2015

  1. A

    1. Y. Abdelrahman, A. Sahami Shirazi, N. Henze, and A. Schmidt, “Investigation of Material Properties for Thermal Imaging-Based Interaction,” Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2015.
    2. Y. Abdelrahman, M. Hassib, M. Marquez, M. Funk, and A. Schmidt, Implicit Engagement Detection for Interactive Museums Using Brain-Computer Interfaces. 2015.
    3. L. Allerhand, E. Gershon, and U. Shaked, “State-feedback control of stochastic discrete-time linear switched systems with dwell time,” ECC 2015, 2015.
    4. L. Allerhand, “Stability of adaptive control in the presence of input disturbances and H?. performance,” Rocond 2015, 2015.
    5. L. I. Allerhand, “Robust state-feedback control of stochastic state-multiplicative discrete-time linear switched systems with dwell time,” Int. J. Robust Nonlin, 2015.
    6. D. Amsallem, C. Farhat, and B. Haasdonk, “Editorial: Special Issue on Modelling Reduction,” IJNME, International Journal of Numerical Methods in Engineering, vol. 102, no. 5, pp. 931--932, 2015.
    7. D. Amsallem, C. Farhat, and B. Haasdonk, “Special Issue on Model Reduction,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 102, no. 5, SI, pp. 931–932, 2015.
    8. T. Aven and O. Renn, “An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change: An Evaluation of the IPCC Reports on Climate Change,” Risk Analysis, vol. 35, no. 4, pp. 701--712, 2015.
    9. E. Aydiner, F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Self-Triggered Model Predictive Control for Constrained Discrete-Time LTI Systems based on Homothetic Tubes,” Proceedings of the European Control Conference (2015), pp. 1587--1593, 2015.
  2. B

    1. F. Bayer, M. A. Müller, and F. Allgöwer, “Average Constraints in Robust Economic Model Predictive Control,” IFAC-PapersOnLine, vol. 48, no. 8, pp. 44--49, 2015.
    2. F. Bayer, M. Lorenzen, M. A. Müller, and F. Allgöwer, “Improving Performance in Robust Economic MPC Using Stochastic Information,” Proc. IFAC Conf. Nonlinear Model Predictive Control (NMPC 15), pp. 411--416, 2015.
    3. F. Betancourt and C. Rohde, “Finite-Volume Schemes for Friedrichs Systems with Involutions,” Appl. Math. Comput., vol. 272, pp. 420--439, 2015.
    4. A. Bhatt, D. Floyd, and B. E. Moore, “Second Order Conformal Symplectic Schemes for Damped Hamiltonian  Systems,” Journal of Scientific Computing, 2015.
    5. A. Bhatt, D. Floyd, and B. E. Moore, “Second Order Conformal Symplectic Integrators for Damped Hamiltonian  Systems.” 2015.
    6. S. Bidier and W. Ehlers, “Grain-scale-based simulation of granular material,” Proceedings in Applied Mathematics and Mechanics, vol. 15, pp. 449--450, 2015.
    7. C. Bleiler et al., “Multiphasic modelling of bone-cement injection into vertebral cancellous bone,” International Journal for Numerical Methods in Biomedical Engineering, vol. 31, pp. 37--57, 2015.
    8. F. Bode, W. Nowak, and M. Loschko, “Optimization for early-warning monitoring networks in well catchments should be multi-objective, risk-prioritized and robust against uncertainty,” Transport in Porous Media, vol. 114, pp. 261--281, 2015.
    9. F. D. Brunner, T. M. P. Gommans, W. P. M. H. Heemels, and F. Allgöwer, “Resource-aware set-valued estimation for discrete-time linear systems,” 54th IEEE Conference on Decision and Control, pp. 5480--5486, 2015.
    10. F. D. Brunner, T. M. P. Gommans, W. P. M. H. Heemels, and F. Allgöwer, “Communication Scheduling in Robust Self-Triggered MPC for Linear Discrete-Time Systems,” 5th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 132--137, 2015.
    11. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Event-Triggered MPC for Constrained Linear Discrete-Time Systems with Guaranteed Average Sampling Rate,” Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (2015), pp. 117--122, 2015.
    12. F. D. Brunner, M. Lazar, and F. Allgöwer, “Stabilizing Linear Model Predictive Control: On the Enlargement of the Terminal Set,” International Journal of Robust and Nonlinear Control, vol. 25, no. 15, pp. 2646--2670, 2015.
    13. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes  and Heston model,” SIAM journal on Financial Mathematics (SIFIN), no. 1408.1220, 2015.
    14. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced Basis Methods for Pricing Options with the Black-Scholes and    Heston Models,” SIAM JOURNAL ON FINANCIAL MATHEMATICS, vol. 6, no. 1, pp. 685–712, 2015.
    15. M. Bußler, T. Ertl, and F. Sadlo, “Photoelasticity Raycasting,” Computer Graphics Forum, vol. 34, no. 3, pp. 141--150, 2015.
  3. C

