V. Wagner, R. Strässer, F. Allgöwer, and N. E. Radde, “A provably convergent control closure scheme for the Method of Moments of the Chemical Master Equation,” Journal of Chemical Theory and Computation, vol. 19, no. 24, Art. no. 24, Dec. 2023, doi: https://doi.org/10.1021/acs.jctc.3c00548.
    3. F. A. Taha, S. Yan, and E. Bitar, “A Distributionally Robust Approach to Regret Optimal Control using the Wasserstein Distance,” in 2023 62nd IEEE Conference on Decision and Control (CDC), in 2023 62nd IEEE Conference on Decision and Control (CDC). 2023, pp. 2768–2775. doi: 10.1109/CDC49753.2023.10384311.
    4. R. Strässer, J. Berberich, and F. Allgöwer, “Robust data-driven control for nonlinear systems using the Koopman operator,” in Proc. 22nd IFAC World Congress, in Proc. 22nd IFAC World Congress, vol. 56. 2023, pp. 2257–2262. doi: https://doi.org/10.1016/j.ifacol.2023.10.1190.
    5. R. Strässer, J. Berberich, and F. Allgöwer, “Control of bilinear systems using gain-scheduling: Stability and performance guarantees,” in 62nd IEEE Conference on Decision and Control (CDC), in 62nd IEEE Conference on Decision and Control (CDC). Singapore, Singapore, 2023, pp. 4674–4681. doi: 10.1109/CDC49753.2023.10384021.
    6. S. Schlor, R. Strässer, and F. Allgöwer, “Koopman interpretation and analysis of a public-key cryptosystem: Diffie-Hellman key exchange,” in Proc. 22nd IFAC World Congress, in Proc. 22nd IFAC World Congress. Yokohama, Japan, 2023, pp. 984–990. doi: 10.1016/j.ifacol.2023.10.1693.
    7. C. W. Scherer, C. Ebenbauer, and T. Holicki, “Optimization Algorithm Synthesis based on Integral Quadratic Constraints: A Tutorial,” 2023, doi: 10.48550/ARXIV.2306.00565.
    8. C. W. Scherer, “Robust Exponential Stability and Invariance Guarantees with General Dynamic O’Shea-Zames-Falb Multipliers,” Jun. 2023, doi: 10.48550/ARXIV.2306.00571.
    9. C. A. Rösinger and C. W. Scherer, “Gain-Scheduling Controller Synthesis for Nested Systems With Full Block Scalings,” IEEE Transactions on Automatic Control, pp. 1–16, 2023, doi: 10.1109/TAC.2023.3329851.
    10. C. A. Rösinger and C. W. Scherer, “Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings,” 2023, doi: 10.1109/TAC.2023.3329851.
    11. ario Rosenfelder, H. Ebel, and P. Eberhard, “A Force-Based Formation Synthesis Approach for the Cooperative Transportation of Objects,” in Advances in Service and Industrial Robotics, T. Petrič, A. Ude, and L. Žlajpah, Eds., in Advances in Service and Industrial Robotics, vol. 135. Springer, 2023, pp. 317–324. doi: 10.1007/978-3-031-32606-6_37.
    12. C. D. Remy, Z. Brei, D. Bruder, J. Remy, K. Buffinton, and R. B. Gillespie, “The ‘Fluid Jacobian’: Modeling force-motion relationships in fluid-driven soft robots,” The International Journal of Robotics Research, Nov. 2023, doi: 10.1177/02783649231210592.
    13. D. Pfeifer, A. Baumann, M. Giani, C. Scheifele, and J. Fehr, “Hybrid Digital Twins Using FMUs to Increase the Validity and Domain of Virtual Commissioning Simulations,” in Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains, in Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains. Springer, 2023. doi: 10.1007/978-3-031-27933-1_19.
    14. M. M. Morato, T. Holicki, and C. W. Scherer, “Stabilizing Model Predictive Control Synthesis using Integral Quadratic Constraints and Full-Block Multipliers.” 2023. doi: 10.22541/au.167731929.92691723/v1.
    15. R. Morandin, J. Nicodemus, and B. Unger, “Port-Hamiltonian Dynamic Mode Decomposition,” SIAM Journal on Scientific Computing, vol. 45, no. 4, Art. no. 4, Jul. 2023, doi: 10.1137/22m149329x.
    16. T. Monninger et al., “SCENE: Reasoning about Traffic Scenes using Heterogeneous Graph Neural Networks,” IEEE Robotics and Automation Letters, pp. 1–8, 2023, doi: 10.1109/LRA.2023.3234771.
    17. D. Meister, F. Dürr, and F. Allgöwer, “Shared Network Effects in Time- versus Event-Triggered Consensus of a Single-Integrator Multi-Agent System,” in 22nd IFAC World Congress, in 22nd IFAC World Congress. Yokohama, Japan, 2023, pp. 5975–5980. doi: 10.1016/j.ifacol.2023.10.636.
    18. T. J. Meijer, T. Holicki, S. J. A. M. van den Eijnden, C. W. Scherer, and W. P. M. H. Heemels, “The Non-Strict Projection Lemma.” 2023. doi: 10.48550/arXiv.2305.08735.
    19. V. Mehrmann and B. Unger, “Control of port-Hamiltonian differential-algebraic systems and applications,” Acta Numerica, vol. 32, pp. 395–515, 2023, doi: 10.1017/S0962492922000083.
    20. O. V. Martynenko et al., “Development and verification of a physiologically motivated internal controller for the open-source extended Hill-type muscle model in LS-DYNA,” Biomechanics and Modeling in Mechanobiology, vol. 22, no. 6, Art. no. 6, 2023, doi: 10.1007/s10237-023-01748-9.
    21. T. Martin, T. B. Schön, and F. Allgöwer, “Gaussian inference for data-driven state-feedback design of nonlinear systems,” in 22nd IFAC World Congress, in 22nd IFAC World Congress. 2023, pp. 4796–4803. doi: doi.org/10.1016/j.ifacol.2023.10.1245.
