2014

  1. A

    1. H. Adibi and H. Minbashian, Integral Equations (in Persian). Amirkabir University of Technology Press, 2014.
    2. G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible diffuse interface model with phase transition,” Math. Models Methods Appl. Sci., vol. 24, no. 5, pp. 827–861, 2014, doi: 10.1142/S0218202513500693.
    3. S. Alvarez Barcia, J. R. Flores, and J. Kästner, “Tunneling Above the Crossover Temperature,” J. Phys. Chem. A, vol. 118, p. 78, 2014, doi: 10.1021/jp411189m.
    4. V. Andrikopoulos, S. Gómez Saez, D. Karastoyanova, and A. Weiß, “Collaborative, Dynamic & Complex Systems: Modeling, Provision & Execution,” Proceedings of the Fourth International Conference on Cloud Computing and Service Science, pp. 276--286, 2014, doi: 10.5220/0004852402760286.
    5. A. Armiti-Juber and C. Rohde, “Almost Parallel Flows in Porous Media,” in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and  Hyperbolic Problems, vol. 78, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 873–881.
  2. B

    1. K. Baber, B. Flemisch, and R. Helmig, “Modelling drop dynamics at the interface between free and porous-medium flow using the mortar method,” International Journal of Heat and Mass Transfer, 2014, [Online]. Available: http://www.hydrosys.uni-stuttgart.de/institut/hydrosys/publikationen/paper/2014/SimTech_Preprint_Baber2014.pdf.
    2. P. Bader, S. Schneegass, N. Henze, V. Schwind, and K. Wolf, “A mobile see-through 3D display with front- and back-touch,” Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, 2014, doi: 10.1145/2639189.2670276.
    3. P. Bader, S. Schneegass, N. Henze, V. Schwind, and K. Wolf, “A mobile see-through 3D display with front- and back-touch,” Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, 2014, doi: 10.1145/2639189.2670276.
    4. A. Barth and S. Moreno-Bromberg, “Optimal risk and liquidity management with costly refinancing opportunities,” Insurance Math. Econom., vol. 57, pp. 31--45, 2014, doi: 10.1016/j.insmatheco.2014.05.001.
    5. A. Barth and F. E. Benth, “The forward dynamics in energy markets - infinite-dimensional modelling and simulation,” Stochastics, vol. 86, no. 6, pp. 932--966, 2014, doi: 10.1080/17442508.2014.895359.
    6. P. Bastian et al., “EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications,” in Euro-Par 2014: Parallel Processing Workshops, vol. 8806, L. Lopes, J. Zilinskas, A. Costan, RobertoG. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, StephenL. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander, Eds. Springer, 2014, pp. 530--541.
    7. F. Bayer and F. Allgöwer, “Robust Economic Model Predictive Control with Linear Average Constraints,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 6707--6712, 2014, doi: 10.1109/CDC.2014.7040442.
    8. F. Bayer, M. A. Müller, and F. Allgöwer, “Tube-based Robust Economic Model Predictive Control,” Journal of Process Control, vol. 24, no. 8, pp. 1237--1246, 2014, doi: 10.1016/j.jprocont.2014.06.006.
    9. F. Bayer, M. A. Müller, and F. Allgöwer, “Set-based Disturbance Attenuation in Economic Model Predictive Control,” 19th IFAC World Congress, pp. 1898--1903, 2014, doi: 10.3182/20140824-6-ZA-1003.00951.
    10. A. Beck et al., “High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations,” International Journal of Numerical Methods in Fluids, vol. 76, pp. 522--548, 2014, doi: 10.1002/fld.3943.
    11. A. Beck et al., “High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations,” International Journal of Numerical Methods in Fluids, vol. 76, pp. 522--548, 2014, doi: 10.1002/fld.3943.
    12. SP. Benson and J. Pleiss, “Molecular dynamics simulations of self-emulsifying drug delivery systems (SEDDS): influence of excipients on droplet nanostructure and drug localization,” Langmuir, vol. 30, pp. 8471--8480, 2014, doi: 10.1021/la501143z.
    13. SP. Benson and J. Pleiss, “Solvent flux method (SFM): a case study of water access to Candida antarctica lipase B,” J Chem Theory Comput, vol. 11, pp. 5206--5214, 2014, doi: 10.1021/ct500791e.