    1. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “RBF approximation of large datasets by partition of unity and local  stabilization,” in CMMSE 2015 : Proceedings of the 15th International Conference on  Mathematical Methods in Science and Engineering, 2015, pp. 317--326.
    2. S.-Y. Chong, B. Dorow, E. Ramasamy, F. Dennerlein, and O. Röhrle, “The use of collision detection to infer multi-camera calibration quality,” Frontiers in Bioengineering and Biotechnology, vol. 3, 2015.
    3. H. Class, A. Kissinger, S. Knopf, W. Konrad, V. Noak, and D. Scheer, “Combined natural and social science approach for regional-scale characterisation of CO2 storage formations and brine migration risks (CO2Brim),” Liebscher, Axel, Münch, Ute (Eds.) Advanced Technologies in Earth Sciences: Geological storage of CO2 - long term security aspects, pp. 209--227, 2015.
  4. D

    1. S. De Marchi and G. Santin, “Fast computation of orthonormal basis for RBF spaces through Krylov  space methods,” BIT Numerical Mathematics, vol. 55, no. 4, pp. 949--966, 2015.
    2. C. Dibak, F. Dürr, and K. Rothermel, “Numerical Analysis of Complex Physical Systems on Networked Mobile Devices.,” in Proceedings of the 12th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2015, pp. 280–288.
    3. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by Local Discontinuous Galerkin methods in multiple space dimensions,” Applied Mathematics and Computation, vol. 272, pp. 309--335, 2015.
    4. M. Dihlmann and B. Haasdonk, “A reduced basis Kalman filter for parametrized partial differential  equations,” ESAIM: Control, Optimisation and Calculus of Variations, 2015.
    5. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis    surrogate models for evolution problems,” COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, vol. 60, no. 3, pp. 753–787, 2015.
    6. M. Dreyer, W. Konrad, and D. Scheer, “Partizipative Modellierung: Erkenntnisse und Erfahrungen aus einer Methodengenese,” Niederberger, M., Wassermann, S. (Hrsg.): Methoden der Experten- und Stakeholdereinbindung in der sozialwissen-schaftlichen Forschung. Wiesbaden, pp. 261--285, 2015.
    7. D. Drzisga, R. Helmig, T. Koeppl, U. Pohl, and B. Wohlmuth, “Numerical modeling of compensation mechanisms for peripheral arterial stenoses,” Computers in Biology and Medicine, vol. 70, pp. 190--201, 2015.
  5. E

    1. A. P. Eichenberger, W. F. van Gunsteren, S. Riniker, L. von Ziegler, and N. Hansen, “The key to predicting the stability of protein mutants lies in an accurate description and proper configurational sampling of the folded and denatured states,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1850, pp. 983--995, 2015.
    2. K. Eisenschmidt et al., “Direct Numerical Simulations for multiphase Flows: An overview of the multiphase code FS3D,” Applied Mathematics and Computation, 2015.
    3. R. Enzenhöfer, W. Nowak, and P. J. Binning, “STakeholder-Objective Risk Model (STORM): Determining the aggregated risk of multiple contaminant hazards in groundwater well catchments,” Advances in Water Resorces, vol. 83, pp. 165--175, 2015.
  6. F

    1. S. Fechter and C.-D. Munz, “A discontinuous Galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow,” International Journal of Numerical Methods in Fluids, vol. 78, pp. 413--435, 2015.
    2. J. Fehr, J. Köhler, and C. Kleinbach, “Optimal Forces for the Deceleration of the ES-2 Dummy,” 10th European LS-DYNA Conference 2015, Würzburg, Germany, 2015.
    3. J. Fehr and D. Grunert, “Model reduction and clustering techniques for crash simulations,” Proceedings in Applied Mathematics and Mechanics, p. 2, 2015.
    4. J. Fehr and C. Kleinbach, “A Comparison between Finite Element Models and MBS Models in Automotive Safety Applications,” Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, 29.06-02.07 2015, 2015.
    5. C. Feller and C. Ebenbauer, “Weight recentered barrier functions and smooth polytopic terminal set formulations for linear model predictive control,” Proccedings of the American Control Conference 2015, pp. 1647--1652, 2015.
    6. O. Fernandes et al., “On In-Situ Visualization for Strongly Coupled Partitioned Fluid-Structure Interaction,” VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, 2015.
    7. F. Franzelin, P. Diehl, and D. Pflüger, “Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations,” Meshfree Methods for Partial Differential Equations, vol. 100, pp. 115--143, 2015.
    8. S. Frey, F. Sadlo, and T. Ertl, “Balanced Sampling and Compression for Remote Visualization,” SIGGRAPH Asia 2015 Visualization in High Performance Computing, 2015.
    9. M. Funk, S. Schneegass, M. Behringer, N. Henze, and A. Schmidt, An interactive curtain for media usage in the shower. 2015.
  7. G