    22. T. Martin, T. B. Schön, and F. Allgöwer, “Guarantees for data-driven control of nonlinear systems using semidefinite programming: A survey,” Annual Reviews in Control (submitted), Preprint: arXiv:2306.16042, 2023.
    23. T. Martin and F. Allgöwer, “Data-driven system analysis of nonlinear systems using polynomial approximation,” IEEE Trans. Automat. Control (early access), 2023, doi: 10.1109/TAC.2023.3321212.
    24. T. Martin and F. Allgöwer, “Data-driven inference on optimal input-output properties of polynomial systems with focus on nonlinearity measures,” IEEE Trans. Automat. Control, vol. 68, no. 5, Art. no. 5, 2023, doi: 10.1109/TAC.2022.3226652.
    25. A. Kharitenko and C. Scherer, “Time-varying Zames–Falb multipliers for LTI Systems are superfluous,” Automatica, vol. 147, p. 110577, Jan. 2023, doi: 10.1016/j.automatica.2022.110577.
    26. F. Kempter, L. Lantella, N. Stutzig, J. C. Fehr, and T. Siebert, “Neck Reflex Behavior in Driving Simulator Experiments - Academic-Scale Simulator at ITM.” 2023. doi: 10.18419/darus-3000.
    27. T. Holicki and C. W. Scherer, “Input-Output-Data-Enhanced Robust Analysis via Lifting,” IFAC-PapersOnLine, vol. 56, no. 2, Art. no. 2, 2023, doi: 10.1016/j.ifacol.2023.10.047.
    28. T. Holicki and C. W. Scherer, “IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties.” 2023. doi: 10.48550/arXiv.2212.08837.
    29. T. Holicki and C. W. Scherer, “Data-Based Refinement of Parametric Uncertainty Descriptions,” submitted for publication, 2023.
    30. T. Holicki, J. Nicodemus, P. Schwerdtner, and B. Unger, “Energy matching in reduced passive and port-Hamiltonian systems,” 2023.
    31. L. Hewing et al., “Enhancing the Guidance, Navigation and Control of Autonomous Parafoils using Machine Learning Methods,” in Papers of ESA GNC-ICATT 2023, in Papers of ESA GNC-ICATT 2023. ESA, Jul. 2023. doi: 10.5270/esa-gnc-icatt-2023-135.
    32. D. Gramlich, C. W. Scherer, H. Häring, and C. Ebenbauer, “Synthesis of constrained robust feedback policies and model predictive control,” arXiv, 2023. doi: 10.48550/ARXIV.2310.11404.
    33. D. Gramlich, P. Pauli, C. W. Scherer, F. Allgöwer, and C. Ebenbauer, “Convolutional Neural Networks as 2-D systems,” Mar. 2023, doi: 10.48550/ARXIV.2303.03042.
    34. D. Gramlich, T. Holicki, C. W. Scherer, and C. Ebenbauer, “A Structure Exploiting SDP Solver for Robust Controller Synthesis,” IEEE Control Systems Letters, vol. 7, pp. 1831--1836, 2023, doi: 10.1109/lcsys.2023.3277314.
    35. N. Fahse, M. Millard, F. Kempter, S. Maier, M. Roller, and J. Fehr, “Dynamic Human Body Models in Vehicle Safety: An Overview,” GAMM-Mitteilungen, vol. 46, no. 2, Art. no. 2, 2023, doi: 10.1002/gamm.202300007.
    36. H. Ebel, M. Rosenfelder, and P. Eberhard, “Note on the Predictive Control of Non-Holonomic Systems and Underactuated Vehicles in the Presence of Drift,” Proceedings in Applied Mathematics and Mechanics, vol. 23, no. 4, Art. no. 4, 2023, doi: 10.1002/pamm.202300022.
    37. P. Buchfink, S. Glas, B. Haasdonk, and B. Unger, “Model reduction on manifolds: A differential geometric framework,” arXiv e-prints, 2023. [Online]. Available: https://arxiv.org/abs/2312.01963
    38. J. Bongard, J. Berberich, J. Köhler, and F. Allgöwer, “Robust stability analysis of a simple data-driven model predictive control approach,” IEEE Trans. Automat. Control, vol. 68, no. 5, Art. no. 5, 2023, doi: 10.1109/TAC.2022.3163110.
    39. L. Bold, H. Eschmann, M. Rosenfelder, H. Ebel, and K. Worthmann, “On Koopman-Based Surrogate Models for Non-Holonomic Robots,” 2023. [Online]. Available: /brokenurl# arXiv:2301.07960
    40. J. Berberich, C. W. Scherer, and F. Allgower, “Combining Prior Knowledge and Data for Robust Controller Design,” IEEE Transactions on Automatic Control, vol. 68, no. 8, Art. no. 8, 2023, doi: 10.1109/tac.2022.3209342.
    41. J. Berberich, A. Iannelli, A. Padoan, J. Coulson, F. Dörfler, and F. Allgöwer, “A quantitative and constructive proof of Willems’ Fundamental Lemma and its implications,” in Proc. American Control Conf. (ACC), in Proc. American Control Conf. (ACC). San Diego, CA, USA, 2023, pp. 4155–4160. doi: 10.23919/ACC55779.2023.10156227.
    42. A. Baier and D. Frank, “deepsysid: System Identification Toolkit for Multistep Prediction using Deep Learning.” DaRUS, 2023. doi: 10.18419/DARUS-3455.
    43. A. Baier, D. Aspandi, and S. Staab, “Supplements for ‘ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks’".” DaRUS, 2023. doi: 10.18419/DARUS-3457.
    44. A. Baier, D. Aspandi, and S. Staab, “ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks,” in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23. International Joint Conferences on Artificial Intelligence Organization, Aug. 2023.
    45. A. Baier, D. Aspandi Latif, and S. Staab, “Supplements for ‘ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks’".” 2023. doi: 10.18419/darus-3457.
    46. A. Alanwar, A. Koch, F. Allgöwer, and F. H. Johansson, “Data-Driven Reachability Analysis from Noisy Data,” IEEE Transactions on Automatic Control, pp. 1–16, 2023, doi: 10.1109/TAC.2023.3257167.
  3. 2022