    14. A. Benzing, B. Koldehofe, and K. Rothermel, “Bandwidth-Minimized Distribution of Measurements in Global Sensor Networks,” Proceedings of the 14th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS 2014), 2014, doi: 10.1007/978-3-662-43352-2_13.
    15. F. Berg, F. Dürr, and K. Rothermel, “Increasing the Efficiency and Responsiveness of Mobile Applications with Preemptable Code Offloading,” Proceedings of the 3rd IEEE International Conference on Mobile Services: MS14, 2014, doi: 10.1109/MobServ.2014.20.
    16. F. Berg, F. Dürr, and K. Rothermel, “Optimal Predictive Code Offloading,” Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2014, doi: 10.4108/icst.mobiquitous.2014.258023.
    17. F. Berg, F. Dürr, and K. Rothermel, “Increasing the Efficiency and Responsiveness of Mobile Applications with Preemptable Code Offloading,” Proceedings of the 3rd IEEE International Conference on Mobile Services: MS14, 2014, doi: 10.1109/MobServ.2014.20.
    18. R. Bertelmann et al., Einstieg ins Forschungsdatenmanagement in den Geowissenschaften. Potsdam, 2014, p. 24.
    19. S. Bidier and W. Ehlers, “Localisation in granular media: Particle approach, homogenisation and continuum modelling,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 575--576, 2014, doi: 10.1002/pamm.201410275.
    20. T. Blaschek, K. Vukojevic-Haupt, D. Weber, D. Karastoyanova, and T. Ertl, “Towards Automated Analysis of Eye Tracking Studies using the Workflow Technology,” Proceedings of the Workshop on Simulation Technology: Systems for Data Intensive Simulations (INFORMATIK 2014), 2014, [Online]. Available: http://subs.emis.de/LNI/Proceedings/Proceedings232/149.pdf.
    21. C. Bleiler et al., “Multiphasic Modelling of the Vertebral Bone for Cement-Injection Studies,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 117--118, 2014, doi: 10.1002/pamm.201410046.
    22. C. Bleiler et al., “Multiphasic Modelling of the Vertebral Bone for Cement-Injection Studies,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 117--118, 2014, doi: 10.1002/pamm.201410046.
    23. M. Boger, F. Jaegele, R. Klein, and C.-D. Munz, “Coupling of compressible and incompressible flow regions using the multiple pressure variables approach,” Mathematical Methods in the Applied Sciences, 2014, doi: 10.1002/mma.3081.
    24. M. Boger, F. Jaegele, B. Weigand, and C.-D. Munz, “A pressure-based treatment for the direct numerical simulation of compressible multi-phase flow using multiple pressure variables,” Computers & Fluids, vol. 96, pp. 338--349, 2014, doi: 10.1016/j.compfluid.2014.01.029.
    25. M. U. Bohner, J. Zeman, J. Smiatek, A. Arnold, and J. Kästner, “Nudged-elastic band used to find reaction coordinates based on the free energy,” The Journal of Chemical Physics, vol. 140, no. 7, p. 074109, 2014, doi: 10.1063/1.4865220.
    26. C. Braun, S. Halder, and H.-J. Wunderlich, “A-ABFT: Autonomous Algorithm-Based Fault Tolerance for Matrix Multiplications on Graphics Processing Units,” Proceedings of The 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2014), pp. 443--454, 2014, doi: 10.1109/DSN.2014.48.
    27. K. Breitsprecher, P. Kosovan, and C. Holm, “Coarse-grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge localization,” Journal of Physics: Condensed Matter, vol. 26, no. 28, p. 284114, 2014, doi: 10.1088/0953-8984/26/28/284114.
    28. K. Breitsprecher, P. Kosovan, and C. Holm, “Coarse-grained simulations of an ionic liquid-based capacitor: I. Density, ion size, and valency effects,” Journal of Physics: Condensed Matter, vol. 26, no. 28, p. 284108, 2014, doi: 10.1088/0953-8984/26/28/284108.
    29. K. Breitsprecher, P. Kosovan, and C. Holm, “Coarse-grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge localization,” Journal of Physics: Condensed Matter, vol. 26, no. 28, p. 284114, 2014, doi: 10.1088/0953-8984/26/28/284114.