    1. G. Gassner, M. Staudenmaier, F. Hindenlang, M. Atak, and C.-D. Munz, “A space-time adaptive discontinuous Galerkin scheme,” Computers & Fluids, vol. 117, pp. 247--261, 2015.
    2. A. Geiges, Y. Rubin, and W. Nowak, “Interactive design of experiments: A priori global versus sequential optimization, revised under changing states of knowledge,” Water Resources Research, vol. 51, no. 10, pp. 7915--7936, 2015.
    3. S. U. Gerbersdorf et al., Anthropogenic Trace Compounds (ATCs) in aquatic habitats - research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management, vol. 79. 2015.
    4. J. Giesselmann, “Entropy as a fundamental principle in hyperbolic conservation laws and related models,” PhD dissertation, Stuttgart, 2015.
    5. J. Giesselmann and T. Pryer, “Energy consistent discontinuous Galerkin methods for a quasi-incompressible  diffuse two phase flow model,” M2AN Math. Model. Numer. Anal., vol. 49(1), pp. 275–301, 2015.
    6. J. Giesselmann, “Low Mach asymptotic-preserving scheme for the Euler-Korteweg model,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, pp. 802–833, 2015.
    7. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence    of a non-local to a local model,” JOURNAL OF DIFFERENTIAL EQUATIONS, vol. 258, no. 10, pp. 3589–3606, 2015.
    8. J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 53, pp. 1280--1303, 2015.
    9. H. Gilbergs, H. Fang, K. Frenner, and W. Osten, “Adaptive state observer and PD control for dynamic perturbations in optical systems,” Optics Express, vol. 23, pp. 4002--4011, 2015.
    10. D. Goeddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically    compressed asynchronous checkpointing,” PARALLEL COMPUTING, vol. 49, pp. 117–135, 2015.
    11. T. Grosan, M. Kohr, and W. L. Wendland, “Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman    system in Lipschitz domains,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 38, no. 17, pp. 3615–3628, 2015.
    12. M. Gugat, M. Herty, and V. Schleper, “flow control in gas networks: exact controllability to a given demand    (vol 34, pg 745, 2011),” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 38, no. 5, pp. 1001–1004, 2015.
    13. D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing,” Parallel Computing, vol. 49, pp. 117--135, 2015.
    14. D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically  compressed asynchronous checkpointing,” Parallel Computing, vol. 49, pp. 117–135, 2015.
  8. H

    1. J. Haas, MA. Olivares, and R. Palma-Behnke, “Grid-wide subdaily hydrologic alteration under massive wind power penetration in Chile,” Journal of Environmental Management, vol. 154, pp. 183--189, 2015.
    2. W. Halter, N. Kress, K. Otte, S. Reich, B. Hauer, and F. Allgöwer, Yield-Analysis of Different Coupling Schemes for Interconnected Bio-Reactors. 2015.
    3. B. Harrach and M. Ullrich, “Resolution Guarantees in Electrical Impedance Tomography,” Medical Imaging, vol. 34, no. 7, p. 1513, 2015.
    4. B. Harrach and M. Ullrich, “Local uniqueness for an inverse boundary value problem with partial data,” Proc. Amer. Math. Soc., 2015.
    5. B. Harrach, E. Lee, and M. Ullrich, “Combining frequency-difference and ultrasound modulated electrical impedance tomography,” Inverse Problems, vol. 31, no. 9, p. 095003 (25pp), 2015.
    6. R. Helmig, T. Koeppl, and B. Wohlmuth, “A multi-scale model for mass transport in arteries and tissue,” Recent Trends in Computational Engineering-CE2014, pp. 197--213, 2015.
    7. A. Hemmen, A. Z. Pangiotopoulos, and J. Gross, “Grand Canonical Monte Carlo Simulations Guided by an Analytic Equation of State-Transferable Anisotropic Mie Potentials for Ethers,” The Journal of Phisical Chemistry, vol. 119, pp. 7087--7099, 2015.
    8. A. Hemmen and J. Gross, “Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n?Alkanes and n?Olefins,” The Journal of Phisical Chemistry, pp. 11695--11701, 2015.
    9. M. Hintermüller and A. Langer, “Non-overlapping domain decomposition methods for dual total variation  based image denoising,” Journal of Scientific Computing, vol. 62, no. 2, pp. 456--481, 2015.
    10. P. Hirmer, P. Reimann, M. Wieland, and B. Mitschang, “Extended Techniques for Flexible Modeling and Execution of Data Mashups,” Proceedings of the 4th International Conference on Data Management Technologies and Applications (DATA), 2015.
    11. P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher, and F. Leymann, “SitRS - A Situation Recognition Service based on Modeling and Executing Situation Templates,” Proceedings of the 9th Symposium and Summer School On Service-Oriented Computing, 2015.
    12. M. Hlawatsch, M. Burch, F. Beck, J. Freire, C. Silva, and D. Weiskopf, “Visualizing the Evolution of Module Workflows,” Proceedings of the International Conference on Information Visualisation (IV), 2015.
    13. S. Huang et al., “Buckling of paramagnetic chains in soft gels,” 2015.
  9. K