    1. P. Schmid, H. Ebel, and P. Eberhard, “Dependable Data-based Design of Embedded Model Predictive Control,” in 2022 European Control Conference (ECC), in 2022 European Control Conference (ECC). 2022, pp. 859–866. doi: 10.23919/ECC55457.2022.9838194.
    2. C. W. Scherer, “Dissipativity, Convexity and Tight O\textquotesingleShea-Zames-Falb Multipliers for Safety Guarantees,” IFAC-PapersOnLine, vol. 55, no. 30, Art. no. 30, 2022, doi: 10.1016/j.ifacol.2022.11.044.
    3. C. Scherer, “Dissipativity and Integral Quadratic Constraints, Tailored computational robustness tests for complex interconnections,” IEEE Control Systems Magazine, vol. 42, no. 3, Art. no. 3, 2022, [Online]. Available: https://arxiv.org/abs/2105.07401
    4. C. A. Rösinger and C. W. Scherer, “Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings,” Oct. 2022.
    5. M. Rosenfelder, H. Ebel, J. Krauspenhaar, and P. Eberhard, “Model Predictive Control of Non-Holonomic Vehicles: Beyond Differential-Drive,” 2022. [Online]. Available: https://arxiv.org/abs/2205.11400
    6. M. Rosenfelder, H. Ebel, and P. Eberhard, “Cooperative distributed nonlinear model predictive control of a formation of differentially-driven mobile robots,” Robotics and autonomous systems, vol. 150, no. April, Art. no. April, 2022, doi: https://doi.org/10.1016/j.robot.2021.103993.
    7. M. Rosenfelder, H. Ebel, and P. Eberhard, “A Force-Based Control Approach for the Non-Prehensile Cooperative Transportation of Objects Using Omnidirectional Mobile Robots,” in 2022 IEEE Conference on Control Technology and Applications (CCTA), in 2022 IEEE Conference on Control Technology and Applications (CCTA). 2022, pp. 349–356. doi: 10.1109/CCTA49430.2022.9966052.
    8. J. Nicodemus, J. Kneifl, J. Fehr, and B. Unger, “Physics-informed Neural Networks-based Model Predictive Control for Multi-link Manipulators,” IFAC-PapersOnLine, vol. 55, no. 20, Art. no. 20, 2022, doi: 10.1016/j.ifacol.2022.09.117.
    9. D. Müller, J. Feilhauer, J. Wickert, J. Berberich, F. Allgöwer, and O. Sawodny, “Data-driven predictive disturbance observer for quasi continuum manipulators,” in Proc. 61st IEEE Conf. Decision and Control (CDC), in Proc. 61st IEEE Conf. Decision and Control (CDC). Cancun, Mexico, 2022, pp. 1816–1822. doi: 10.1109/CDC51059.2022.9992740.
    10. D. Meister, F. Aurzada, M. A. Lifshits, and F. Allgöwer, “Analysis of Time- versus Event-Triggered Consensus for a Single-Integrator Multi-Agent System,” in Proc. 61st IEEE Conf. on Decision and Control (CDC), in Proc. 61st IEEE Conf. on Decision and Control (CDC). Cancun, Mexico, 2022, pp. 441–446. doi: 10.1109/CDC51059.2022.9993301.
    11. T. Martin, T. B. Schön, and F. Allgöwer, “Gaussian inference for data-driven state-feedback design of nonlinear systems,” in 22nd IFAC World Congress, in 22nd IFAC World Congress. 2022. doi: https://doi.org/10.48550/arXiv.2211.05639.
    12. T. Martin and F. Allgöwer, “Data-driven system analysis of nonlinear systems using polynomial approximation,” IEEE Trans. Automat. Control, DOI: 10.1109/TAC.2023.3321212 (early access), 2022.
    13. T. Martin and F. Allgöwer, “Determining dissipativity for nonlinear systems from noisy data using Taylor polynomial approximation,” in Proc. American Control Conf. (ACC), in Proc. American Control Conf. (ACC). Atlanta, GA, USA, 2022, pp. 1432–1437.
    14. W. Luo, H. Eschmann, and P. Eberhard, “Gaussian Process Regression-augmented Nonlinear Model Predictive Control for Quadrotor Object Grasping,” in International Conference on Unmanned Aircraft Systems (ICUAS22), in International Conference on Unmanned Aircraft Systems (ICUAS22), vol. Vol. 16. 2022, pp. 11–19. doi: 10.1109/ICUAS54217.2022.9836200.
    15. W. Luo, H. Ebel, and P. Eberhard, “An LSTM-based Approach to Precise Landing of a UAV on a Moving Platform,” International Journal of Mechanical System Dynamics, vol. 00, pp. 1–12, 2022.
    16. W. Luo, J. Chen, H. Ebel, and P. Eberhard, “Time-Optimal Handover Trajectory Planning for Aerial Manipulators based on Discrete Mechanics and Complementarity Constraints,” 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2209.00533
    17. M. Köhler, J. Berberich, M. A. Müller, and F. Allgöwer, “Data-driven distributed MPC of dynamically coupled linear systems,” in Proc. 25th Int. Symp. Mathematical Theory of Networks and Systems, in Proc. 25th Int. Symp. Mathematical Theory of Networks and Systems. Bayreuth, Germany, 2022, pp. 906–911.