    30. F. D. Brunner, M. Lazar, and F. Allgöwer, “Computation of Piecewise Affine Terminal Cost Functions for Model Predictive Control,” Proceedings of the 17th international conference on Hybrid systems: computation and control, pp. 1--10, 2014, doi: 10.1145/2562059.2562108.
    31. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Self-Triggered MPC for Constrained Linear Systems.,” Proceedings of the European Control Conference (2014), pp. 472--477, 2014, doi: 10.1109/ECC.2014.6862397.
    32. F. D. Brunner and F. Allgöwer, “Approximate Predictive Control of Polytopic Systems,” Proceedings of the 19th IFAC World Congress, pp. 11060--11066, 2014, doi: 10.3182/20140824-6-ZA-1003.00546.
    33. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Self-Triggered MPC for Constrained Linear Systems.,” Proceedings of the European Control Conference (2014), pp. 472--477, 2014, doi: 10.1109/ECC.2014.6862397.
    34. M. Burkhardt, R. Seifried, and P. Eber, “Aspects of Symbolic Formulations in Flexible Multibody Systems,” Journal of Computational and Nonlinear Dynamics, vol. 9, no. 4, 2014, doi: 10.1115/1.4025897.
    35. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” SIAM Journal on Financial Mathematics (SIFIN), 2014, doi: 10.1137/140981216.
    36. M. Bürger, G. Notarstefano, and F. Allgöwer, “A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization.,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 384--395, 2014, doi: 10.1109/TAC.2013.2281883.
    37. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification  applied to a conservation law modelling a clarifier-thickener unit,” ZAMM Z. Angew. Math. Mech., vol. 94, no. 10, pp. 793–817, 2014, doi: 10.1002/zamm.201200174.
  3. C

    1. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, pp. 554--579, 2014, doi: 10.1137/120897821.
    2. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, pp. 554--579, 2014, doi: 10.1137/120897821.
    3. A. M. Cooper and J. Kästner, “Averaging techniques for reaction barriers in QM/MM simulations,” ChemPhysChem, vol. 15, p. 3264, 2014, doi: 10.1002/cphc.201402382.
    4. A. M. Cooper and J. Kästner, “Averaging techniques for reaction barriers in QM/MM simulations,” ChemPhysChem, vol. 15, p. 3264, 2014, doi: 10.1002/cphc.201402382.
    5. A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-dispersive equations.,” J. Math. Anal. Appl., vol. 414, pp. 773–798, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.jmaa.2014.01.049.
  4. D

    1. S. David, S. Schmitt, J. Utz, A. Hub, and W. Schlicht, “Navigation within buildings: Novel movement detection algorithms supporting people with visual impairments,” Research in Developmental Disabilities, vol. 35, no. 9, pp. 2026–2034, 2014, doi: https://doi.org/10.1016/j.ridd.2014.04.032.
    2. C. Dibak and B. Koldehofe, “Towards Quality-aware Simulations on Mobile Devices,” Proceedings of the 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI) (Informatik 2014), 2014, [Online]. Available: ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2014-54/INPROC-2014-54.pdf.
    3. W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” Physica D, vol. 273–274, pp. 1–13, 2014, doi: http://dx.doi.org/10.1016/j.physd.2014.01.006.
    4. W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” 2014. [Online]. Available: http://arxiv.org/abs/1405.6625.
  5. E

    1. P. Eberhard et al., “Particles-bridging the Gap between Solids and Fluids,” Procedia IUTAM, vol. 10, pp. 161--179, 2014, doi: 10.1016/j.piutam.2014.01.016.
    2. W. Ehlers, M. Schenke, and B. Markert, “Liquefaction phenomena in fluid-saturated soil based on the Theory of Porous Media and the framework of elasto-plasticity,” Journal of Applied Mathematics and Mechanics, vol. 94, pp. 668--677, 2014, doi: 10.1002/zamm.201200220.
    3. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, p. 559, 2014, doi: 10.1002/zamm.201400559.
    4. W. Ehlers, “Porous Media in the Light of History,” The History of Theoretical, Material and Computational Mechanics, pp. 211--227, 2014, doi: 10.1007/978-3-642-39905-3_13.
    5. A. Elsheikh, S. Oladyshkin, W. Nowak, and M. Christie, “Probability of CO2 Leakage Using Rare Event Simulation,” ECMOR XIV-14th, vol. We, p. B25, 2014, doi: 10.3997/2214-4609.20141876.