    1. G. K. Karch, F. Sadlo, D. Weiskopf, and T. Ertl, “Visualization of 2D Unsteady Flow Using Streamline-Based Concepts in Space-Time,” Journal of Visualization, pp. 1--14, 2015.
    2. S. Kaulmann, B. Flemisch, B. Haasdonk, K. A. Lie, and M. Ohlberger, “The localized reduced basis multiscale method for two-phase flows in    porous media,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 102, no. 5, SI, pp. 1018–1040, 2015.
    3. M.-A. Keip and M. Rambausek, “On the generation of soft magneto-electric effects through Maxwell interactions,” Proceedings in Applied Mathematics and Mechanics, vol. 15, pp. 309--311, 2015.
    4. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case,” Multiscale Model. Simul., vol. 13 no. 4, pp. 1507–1541, 2015.
    5. J. Koch and W. Nowak, “Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high-resolution stochastic simulation,” Water Resources Research, vol. 51, no. 2, pp. 806--831, 2015.
    6. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3,” ZAMP, vol. 66, pp. 833–846, 2015.
    7. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds,” JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, vol. 27, no. 3–4, pp. 823–839, 2015.
    8. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 66, no. 3, pp. 833–864, 2015.
    9. K. Kratzer and A. Arnold, “Two-stage crystallization of charged colloids under low supersaturation conditions,” Soft Matter, vol. 11, pp. 2174--2182, 2015.
    10. I. Kroeker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems,” COMPUTATIONAL GEOSCIENCES, vol. 19, no. 2, pp. 269–284, 2015.
    11. I. Kröker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain and non-linear two-phase flow problems,” Computational Geosciences, vol. 19, Issue 2, pp. 269--284, 2015.
    12. I. Kr�ker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems,” Comput. Geosci., vol. 19, no. 2, pp. 269--284, 2015.
    13. K. Kupczik, H. Stark, R. Mundry, F. T. Neininger, T. Heidlauf, and O. Röhrle, “Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: a combined texture mapping and streamline approach,” Journal of Theoretical Biology, vol. 382, pp. 34--43, 2015.
    14. K. Kuritz and F. Allgöwer, “Inferring cell-cycle dependent signalling with age-structured population        models.” Heidelberg, 2015.
    15. M. Kuron and A. Arnold, “Role of geometrical shape in like-charge attraction of DNA,” The European Physical Journal E, vol. 38, pp. 1--6, 2015.
    16. M. Kutter, C. Rohde, and A.-M. Sändig, “Well - Posedness of a Two Scale Model dor Liquid Phase Epitaxy with Elasticity, Contin. Mech. Thermodyn., University of Stuttgart,” Continuum Mechanics and Thermodynamics, pp. 1--28, 2015.
    17. M. Kutter, “A two scale model for liquid phase epitaxy with elasticity,” PhD dissertation, University of Stuttgart, 2015.
    18. H. Köroglu, C. W. Scherer, and P. Falcone, “Robust Static Output Feedback Synthesis under an Integral Quadratic Constraint on the States,” Control Conference (ECC), 2015 European, pp. 3203--3208, 2015.
  10. L

    1. V. Lesch, A. Heuer, C. Holm, and J. Smiatek, “Solvent effects of 1-ethyl-3-methylimidazolium acetate: solvation and dynamic behavior of polar and apolar solutes,” Physical Chemistry Chemical Physics, vol. 17, no. 13, pp. 8480--8490, 2015.
    2. S. Linsenmayer, D. V. Dimarogonas, and F. Allgöwer, “Nonlinear Event-Triggered Platooning Control with Exponential Convergence,” Proceedings of the 5th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 138--143, 2015.
    3. L. Lischke et al., Using Space: Effect of Display Size on Users’ Search Performance. 2015.
    4. L. Lischke, S. Mayer, K. Wolf, A. Sahami Shirazi, and N. Henze, Subjective and Objective Effects of Tablet’s Pixel Density. 2015.
    5. F. List and F. A. Radu, “A study on iterative methods for solving Richards� equation,” 2015.
    6. Y. Liu, A. Fischer, P. Eberhard, and B. Wu, “A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations,” Acta Mechanica Sinica, vol. 31, no. 3, pp. 406--415, 2015.
    7. M. Lorenzen, F. Allgöwer, F. Dabbene, and R. Tempo, “Scenario-Based Stochastic MPC with Guaranteed Recursive Feasibility,” Proceedings of the IEEE Conference on Decision and Control (CDC), 2015.
    8. M. Lorenzen, F. Allgöwer, F. Dabbene, and R. Tempo, “An improved constraint-tightening approach for Stochastic MPC,” Proceedings of the American Control Conference (ACC), pp. 944--949, 2015.
    9. M. Lorenzen, F. Allgöwer, F. Dabbene, and R. Tempo, Scenario-Based Stochastic MPC with Guaranteed Recursive Feasibility. 2015.
  11. M