    18. C. Klöppelt, J. Berberich, F. Allgöwer, and M. A. Müller, “A novel constraint-tightening approach for robust data-driven predictive control,” Int. J. Robust and Nonlinear Control, 2022, doi: 10.1002/rnc.6532.
    19. A. Kharitenko and C. W. Scherer, “On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities,” Oct. 2022.
    20. F. Kempter, L. Lantella, N. Stutzig, J. Fehr, and T. Siebert, “Role of Rotated Head Postures on Volunteer Kinematics and Muscle Activity in Braking Scenarios Performed on a Driving Simulator,” Annals of Biomedical Engineering, vol. 51, no. 4, Art. no. 4, 2022, doi: 10.1007/s10439-022-03087-9.
    21. T. Holicki and C. W. Scherer, “A Dynamic S-Procedure for Dynamic Uncertainties,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 55. 2022, pp. 103–108. doi: 10.1016/j.ifacol.2022.09.331.
    22. T. Holicki, “A Complete Analysis and Design Framework for Linear Impulsive and Related Hybrid Systems,” University of Stuttgart, 2022. doi: 10.18419/opus-12158.
    23. B. Hillebrecht and B. Unger, “Certified machine learning: Rigorous a posteriori error bounds for PDE defined PINNs,” 2022.
    24. B. Hillebrecht and B. Unger, “Certified machine learning: A posteriori error estimation for physics-informed neural networks,” in 2022 International Joint Conference on Neural Networks (IJCNN), in 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, Jul. 2022. doi: 10.1109/ijcnn55064.2022.9892569.
    25. D. Gramlich, C. W. Scherer, and C. Ebenbauer, “Robust Differential Dynamic Programming,” in 61st IEEE Conf. Decision and Control, in 61st IEEE Conf. Decision and Control. 2022. doi: 10.1109/cdc51059.2022.9992569.
    26. D. Gramlich, C. Ebenbauer, and C. W. Scherer, “Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions,” Syst. Control Lett., vol. 165, 2022, doi: 10.1016/j.sysconle.2022.105271.
    27. D. Frank, D. A. Latif, M. Muehlebach, B. Unger, and S. Staab, “Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees,” Publication, 2022. doi: 10.48550/arXiv.2212.05781.
    28. C. Fiedler, C. W. Scherer, and S. Trimpe, “Learning Functions and Uncertainty Sets Using Geometrically Constrained Kernel Regression,” in 61st IEEE Conf. Decision and Control, in 61st IEEE Conf. Decision and Control. IEEE, Dec. 2022. doi: 10.1109/cdc51059.2022.9993144.
    29. H. Eschmann, H. Ebel, and P. Eberhard, “Exploration-Exploitation-Based Trajectory Tracking of Mobile Robots Using Gaussian Processes and Model Predictive Control,” 2022.
    30. H. Eschmann, H. Ebel, and P. Eberhard, “High Accuracy Data-Based Trajectory Tracking of a Mobile Robot,” in Advances in Service and Industrial Robotics, in Advances in Service and Industrial Robotics, vol. 31. 2022, pp. 420–427. doi: https://doi.org/10.1007/978-3-031-04870-8_49.
    31. H. Ebel, D. N. Fahse, M. Rosenfelder, and P. Eberhard, “Finding Formations for the Non-prehensile Object Transportation with Differentially-Driven Mobile Robots,” in CISM International Centre for Mechanical Sciences book series, in CISM International Centre for Mechanical Sciences book series, vol. 606. 2022, pp. 163–170. doi: https://doi.org/10.1007/978-3-031-06409-8_17.
    32. H. Ebel and P. Eberhard, “Cooperative transportation: realizing the promises of robotic networks using a tailored software/hardware architecture,” at - Automatisierungstechnik, vol. 70, no. 4, Art. no. 4, 2022, doi: doi:10.1515/auto-2021-0105.
    33. T. Breiten and B. Unger, “Passivity preserving model reduction via spectral factorization,” Automatica, vol. 142, p. 110368, Aug. 2022, doi: 10.1016/j.automatica.2022.110368.
    34. T. Breiten, D. Hinsen, and B. Unger, “Towards a modeling class for port-Hamiltonian systems with time-delay,” 2022. doi: 10.48550/arXiv.2211.10687.
    35. J. Berberich, C. W. Scherer, and F. Allgower, “Combining Prior Knowledge and Data for Robust Controller Design,” IEEE Transactions on Automatic Control, pp. 1--16, 2022, doi: 10.1109/tac.2022.3209342.
    36. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Stability in data-driven MPC: an inherent robustness perspective,” in Proc. 61st IEEE Conf. Decision and Control (CDC), in Proc. 61st IEEE Conf. Decision and Control (CDC). Cancun, Mexico, 2022, pp. 1105–1110. doi: 10.1109/CDC51059.2022.9993361.
    37. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Linear tracking MPC for nonlinear systems part II: the data-driven case,” IEEE Trans. Automat. Control, vol. 67, no. 9, Art. no. 9, 2022, doi: 10.1109/TAC.2022.3166851.
    38. A. Baier and S. Staab, “A Simulated 4-DOF Ship Motion Dataset for System Identification under Environmental Disturbances.” 2022. doi: 10.18419/darus-2905.
  4. 2021