    6. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition Dynamics,” Portugaliae Mathematica, vol. 70, pp. 319--344, 2014, doi: 10.4171/PM/1937.
    7. R. Enzenhöfer, T. Bunk, and W. Nowak, “Nine steps to risk-informed wellhead protection and management: A case study,” Ground Water, vol. 52, pp. 161--174, 2014, doi: 10.1111/gwat.12161.
    8. R. Eymard and V. Schleper, “Study of a numerical scheme for miscible two-phase flow in porous  media,” Numer. Meth. Part. D. E., vol. 30, pp. 723–748, 2014, doi: 10.1002/num.21823.
  6. F

    1. S. Farnel and A. Shiri, “Metadata for Research Data: Current Practices and Trends.,” in Dublin Core Conference, 2014, pp. 74–82, [Online]. Available: http://dblp.uni-trier.de/db/conf/dc/dc2014.html#FarnelS14.
    2. S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions  using a Discontinuous-Galerkin Method,” in ILASS�Europe, 26th European Conference on Liquid Atomization and  Spray Systems, 2014.
    3. C. Feller and C. Ebenbauer, “Barrier function based linear model predictive control with polytopic terminal sets,” Conference on Decision and Control, pp. 6683--6688, 2014, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7040438&tag=1.
    4. C. Feller and C. Ebenbauer, “Continuous-time linear MPC algorithms based on relaxed logarithmic barrier functions,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 2481–2488, 2014, doi: 10.3182/20140824-6-ZA-1003.01022.
    5. O. Fernandes, S. Frey, F. Sadlo, and T. Ertl, “Space-Time Volumetric Depth Images for In-Situ Visualization,” Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on, pp. 59--65, 2014, doi: 10.1109/LDAV.2014.7013205.
    6. A. Fischer and P. Eberhard, “Controlling vibrations of a cutting process using predictive control,” Computational Mechanics, vol. 54, no. 1, pp. 21--31, 2014, doi: 10.1007/s00466-014-1014-4.
    7. A. Fischer and P. Eberhard, “Controlling vibrations of a cutting process using predictive control,” Computational Mechanics, vol. 54, no. 1, pp. 21--31, 2014, doi: 10.1007/s00466-014-1014-4.
    8. M. Foulonneau and J. Riley, Metadata for Digital Resources : Implementation, Systems Design and Interoperability. 2014.
    9. S. Frey, F. Sadlo, K.-L. Ma, and T. Ertl, “Interactive Progressive Visualization with Space-Time Error Control,” IEEE Transactions on Visualization & Computer Graphics, 2014, doi: 10.1109/TVCG.2014.2346319.
    10. J. Fuhrmann, M. Ohlberger, and C. Rohde (Eds, “Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems,” FVCA 7, vol. 77/78, 2014, doi: 10.1007/978-3-319-05591-6.
    11. J. Fuhrmann, M. Ohlberger, and C. Rohde (Eds, “Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems,” FVCA 7, vol. 77/78, 2014, doi: 10.1007/978-3-319-05591-6.
    12. J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., Finite Volumes for Complex Applications VII Elliptic, Parabolic and  Hyperbolic Problems, FVCA 7, Berlin, June 2014, vol. Vol. 77/78. 2014.
    13. M. Funk, R. Boldt, B. Pfleging, M. Pfeiffer, N. Henze, and A. Schmidt, Representing indoor location of objects on wearable computers with head-mounted displays. 2014.
    14. M. Funk, A. Sahami Shirazi, N. Henze, and A. Schmidt, Using a touch-sensitive wristband for text entry on smart watches. 2014.
    15. M. Funk, A. Sahami Shirazi, N. Henze, and A. Schmidt, Using a touch-sensitive wristband for text entry on smart watches. 2014.
    16. F. Fusseis et al., “A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions,” Journal of Synchrotron Radiation, vol. 21, no. 1, pp. 251--253, 2014, doi: 10.1107/S1600577513026969.
  7. G

    1. H. Garikapati, “A PGD Based Preconditioner for Scalar Elliptic Problems,” 2014.
    2. F. D. Gaspoz and P. Morin, “Approximation classes for adaptive higher order finite element approximation,” Math. Comp., vol. 83, no. 289, pp. 2127--2160, 2014, doi: 10.1090/S0025-5718-2013-02777-9.