    1. J. Mabuma, M. Schwarze, C. Hurschler, B. Markert, and W. Ehlers, “Effects of osteoarthritis and pathological walking on contact stresses in femoral cartilage,” Biomechanics and Modeling in Mechanobiology, pp. 1--14, 2015.
    2. I. Martini and B. Haasdonk, “Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, 2015, vol. 103, pp. 437--445.
    3. I. Martini, G. Rozza, and B. Haasdonk, “Reduced basis approximation and a-posteriori error estimation for  the coupled Stokes-Darcy system,” Advances in Computational Mathematics, vol. 41, no. 5, pp. 1131--1157, 2015.
    4. S. Mayer, K. Wolf, S. Schneegass, and N. Henze, “Modeling Distant Pointing for Compensating Systematic Displacements,” ACM Conference on Human Factors in Computing Systems, vol. 33, pp. 4165--4168, 2015.
    5. J. Meisner, M. Vacher, M. J. Bearpark, and M. A. Robb, “Geometric Rotation of the Nuclear Gradient at a Conical Intersection: Extension to Complex Rotation of Diabatic States,” Journal of Chemical Theory and Computation, vol. 11, no. 7, pp. 3115--3122, 2015.
    6. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains,” IMA J. Num. Analysis, vol. 35, pp. 834–858, 2015.
    7. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, pp. 834–858, 2015.
    8. C. Miehe, D. Zäh, and D. Vallicotti, “Computational structural and material stability analysis in finite electro-elasto-statics of electro-active materials,” International Journal for Numerical Methods in Engineering, vol. 102, pp. 1605--1637, 2015.
    9. C. Miehe, S. Mauthe, and S. Teichtmeister, “Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture,” Journal of the Mechanics and Physics of Solids, vol. 82, pp. 186--217, 2015.
    10. C. Miehe and D. Zäh, “Multiplicative electro-elasticity of electroactive polymers accounting for micromechanically-based network models,” Computer Methods in Applied Mechanics and Engineering, vol. 286, pp. 394--421, 2015.
    11. C. Miehe and H. Dal, “Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains,” Computational Mechanics, vol. 55, pp. 303--325, 2015.
    12. J. Missler, D. Schwarzmann, and L. Allerhand, “On the influence of Filter Choice in Output-Feedback MRAC during Adaptation Transients,” Micnon 2015, 2015.
    13. D. Molnar, U. Weber, P. Binkele, D. Rapp, and S. Schmauder, “Prediction of macroscopic damage behaviour of precipitation strengthened steels via multiscale simulations,” GAMM-Mitteilungen, vol. 38, no. 2, pp. 228--247, 2015.
    14. J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Synchronization of Diffusively Coupled Systems on Compact Riemannian Manifolds in the Presence of Drift,” Systems & Control Letters, vol. 76, pp. 19--27, 2015.
    15. J. M. Montenbruck, G. S. Schmidt, G. S. Seyboth, and F. Allgöwer, “On the Necessity of Diffusive Couplings in Linear Synchronization Problems with Quadratic Cost,” IEEE Transactions on Automatic Control, vol. 60, 2015.
    16. J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Practical Synchronization with Diffusive Couplings,” Automatica, vol. 53, pp. 235--243, 2015.
    17. J. M. Montenbruck, G. S. Schmidt, A. Kecskemethy, and F. Allgöwer, “Two Gradient-Based Control Laws on SE(3) Derived from Distance Functions,” Interdisciplinary Applications of Kinematics, vol. 2, pp. 31--41, 2015.
    18. M. Mordhorst, T. Heidlauf, and O. Röhrle, “Predicting electromyographic signals under realistic conditions using a multiscale chemo-electro-mechanical finite element model,” Interface Focus, vol. 5, pp. 1--11, 2015.
    19. M. A. Müller, D. Liberzon, and F. Allgöwer, “Norm-controllability of nonlinear systems,” IEEE Transactions on Automatic Control, 2015.
    20. S. Müthing, D. Ribbrock, and D. Göddeke, “Integrating multi-threading and accelerators into DUNE-ISTL,” in Numerical Mathematics and Advanced Applications -- ENUMATH 2013, vol. 103, A. Abdulle, S. Deparis, D. Kressner, F. Nobile, and M. Picasso, Eds. Springer, 2015, pp. 601--609.
  12. N