    1. S. Yu, M. Hirche, Y. Huang, H. Chen, and F. Allgöwer, “Model predictive control for autonomous ground vehicles: a review,” Auton. Intell. Syst., vol. 1, p. 4, 2021, doi: 10.1007/s43684-021-00005-z.
    2. N. Wieler, J. Berberich, A. Koch, and F. Allgöwer, “Data-Driven Controller Design via Finite-Horizon Dissipativity,” in Proceedings of the 3rd Conference on Learning for Dynamics and Control, in Proceedings of the 3rd Conference on Learning for Dynamics and Control, vol. 144. PMLR, 2021, pp. 287--298.
    3. J. Venkatasubramanian, J. Köhler, J. Berberich, and F. Allgöwer, “Robust dual control based on gain scheduling,” in 2020 59th IEEE Conference on Decision and Control (CDC), in 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2021, pp. 2270–2277. doi: 10.1109/CDC42340.2020.9304336.
    4. J. Veenman, C. W. Scherer, C. Ardura, S. Bennani, V. Preda, and B. Girouart, “IQClab: A new IQC based toolbox for robustness analysis and control design,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 54. 2021, pp. 69--74. doi: 10.1016/j.ifacol.2021.08.583.
    5. R. Strässer, J. Berberich, and F. Allgöwer, “Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics,” in Proc. 60th IEEE Conf. Decision and Control (CDC), in Proc. 60th IEEE Conf. Decision and Control (CDC). Austin, TX, USA, 2021, pp. 4344–4351. doi: 10.1109/CDC45484.2021.9683211.
    6. S. Schlor, M. Hertneck, S. Wildhagen, and F. Allgöwer, “Multi-party computation enables secure polynomial control based solely on secret-sharing,” in Proc. 60th IEEE Conf. Decision and Control (CDC), in Proc. 60th IEEE Conf. Decision and Control (CDC). Austin, TX, USA, 2021, pp. 4882–4887. doi: 10.1109/CDC45484.2021.9683026.
    7. C. Scherer and C. Ebenbauer, “Convex Synthesis of Accelerated Gradient Algorithms,” SIAM Journal on Control and Optimization, vol. 59, no. 6, Art. no. 6, 2021, doi: 10.1137/21M1398598.
    8. M. Rosenfelder, H. Ebel, and P. Eberhard, “Cooperative Distributed Model Predictive Formation Control of Non-Holonomic Robotic Agents,” in Proceedings of the 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), in Proceedings of the 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS). Cambridge (UK), 2021, pp. 11–19. doi: 10.1109/MRS50823.2021.9620683.
    9. P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer, “Training Robust Neural Networks Using Lipschitz Bounds,” IEEE Control Systems Letters, vol. 6, pp. 121–126, 2021, doi: 10.1109/LCSYS.2021.3050444.
    10. M. I. Müller, A. Koch, F. Allgöwer, and C. R. Rojas, “Data-Driven Input-Passivity Estimation Using Power Iterations,” IFAC-PapersOnLine, vol. 54, no. 7, Art. no. 7, 2021, doi: https://doi.org/10.1016/j.ifacol.2021.08.429.
    11. S. Michalowsky, C. Scherer, and C. Ebenbauer, “Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach,” International Journal of Control, vol. 94, no. 11, Art. no. 11, 2021, doi: 10.1080/00207179.2020.1745286.
    12. S. Michalowsky, C. Scherer, and C. Ebenbauer, “Robust and structure exploiting optimization algorithms: An integral quadratic constraint approach,” International Journal of Control, vol. 94, no. 11, Art. no. 11, 2021, doi: 10.1080/00207179.2020.1745286.
    13. T. Martin and F. Allgöwer, “Dissipativity Verification With Guarantees for Polynomial Systems From Noisy Input-State Data,” IEEE Control Systems Letters, vol. 5, no. 4, Art. no. 4, Oct. 2021, doi: 10.1109/LCSYS.2020.3037842.
    14. T. Martin and F. Allgöwer, “Dissipativity verification with guarantees for polynomial systems from noisy input-state data,” IEEE Control Systems Letters, vol. 5, no. 4, Art. no. 4, 2021, doi: 10.1109/LCSYS.2020.3037842.
    15. A. Koch, J. Berberich, J. Köhler, and F. Allgöwer, “Determining optimal input–output properties: A data-driven approach,” Automatica, vol. 134, p. 109906, 2021, doi: https://doi.org/10.1016/j.automatica.2021.109906.
    16. A. Koch, J. M. Montenbruck, and F. Allgöwer, “Sampling Strategies for Data-Driven Inference of Input-Output System Properties,” IEEE Trans. Automat. Control, vol. 66, pp. 1144–1159, 2021, doi: 10.1109/TAC.2020.2994894.
    17. A. Koch, J. Berberich, and F. Allgöwer, “Provably robust verification of dissipativity properties from data,” IEEE Transactions on Automatic Control, vol. 67, no. 8, Art. no. 8, 2021, doi: 10.1109/TAC.2021.3116179.
    18. F. Kempter, C. Kleinbach, M. Staudenmeyer, and J. C. Fehr, “An Active Female Human Body Model for Simulation of Rear-End Impact Scenarios,” in 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), in 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM). Wiley, 2021, p. e202000068. doi: 10.1002/pamm.202000068.