    3. J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation,” Arch. Ration. Mech. Anal., vol. 212, no. 1, pp. 241–281, 2014, doi: 10.1007/s00205-013-0677-x.
    4. J. Giesselmann and T. M�ller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    5. J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in Hyperbolic Problems: Theory, Numerics, Applications, 2014, pp. 599–606, [Online]. Available: https://aimsciences.org/books/am/AMVol8.html.
    6. J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent DG methods for the Navier-Stokes-Korteweg system,” Math. Comp., vol. 83, pp. 2071-- 2099, 2014, doi: http://dx.doi.org/10.1090/S0025-5718-2014-02792-0.
    7. J. Giesselmann and T. M�ller, “Geometric error of finite volume schemes for conservation laws on  evolving surfaces,” Numer. Math., vol. 128, no. 3, p. 489�516, 2014, doi: 10.1007/s00211-014-0621-5.
    8. J. Giesselmann and T. Pryer, “On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    9. J. Giesselmann, “A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity,” SIAM J. Math. Anal., vol. 46, no. 5, pp. 3518--3539, 2014, doi: 10.1137/140951710.
    10. E. Greifeneder, “‘I don’t trust my research data to stay there – I use Dropbox instead’. Ergebnisse qualitativer Online-Interviews mit Benutzern der virtuellen Forschungsumgebung LARM.fm.” 2014.
    11. M. Greis, F. Alt, N. Henze, and N. Memarovic, “I can wait a minute: uncovering the optimal delay time for pre-moderated user-generated content on public displays,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014, doi: 10.1145/2556288.2557186.
    12. L. Grüne et al., “Distributed and Networked Model Predictive Control,” Control Theory of Digitally Networked Dynamic Systems, pp. 111--167, 2014, doi: 10.1007/978-3-319-01131-8_4.
    13. D. Göddeke, D. Komatitsch, and M. Möller, “Finite and Spectral Element Methods on Unstructured Grids for Flow  and Wave Propagation Methods,” in Numerical Computations with GPUs, V. Kindratenko, Ed. Springer, 2014, pp. 183--206.
  8. H

    1. B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems,” IANS, University of Stuttgart, Germany, {S}im{T}ech Preprint, 2014. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938.
    2. B. Haasdonk and M. Ohlberger, “Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden  f�r effiziente und gesicherte numerische Simulation,” GAMM Rundbrief, vol. 2014, no. 1, pp. 6–13, 2014.
    3. V. Haenel and J. Plenz, Git : verteilte Versionsverwaltung für Code und Dokumente, 2. Aufl. München: Open Source Press, 2014.
    4. D. Haeufle, M. Günther, A. Bayer, and S. Schmitt, “Hill-type muscle model with serial damping and eccentric force--velocity relation,” Journal of Biomechanics, vol. 47, no. 6, pp. 1531--1536, 2014.
    5. D. Haeufle, M. Günther, G. Wunner, and S. Schmitt, “Quantifying control effort of biological and technical movements: an information-entropy-based approach,” Physical Review E, vol. 89, no. 1, p. 012716, 2014.
    6. M. Hahn and D. Karastoyanova, “Configurable and Collaborative Scientific Workflows,” Workshop on Simulation Technology: Systems for Data Intensive Simulations (SimTech(at)GI) in Conjunction with INFORMATIK 2014, pp. 125--136, 2014, [Online]. Available: https://www.gi.de/fileadmin/redaktion/2014_LNI/lni-p-232.pdf.
    7. M. Hahn, S. Gómez Su00e1ez, V. Andrikopoulos, D. Karastoyanova, and F. Leymann, “Development and Evaluation of a Multi-tenant Service Middleware PaaS Solution,” Proceedings of the 7th International Conference on Utility and Cloud Computing (UCC), pp. 278--287, 2014, doi: 10.1109/UCC.2014.37.
    8. M. Hahn, S. Gómez Su00e1ez, V. Andrikopoulos, D. Karastoyanova, and F. Leymann, “SCE^MT: A Multi-tenant Service Composition Engine,” Proceedings of the 7th International Conference on Service-Oriented Computing and Applications (SOCA), pp. 89--96, 2014, doi: 10.1109/SOCA.2014.9.
    9. N. Hansen, F. Heller, N. Schmid, and W. F. van Gunsteren, “Time-averaged order parameter restraints in molecular dynamics simulations,” Journal of Biomolecular NMR, vol. 60, pp. 169--187, 2014, doi: 10.1007/s10858-014-9866-7.