    1. S. Najmabadi, Z. Wang, Y. Baroud, and S. Simon, High throughput hardware architectures for asym- metric numeral systems entropy coding. 2015.
    2. J. Neusser, C. Rohde, and V. Schleper, “Relaxation of the Navier-Stokes-Korteweg Equations for Compressible  Two-Phase Flow with Phase Transition,” J. Numer. Methods Fluids, vol. 79, pp. 615–639, 2015.
    3. J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition,” J. Numer. Meth. Fluids, vol. 79, no. 12, pp. 615–639, 2015.
    4. J. Neusser and V. Schleper, “Numerical schemes for the coupling of compressible and incompressible  fluids in several space dimensions,” 2015.
  13. O

    1. MA. Olivares, J. Haas, and R. Palma-Behnke, “A framework to identify Pareto-efficient subdaily environmental flow constraints on hydropower reservoirs using a grid-wide power dispatch model,” Water Resources Research, vol. 51, no. 5, pp. 3664--3680, 2015.
    2. G. S. Oztepe, S. R. Choudhury, and A. Bhatt, “Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol  Oscillators with Time-Delayed Displacement and Velocity Feedback:  Hopf Bifurcations and Amplitude Death,” Far East Journal of Dynamical Systems, 2015.
  14. P

    1. G. Pessot, R. Weeber, C. Holm, H. Löwen, and A. M. Menzel, “Towards a scale-bridging description of ferrogels and magnetic elastomers,” Journal of Physics: Condensed Matter, vol. 27, no. 32, 2015.
    2. M. Pfeiffer, C.-D. Munz, and S. Fasoulas, “Hyperbolic divergence cleaning, the electrostatic limit, and potential boundary conditions for particle-in-cell codes,” Journal of Computational Physics, vol. 294, pp. 547--561, 2015.
    3. M. Pfeiffer, A. Mirza, C.-D. Munz, and S. Fasoulas, “Two statistical particle split and merge methods for Particle-in-Cell codes,” Computer Physics Communications, vol. 191, pp. 9--24, 2015.
  15. R

    1. S. Raafatnia, O. A. Hickey, and C. Holm, “Electrophoresis of a Spherical Polyelectrolyte-Grafted Colloid in Monovalent Salt Solutions: Comparison of Molecular Dynamics Simulations with Theory and Numerical Calculations,” Macromolecules, vol. 48, no. 3, pp. 775--787, 2015.
    2. N. Radde and S. Klaus, “Bifurcation analysis for intracellular regulation networks based on their circuit structure,” 9th IFAC Symp on Biological and Medical Systems, vol. 48, p. 20, 2015.
    3. P. Rauschenberger and B. Weigand, “A Volume-of-Fluid method with interface reconstruction for ice growth in supercooled water,” Journal of Computational Physics, vol. 282, pp. 98--112, 2015.
    4. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” Advances in Computational Mathematics, vol. 41, no. 5, pp. 987--1013, 2015.
    5. C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension,” Appl. Numer. Math., vol. 95, pp. 267--279, 2015.
    6. T. K. Rupp, W. Ehlers, N. Karajan, M. Günther, and S. Schmitt, “A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles,” Biomechanics and Modeling in Mechanobiology, 2015.
    7. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous  medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299--309, 2015.
    8. I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,” J. Hydrology, vol. 521, pp. 565--581, 2015.
    9. A. V. Ryzhkov, P. V. Melenev, C. Holm, and Y. L. Raikher, “Coarse-grained molecular dynamics simulation of small ferrogel objects,” Journal of Magnetism and Magnetic Materials, vol. 383, pp. 277--280, 2015.
  16. S