    19. T. Holicki and C. W. Scherer, “Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis,” Int. J. Robust Nonlin., vol. 31, no. 11, Art. no. 11, 2021, doi: 10.1002/rnc.5547.
    20. T. Holicki and C. W. Scherer, “Algorithm Design and Extremum Control:Convex Synthesis due to Plant Multiplier Commutation,” in 60th IEEE Conf. Decision and Control, in 60th IEEE Conf. Decision and Control. 2021.
    21. T. Holicki, C. W. Scherer, and S. Trimpe, “Controller Design via Experimental Exploration with Robustness Guarantees,” IEEE Control Syst. Lett., vol. 5, no. 2, Art. no. 2, 2021, doi: 10.1109/LCSYS.2020.3004506.
    22. T. Holicki and C. W. Scherer, “Robust Gain-Scheduled Estimation with Dynamic D-Scalings,” IEEE Trans. Autom. Control, vol. 66, no. 11, Art. no. 11, 2021, doi: 10.1109/TAC.2021.3052751.
    23. D. Gramlich, C. Ebenbauer, and C. W. Scherer, “Convex Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions,” Syst. Control Lett. (accepted), 2021, [Online]. Available: https://arxiv.org/abs/2006.09946
    24. I. V. Gosea, S. Gugercin, and B. Unger, “Parametric model reduction via rational interpolation along parameters,” ArXiv e-print 2104.01016, 2021, [Online]. Available: https://arxiv.org/abs/2104.01016
    25. C. Fiedler, C. W. Scherer, and S. Trimpe, “Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees,” in 60th IEEE Conf. Decision and Control (to appear), in 60th IEEE Conf. Decision and Control (to appear). 2021. [Online]. Available: https://arxiv.org/abs/2105.03397
    26. C. Fiedler, C. W. Scherer, and S. Trimpe, “Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 8, Art. no. 8, 2021.
    27. H. Eschmann and P. Eberhard, “Learning-Based Model Predictive Control for Multi-Agent Systems using Gaussian Processes,” PAMM, vol. 20, no. 1, Art. no. 1, 2021, doi: https://doi.org/10.1002/pamm.202000009.
    28. H. Eschmann, H. Ebel, and P. Eberhard, “Trajectory tracking of an omnidirectional mobile robot using Gaussian process regression,” at - Automatisierungstechnik, vol. 69, no. 8, Art. no. 8, 2021, doi: doi:10.1515/auto-2021-0019.
    29. H. Eschmann, H. Ebel, and P. Eberhard, “Data-Based Model of an Omnidirectional Mobile Robot Using Gaussian Processes,” in IFAC Symposium on System Identification (SYSID) - Learning models for decision and control, in IFAC Symposium on System Identification (SYSID) - Learning models for decision and control. Padova, Italy, 2021, pp. 13–18. doi: https://doi.org/10.1016/j.ifacol.2021.08.327.
    30. H. Eschmann, “A Data Set for Research on Data-based Methods for an Omnidirectional Mobile Robot.” DaRUS, 2021. doi: 10.18419/DARUS-1845.
    31. H. Ebel and P. Eberhard, “Non-Prehensile Cooperative Object Transportation with Omnidirectional Mobile Robots: Organization, Control, Simulation, and Experimentation,” in Proceedings of the 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), in Proceedings of the 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS). Cambridge, UK, 2021, pp. 1–10. doi: 10.1109/MRS50823.2021.9620541.
    32. J. Berberich, S. Wildhagen, M. Hertneck, and F. Allgöwer, “Data-driven analysis and control of continuous-time systems under aperiodic sampling,” in Proc. 19th IFAC Symp. System Identification (SYSID), in Proc. 19th IFAC Symp. System Identification (SYSID). Padova, Italy, 2021, pp. 210–215. doi: 10.1016/j.ifacol.2021.08.360.
    33. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “On the design of terminal ingredients for data-driven MPC,” in Proc. 7th IFAC Conf. Nonlinear Model Predictive Control (NMPC), in Proc. 7th IFAC Conf. Nonlinear Model Predictive Control (NMPC). Bratislava, Slovakia, 2021, pp. 257–263. doi: 10.1016/j.ifacol.2021.08.554.
    34. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven model predictive control: closed-loop guarantees and experimental results,” at-Automatisierungstechnik, vol. 69, no. 7, Art. no. 7, 2021, doi: 10.1515/auto-2021-0024.
    35. A. Baier, Z. Boukhers, and S. Staab, “Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction,” 2021. [Online]. Available: http://arxiv.org/abs/2103.06727
    36. M. Alsalti, J. Berberich, V. G. Lopez, F. Allgöwer, and M. A. Müller, “Data-Based System Analysis and Control of Flat Nonlinear Systems,” in Proc. 60th IEEE Conf. Decision and Control (CDC), in Proc. 60th IEEE Conf. Decision and Control (CDC). Austin, TX, USA, 2021, pp. 1484–1489. doi: 10.1109/CDC45484.2021.9683327.
    37. A. Alanwar, A. Koch, F. Allgöwer, and K. H. Johansson, “Data-Driven Reachability Analysis Using Matrix Zonotopes,” in Proceedings of the 3rd Conference on Learning for Dynamics and Control, in Proceedings of the 3rd Conference on Learning for Dynamics and Control, vol. 144. 2021, pp. 163--175.
  5. 2020