    10. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on $C^k-1,1$-manifolds,” Mathematische Nachrichten, vol. 287, pp. 48--69, 2014, doi: 10.1002/mana.201200053.
    11. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on $C^k-1,1$-manifolds,” Mathematische Nachrichten, vol. 287, pp. 48--69, 2014, doi: 10.1002/mana.201200053.
    12. F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, and K. Vukojevic-Haupt, “Service Composition for REST,” Proceedings of the 18th IEEE International EDOC Conference (EDOC 2014), 2014, doi: 10.1109/EDOC.2014.24.
    13. F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, and K. Vukojevic-Haupt, “Service Composition for REST,” Proceedings of the 18th IEEE International EDOC Conference (EDOC 2014), 2014, doi: 10.1109/EDOC.2014.24.
    14. M. Heene, C. Kowitz, and D. Pflüger, “Load Balancing for Massively Parallel Computations with the Sparse Grid Combination Technique,” Advances in Parallel Computing, vol. 25, pp. 574--583, 2014, doi: 10.3233/978-1-61499-381-0-574.
    15. M. Heene, C. Kowitz, and D. Pflüger, “Load Balancing for Massively Parallel Computations with the Sparse Grid Combination Technique,” Advances in Parallel Computing, vol. 25, pp. 574--583, 2014, doi: 10.3233/978-1-61499-381-0-574.
    16. Y. Heider, O. Avci, B. Markert, and W. Ehlers, “The dynamic response of fluid-saturated porous materials with application to seismically induced soil liquefaction,” Soil Dynamics and Earthquake Engineering, vol. 63, pp. 120--137, 2014, doi: 10.1016/j.soildyn.2014.03.017.
    17. T. Heidlauf and O. Röhrle, “A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements,” Frontiers in Physiology, vol. 5, no. 498, pp. 1--14, 2014, doi: 10.3389/fphys.2014.00498.
    18. T. Heidlauf and O. Röhrle, “A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements,” Frontiers in Physiology, vol. 5, no. 498, pp. 1--14, 2014, doi: 10.3389/fphys.2014.00498.
    19. O. A. Hickey, C. Holm, and J. Smiatek, “Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: The importance of hydrodynamic interactions,” The Journal of Chemical Physics, vol. 140, no. 16, p. 164904, 2014, doi: 10.1063/1.4872366.
    20. O. A. Hickey, C. Holm, and J. Smiatek, “Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: The importance of hydrodynamic interactions,” The Journal of Chemical Physics, vol. 140, no. 16, p. 164904, 2014, doi: 10.1063/1.4872366.
    21. F. Hindenlang, G. Gassner, and C.-D. Munz, “Improving the accuracy of discontinuous Galerkin schemes at boundary layers,” International Journal of Numerical Methods in Fluids, vol. 75, pp. 385--402, 2014, doi: 10.1002/fld.3898.
    22. M. Hintermüller and A. Langer, “Adaptive Regularization for Parseval Frames in Image Processing.” SFB-Report No. 2014-014, 2014, [Online]. Available: http://people.ricam.oeaw.ac.at/a.langer/publications/SFB-Report-2014-014.pdf.
    23. M. Hintermüller and A. Langer, “Surrogate Functional Based Subspace Correction Methods for Image  Processing,” in Domain Decomposition Methods in Science and Engineering XXI, Springer, 2014, pp. 829--837.
    24. M. Hlawatsch, M. Burch, and D. Weiskopf, “Visual Adjacency Lists for Dynamic Graphs,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 11, pp. 1590--1603, 2014, doi: 10.1109/TVCG.2014.2322594.
    25. M. Hlawatsch, F. Sadlo, H. Jang, and D. Weiskopf, “Pathline Glyphs,” Computer Graphics Forum, vol. 33, no. 2, pp. 497--506, 2014, doi: 10.1111/cgf.12335.
    26. M. Hlawatsch, F. Sadlo, H. Jang, and D. Weiskopf, “Pathline Glyphs,” Computer Graphics Forum, vol. 33, no. 2, pp. 497--506, 2014, doi: 10.1111/cgf.12335.
    27. N. C. Hong, “Minimal information for reusable scientific software,” in Proceedings of the 2nd Workshop on Working towards Sustainable Scientific Software: Practice and Experience, 2014.