    1. K. Scharnowski, S. Boblest, and T. Ertl, “Improved Sparse Seeding for 3D Electrostatic Field Lines,” EuroVis 2015 Short Papers, 2015.
    2. V. Schauer and C. Linder, “The reduced basis method in all-electron calculations with finite elements,” Advances in Computational Mathematics, 2015.
    3. D. Scheer, W. Konrad, H. Class, A. Kissinger, S. Knopf, and V. Noack, “Expert involvement in science development: (re-)evaluation of an early screening tool for carbon storage site characterization,” International Journal of Greenhouse Gas Control, vol. 37, pp. 228--236, 2015.
    4. D. Scheer, “In silico science for climate policy: How policy-makers process and use carbon storage simulation data,” Environmental Science & Policy, vol. 74, pp. 148--156, 2015.
    5. C. W. Scherer, “GAIN-SCHEDULING CONTROL WITH DYNAMIC MULTIPLIERS BY CONVEX OPTIMIZATION,” SIAM J. Contr. Optim., vol. 53, no. 3, pp. 1224–1249, 2015.
    6. V. Schleper, “Nonlinear Transport and Coupling of Conservation Laws.” 2015.
    7. V. Schleper, “A HYBRID MODEL FOR TRAFFIC FLOW AND CROWD DYNAMICS WITH RANDOM    INDIVIDUAL PROPERTIES,” MATHEMATICAL BIOSCIENCES AND ENGINEERING, vol. 12, no. 2, pp. 393–413, 2015.
    8. H. Schmauder, M. Burch, and D. Weiskopf, “Visualizing Dynamic Weighted Digraphs with Partial Links,” Proceedings of the 6th International Conference on Information Visualization Theory and Applications, pp. 123--130, 2015.
    9. A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic  regulator,” in Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical  Modelling, 2015, pp. 713--718.
    10. S. Schmitt and D. Häufle, Mechanics and Thermodynamics of Biological Muscle - A Simple Model Approach. 2015.
    11. P. Schröder, A. Wagner, and W. Ehlers, “Towards the continuum-mechanical modelling of metastatic tumour growth in the brain,” PAMM, vol. 15, pp. 107--108, 2015.
    12. A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Efficient On-Line Fault-Tolerance for the Preconditioned Conjugate Gradient Method,” IEEE International On-Line Testing Symposium (IOLTS), pp. 95--100, 2015.
    13. A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Low-Overhead Fault-Tolerance for the Preconditioned Conjugate Gradient Solver,” Proceedings of the International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), pp. 60--65, 2015.
    14. A. Schöniger, W. Illman, T. Wöhling, and W. Nowak, “Finding the Right Balance Between Groundwater Model Complexity and Experimental Effort via Bayesian Model Selection,” Journal of Hydrology, vol. 531/1, pp. 96--110, 2015.
    15. A. Schöniger, T. Wöhling, and W. Nowak, “A Statistical Concept to Assess the Uncertainty in Bayesian Model Weights and its Impact on Model Ranking and Averaging,” Water Resources Research, 2015.
    16. G. S. Seyboth, D. V. Dimarogonas, K. H. Johansson, P. Frasca, and F. Allgöwer, “On Robust Synchronization of Heterogeneous Linear Multi-Agent Systems with Static Couplings,” Automatica, 2015.
    17. M. Sinsbeck and D. M. Tartakovsky, “Impact of Data Assimilation on Cost-Accuracy Tradeoff in Multi-Fidelity Models,” SIAM/ASA J. Uncertainty Quantification, vol. 3, no. 1, pp. 954--968, 2015.
    18. M. Sinsbeck and W. Nowak, “An optimal sampling rule for nonintrusive polynomial chaos expansions of expensive models,” International Journal for Uncertainty Quantification, vol. 5, no. 3, pp. 275--295, 2015.
    19. M. Skouradaki, K. Görlach, M. Hahn, and F. Leymann, “Application of Sub-Graph Isomorphism to Extract Reoccurring Structures from BPMN 2.0 Process Models,” 9th International IEEE Symposium on Service-Oriented System Engineering (SOSE 2015), pp. 11--20, 2015.
    20. L. J. Smith, W. F. van Gunsteren, and N. Hansen, “Characterization of the flexible lip regions in bacteriophage lambda lysozyme using MD simulations,” European Biophysics Journal, vol. 44, pp. 235--247, 2015.
    21. S. Strauch, V. Andrikopoulos, D. Karastoyanova, and K. Vukojevic-Haupt, “Migrating eScience Applications to the Cloud: Methodology and Evaluation,” Cloud Computing with E-science Applications, 2015.
  17. T

    1. A. Taudt, A. Arnold, and J. Pleiss, “Simulation of protein association: Kinetic pathways towards crystal contacts,” Physical Review E, vol. 91, p. 033311, 2015.
    2. P. Tempel, P. Miermeister, and A. Pott, “Kinematics and Dynamics Modeling for Real-Time Simulation of the Cable-Driven Parallel Robot IPAnema 3,” The 14th IFToMM World Congress, vol. 2, pp. 117--123, 2015.
    3. P. Tempel, F. Schnelle, A. Pott, and P. Eberhard, “Design and Programming for Cable-Driven Parallel Robots in the German Pavilion at the EXPO 2015,” Machines, vol. 3, pp. 223--241, 2015.
    4. P. Tempel, P. Miermeister, A. Lechler, and A. Pott, “Modelling of Kinematics and Dynamics of the IPAnema 3 Cable Robot for Simulative Analysis,” AMM (Applied Mechanics and Materials), vol. 794, pp. 419--426, 2015.
    5. P. Tempel, P. Miermeister, and A. Pott, “Kinematics and Dynamics Modeling for Real-Time Simulation of the Cable-Driven Parallel Robot IPAnema 3,” Proceedings of the 14th IFToMM World Congress, no. 14th–2, pp. 117–123, 2015.
    6. P. Tempel, “SimTech Status Seminar 2015 - Status Update: Improved Modeling of Cables for Kinematics and Dynamics of Light-weight Robots.” 27-Nov-2015.
    7. P. Tempel, F. Schnelle, A. Pott, and P. Eberhard, “Design and Programming for Cable-Driven Parallel Robots in the German Pavilion at the EXPO 2015,” Machines, vol. 3, no. 3, p. 223, 2015.
    8. P. Tempel, P. Miermeister, A. Lechler, and A. Pott, “Modelling of Kinematics and Dynamics of the IPAnema 3 Cable Robot for Simulative Analysis,” AMM, vol. 794, pp. 419--426, 2015.
    9. P. Tempel, “SimTech Milestone Report: Improved Modeling of Cables for Kinematics and Dynamics of Cable-driven Parallel Robots,” Aug. 2015.
    10. E. J. Trottemant, C. W. Scherer, and M. Mazo Jr, “Optimality of robust disturbance-feedback strategies,” Int. J. Robust Nonlin, 2015.
  18. V