    1. I. Wochner, D. Driess, H. Zimmermann, D. F. Haeufle, M. Toussaint, and S. Schmitt, “Optimality principles in human point-to-manifold reaching accounting for muscle dynamics,” Frontiers in Computational Neuroscience, vol. 14, p. 38, 2020.
    2. C. A. Rösinger and C. W. Scherer, “A Flexible Synthesis Framework of Structured Controllers for Networked Systems,” IEEE Trans. Control Netw. Syst., vol. 7, no. 1, Art. no. 1, 2020, doi: 10.1109/TCNS.2019.2914411.
    3. C. A. Rösinger and C. W. Scherer, “Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings.” 2020. [Online]. Available: https://arxiv.org/abs/2001.05740
    4. D. Persson, A. Koch, and F. Allgöwer, “Probabilistic H2-norm estimation via Gaussian process system identification,” in Proc. 21st IFAC World Congress, in Proc. 21st IFAC World Congress. Berlin, Germany, 2020, pp. 431–436. doi: 10.1016/j.ifacol.2020.12.211.
    5. S. Michalowsky, C. Scherer, and C. Ebenbauer, “Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach,” International Journal of Control, vol. 2020, pp. 1–24, 2020, doi: 10.1080/00207179.2020.1745286.
    6. T. Martin, A. Koch, and F. Allgöwer, “Data-driven surrogate models for LTI systems via saddle-point dynamics,” in Proc. 21st IFAC World Congress, in Proc. 21st IFAC World Congress. Berlin, Germany, 2020, pp. 971–976. doi: 10.1016/j.ifacol.2020.12.1261.
    7. T. Martin and F. Allgöwer, “Iterative data-driven inference of nonlinearity measures via successive graph approximation,” in Proc. 59th IEEE Conf. Decision and Control (CDC), in Proc. 59th IEEE Conf. Decision and Control (CDC). Jeju, South Korea, 2020, pp. 4760–4765. doi: 10.1109/CDC42340.2020.9304285.
    8. A. Koch, J. Berberich, and F. Allgöwer, “Verifying dissipativity properties from noise-corrupted input-state data,” in Proc. 59th IEEE Conf. on Decision and Control (CDC), in Proc. 59th IEEE Conf. on Decision and Control (CDC). Jeju, South Korea, 2020, pp. 616–621. doi: 10.1109/CDC42340.2020.9304380.
    9. F. Kempter, F. Bechler, and J. Fehr, “Calibration Approach for Muscle Activated Human Models in Pre-Crash Maneuvers with a Driver-in-the-Loop Simulator,” in DHM2020 : Proceedings of the 6th International Digital Human Modeling Symposium, L. Hanson, D. Hogberg, and E. Brolin, Eds., in DHM2020 : Proceedings of the 6th International Digital Human Modeling Symposium. IOS Press, 2020, pp. 227–236. doi: 10.3233/ATDE200029.
    10. D. F. B. Häufle, I. Wochner, D. Holzmüller, D. Drieß, M. Günther, and S. Schmitt, “Muscles reduce neuronal information load : quantification of control effort in biological vs. robotic pointing and walking,” Frontiers in Robotics and AI, vol. 7, p. 77, 2020, doi: 10.3389/frobt.2020.00077.
    11. T. Holicki and C. W. Scherer, “Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems,” in IFAC-PapersOnline, in IFAC-PapersOnline, vol. 53. 2020, pp. 7299–7304. doi: 10.1016/j.ifacol.2020.12.981.
    12. M. Hirche, P. N. Köhler, M. A. Müller, and F. Allgöwer, “Distributed Model Predictive Control for Consensus of Constrained Heterogeneous Linear Systems,” in Proc. 59th IEEE Conf. on Decision and Control (CDC), in Proc. 59th IEEE Conf. on Decision and Control (CDC). Jeju Island, Republic of Korea, 2020, pp. 1248–1253. doi: 10.1109/CDC42340.2020.9303838.
    13. J. Berberich, C. W. Scherer, and F. Allgöwer, “Combining Prior Knowledge and Data for Robust Controller Design,” 2020, [Online]. Available: https://arxiv.org/abs/2009.05253
    14. J. Berberich, A. Koch, C. W. Scherer, and F. Allgower, “Robust data-driven state-feedback design,” in 2020 American Control Conference (ACC), in 2020 American Control Conference (ACC). IEEE, Jul. 2020, pp. 1532–1538. doi: 10.23919/acc45564.2020.9147320.
    15. M. Barreau, C. W. Scherer, F. Gouaisbaut, and A. Seuret, “Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis,” in IFAC World Congress, in IFAC World Congress, vol. 53. 2020, pp. 7752–7757. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896320321297
  6. 2019