    28. P. Hupp, R. Jacob, M. Heene, D. Pflüger, and M. Hegland, “Global Communication Schemes for the Sparse Grid Combination Technique,” Advances in Parallel Computing, vol. 25, pp. 564--573, 2014, doi: 10.3233/978-1-61499-381-0-564.
    29. K. Häberle and W. Ehlers, “Constitutive relation for the mass transfer during a gas-liquid phase transition in porous media,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 445--446, 2014, doi: 10.1002/pamm.201410210.
    30. K. Häberle and W. Ehlers, “Constitutive relation for the mass transfer during a gas-liquid phase transition in porous media,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 445--446, 2014, doi: 10.1002/pamm.201410210.
    31. D. Häufle, M. Günther, A. Bayer, and S. Schmitt, Hill-type muscle model with serial damping and eccentric force-velocity relation. 2014.
    32. D. Häufle, M. Günther, G. Wunner, and S. Schmitt, Quantifying control effort of biological and technical movements: an information entropy based approach. 2014.
    33. D. Häufle, M. Günther, G. Wunner, and S. Schmitt, Quantifying control effort of biological and technical movements: an information entropy based approach. 2014.
  9. I

    1. G. Inci, A. Arnold, A. Kronenburg, and R. Weeber, “Modeling Nanoparticle Agglomeration using Local Interactions,” Aerosol Science and Technology, vol. 48, p. 842, 2014, doi: 10.1080/02786826.2014.932942.
    2. G. Inci, A. Arnold, A. Kronenburg, and R. Weeber, “Modeling Nanoparticle Agglomeration using Local Interactions,” Aerosol Science and Technology, vol. 48, p. 842, 2014, doi: 10.1080/02786826.2014.932942.
  10. K

    1. B. Kabil and C. Rohde, “The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 107, no. 0, pp. 63–75, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.na.2014.04.003.
    2. N. Karajan, D. Otto, S. Oladyshkin, and W. Ehlers, “Application of the Polynomial Chaos Expansion to Approximate the Homogenised Response of the Intervertebral Disc,” Biomechanics and Modeling in Mechanobiology, vol. 13, pp. 1065--1080, 2014, doi: 10.1007/s10237-014-0555-y.
    3. G. K. Karch, F. Sadlo, D. Weiskopf, and T. Ertl, “Streamline-Based Concepts for Space-Time Analysis of 2D Time-Dependent Flow,” Proceedings of International Symposium on Flow Visualization (ISFV16), 2014, [Online]. Available: http://www.isfv.org/.
    4. S. Kaulmann, B. Flemisch, B. Haasdonk, K.-A. Lie, and M. Ohlberger, “The Localized Reduced Basis Multiscale method for two-phase flows  in porous media,” arXiv.org, 2014, [Online]. Available: http://arxiv.org/abs/1405.2810v1.
    5. R. Kazakeviciute-Makovska, A. O. Aydin, and H. Steeb, “Characterization of shape memory polymer Estane (TM) by means of dynamic mechanical thermal analysis technique,” Smart Materials Research, p. 250258, 2014, doi: 10.1155/2014/250258.
    6. R. Kazakeviciute-Makovska, M. Heuchel, K. Kratz, and H. Steeb, “Universal relations in linear thermoelastic theories of thermally-responsive shape memory polymers,” International Journal of Engineering Science, vol. 82, pp. 140--158, 2014, doi: 10.1016/j.ijengsci.2014.05.009.
    7. L. Kazaz, “Black Box Model Order Reduction of Nonlinear Systems with Kernel  and Discrete Empirical Interpolation.” 2014.
    8. M.-A. Keip and K. Bhattacharya, “A phase-field approach for the modeling of nematic liquid crystal elastomers,” PAMM, vol. 14, no. 1, pp. 577--578, 2014, doi: 10.1002/pamm.201410276.
    9. M.-A. Keip, P. Steinmann, and J. Schröder, “Computer Methods in Applied Mechanics and Engineering,” Computer Methods in Applied Mechanics and Engineering, vol. 278, pp. 62--79, 2014, doi: 10.1016/j.cma.2014.04.020.
    10. M.-A. Keip and K. Bhattacharya, “A phase-field approach for the modeling of nematic liquid crystal elastomers,” PAMM, vol. 14, no. 1, pp. 577--578, 2014, doi: 10.1002/pamm.201410276.