    1. M. Vacher, J. Meisner, D. Mendive-Tapia, M. J. Bearpark, and M. A. Robb, “Electronic Control of Initial Nuclear Dynamics Adjacent to a Conical Intersection,” The Journal of Physical Chemistry A, vol. 119, pp. 5165--5172, 2015.
    2. K. Vukojevic-Haupt, S. Gómez Su00e1ez, F. Haupt, D. Karastoyanova, and F. Leymann, “A Middleware-centric Optimization Approach for the Automated Provisioning of Services in the Cloud,” Proceedings of the 7th IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2015.
    3. K. Vukojevic-Haupt, F. Haupt, F. Leymann, and L. Reinfurt, “Bootstrapping Complex Workflow Middleware Systems into the Cloud,” eScience, pp. 126--135, 2015.
  19. W

    1. D. Weber, A. Sahami Shirazi, and N. Henze, “Towards Smart Notifications using Research in the Large,” MobileHCI 15 Adjunct, 2015.
    2. P. Weber, M. Hornjik, M. A. Olayioye, A. Hausser, and N. Radde, “A first ODE model of molecular interactions at the trans-Golgi network for secretion control,” BMC Syst Biol, vol. 9, 2015.
    3. R. Weeber, S. Kantorovich, and C. Holm, “Ferrogels cross-linked by magnetic nanoparticles - Deformation mechanisms in two and three dimensions studied by means of computer simulations,” Journal of Magnetism and Magnetic Materials, vol. 383, pp. 262--266, 2015.
    4. R. Weeber, S. Kantorovich, and C. Holm, “Ferrogels cross-linked by magnetic particles: Field-driven deformation and elasticity studied using computer simulations,” 2015.
    5. W. Weimer-Jehle, “Cross-Impact-Analyse,” Methoden der Experten- und Stakeholdereinbindung in der sozialwissenschaftlichen Forschung, pp. 243--258, 2015.
    6. M. Wieland, H. Schwarz, U. Breitenbücher, and F. Leymann, “Towards Situation-Aware Adaptive Workflows,” Proceedings of the 13th Intl. Conference on Pervasive Computing and Communications Workshops: 11th Workshop on Context and Activity Modeling and Recognition, 2015.
    7. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate Modelling of multiscale models using kernel methods,” International Journal of Numerical Methods in Engineering, vol. 101, no. 1, pp. 1--28, 2015.
    8. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 101, no. 1, pp. 1–28, 2015.
    9. A. Wohlfarth, J. Smiatek, K.-D. Kreuer, S. Takamuku, P. Jannasch, and J. Maier, “Proton Dissociation of Sulfonated Polysulfones: Influence of Molecular Structure and Conformation,” Macromolecules, vol. 48, no. 4, pp. 1134--1143, 2015.
    10. K. Wolf et al., “TUIs in the Large: Using Paper Tangibles with Mobile Devices,” CHI’15 Extended Abstracts, pp. 1579--1584, 2015.
    11. K. Wolf and J. Willaredt t, PickRing: seamless interaction through pick-up detection. 2015.
    12. K. Wolf and T. Bäder, Illusion of Surface Changes Induced by Tactile and Visual Touch Feedback. 2015.
    13. J. Wu, L. Li, V. Ugrinovskii, and F. Allgöwer, “Distributed filter design for cooperative H-infinity-type estimation,” Proc. IEEE Conference on Control Applications (CCA), pp. 1373--1378, 2015.
    14. J. Wu, V. Ugrinovskii, and F. Allgöwer, “Cooperative H-infinity estimation for large-scale interconnected linear systems,” Proc. American Control Conference, pp. 2119--2124, 2015.
  20. Z

    1. C. Zeiler, “Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation,” Verlag Dr. Hut, München, 2015.
    2. S. Zeng, H. Ishii, and F. Allgöwer, “On the state estimation problem for discrete ensembles from discrete-time output snapshots,” Proceedings of the 2015 American Control Conference, p. 6, 2015.
    3. S. Zeng and F. Allgöwer, “On the ensemble observability problem for nonlinear systems,” Proceedings of the 54th IEEE Conference on Decision and Control, p. 6, 2015.

Add a new title here

Check your username and api key
Zum Seitenanfang