    1. C. A. Rösinger and C. W. Scherer, “A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination,” in IFAC-PapersOnLine, in IFAC-PapersOnLine, vol. 52. 2019, pp. 50–57. doi: 10.1016/j.ifacol.2019.12.347.
    2. A. Romer, S. Trimpe, and F. Allgöwer, “Data-driven inference of passivity properties via Gaussian process optimization,” in 2019 18th European Control Conference (ECC), in 2019 18th European Control Conference (ECC). IEEE, 2019, pp. 29--35.
    3. A. Romer, J. Berberich, J. Köhler, and F. Allgöwer, “One-shot verification of dissipativity properties from input--output data,” IEEE Control Systems Letters, vol. 3, no. 3, Art. no. 3, 2019.
    4. T. Martin and F. Allgöwer, “Nonlinearity Measures for Data-Driven System Analysis and Control,” in Proc. 58th IEEE Conf. Decision and Control (CDC), in Proc. 58th IEEE Conf. Decision and Control (CDC). Nice, France, 2019, pp. 3605–3610. doi: 10.1109/CDC40024.2019.9029804.
    5. T. Holicki and C. W. Scherer, “Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings,” Nonlinear Anal. Hybri., vol. 34, pp. 179–208, 2019, doi: https://doi.org/10.1016/j.nahs.2019.06.003.
    6. T. Holicki and C. W. Scherer, “A Homotopy Approach for Robust Output-Feedback Synthesis,” in Proc. 27th. Med. Conf. Control Autom., in Proc. 27th. Med. Conf. Control Autom. 2019, pp. 87–93. doi: 10.1109/MED.2019.8798536.
    7. D. Driess, S. Schmitt, and M. Toussaint, “Active Inverse Model Learning with Error and Reachable Set Estimates.,” in IROS, in IROS. 2019, pp. 1826--1833.
    8. G. Baggio, S. Zampieri, and C. W. Scherer, “Gramian Optimization with Input-Power Constraints,” in 2019 IEEE 58th Conference on Decision and Control (CDC), in 2019 IEEE 58th Conference on Decision and Control (CDC). Dec. 2019, pp. 5686–5691. doi: 10.1109/CDC40024.2019.9029169.

Project Network Coordinators

This image shows Frank  Allgöwer

Frank Allgöwer

Prof. Dr.-Ing.

Mechanical Engineering

[Photo: SimTech/Max Kovalenko]

This image shows Peter Eberhard

Peter Eberhard

Prof. Dr.-Ing. Prof. E.h.

Engineering and Computational Mechanics

[Photo: SimTech/Max Kovalenko]

To the top of the page