    11. J. A. Kieser, M. G. Farland, H. Jack, M. Farella, Y. Wang, and O. Röhrle, “The role of oral soft tissues in swallowing function: what can tongue pressure tell us?,” Australian Dental Journal, vol. 59, pp. 155--161, 2014, doi: 10.1111/adj.12103.
    12. J. A. Kieser, M. G. Farland, H. Jack, M. Farella, Y. Wang, and O. Röhrle, “The role of oral soft tissues in swallowing function: what can tongue pressure tell us?,” Australian Dental Journal, vol. 59, pp. 155--161, 2014, doi: 10.1111/adj.12103.
    13. A. Kissinger, V. Noack, S. Knopf, D. Scheer, W. Konrad, and H. Class, “Characterization of reservoir conditions for CO2 storage using a dimensionless Gravitational Number applied to the North German Basin,” Sustainable Energy Technologies and Assessments, vol. 7, pp. 209--220, 2014, doi: 10.1016/j.seta.2014.06.003.
    14. D. Koch and W. Ehlers, “Modelling and simulation of heat exchange and transport in a geothermal plant,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 447--448, 2014, doi: 10.1002/pamm.201410211.
    15. D. Koch and W. Ehlers, “Modelling and simulation of heat exchange and transport in a geothermal plant,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 447--448, 2014, doi: 10.1002/pamm.201410211.
    16. J. Koch and W. Nowak, “A method for implementing Dirichlet and third-type boundary conditions in PTRW simulations,” Water Resources Research, vol. 50, no. 2, pp. 1374--1395, 2014, doi: 10.1002/2013WR013796.
    17. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Analysis of Optimal Control Problems with Control  Constraints,” SIAM J. Control Optim., vol. 52(3), p. 1832�1861. (30 pages), 2014, doi: http://dx.doi.org/10.1137/130909251.
    18. M. Kohr, C. Pintea, and W. L. Wendland, “Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds,” Communications in Pure and Applied Analysis, vol. 13, pp. 1–28, 2014, doi: 03934/cpaa.2013.13.
    19. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains,” J. Math. Fluid Mechanics, vol. 16, pp. 595–830, 2014.
    20. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains,” in Complex Analysis and Potential Theory with Applications, A. G. T. Aliev Azerogly and S. V. Rogosin, Eds. Cambridge Sci. Publ., 2014, pp. 111–124.
    21. H. Kosow and C. Leon, “Die Szenariotechnik als Methode der Experten- und Stakeholdereinbindung.,” In: Niederberger M, Wassermann S (Hrsg.): Methoden der Experten- und Stakeholdereinbindung in der sozialwissenschaftlichen Forschung., 2014, doi: 10.1007/978-3-658-01687-6_11.
    22. A. Kramer, V. Stathopoulus, M. Girolami, and N. Radde, “MCMC_CLIB: An advanced MCMC sampling package for ode models with highly correlated parameters,” Bioinformatics, 2014, doi: 10.1093/bioinformatics/btu429.
    23. A. Kramer, B. Calderhead, and N. Radde, “Hamiltonian Monte Carlo Methods for Efficient Parameter Estimation in Steady State Dynamical Systems,” BMC Bioinformatics, vol. 15, no. 1, p. 253, 2014, doi: 10.1186/1471-2105-15-253.
    24. K. Kratzer, J. T. Berryman, A. Taudt, J. Zeman, and A. Arnold, “The Flexible Rare Event Sampling Harness System (FRESHS),” Computer Physics Communications, vol. 185, no. 7, pp. 1875--1885, 2014, doi: 10.1016/j.cpc.2014.03.013.
    25. K. Kratzer, J. T. Berryman, A. Taudt, J. Zeman, and A. Arnold, “The Flexible Rare Event Sampling Harness System (FRESHS),” Computer Physics Communications, vol. 185, no. 7, pp. 1875--1885, 2014, doi: 10.1016/j.cpc.2014.03.013.
    26. A. N. Krishnamoorthy, C. Holm, and J. Smiatek, “Local Water Dynamics around Antifreeze Protein Residues in the Presence of Osmolytes: The Importance of Hydroxyl and Disaccharide Groups,” The Journal of Physical Chemistry B, vol. 118, no. 40, pp. 11613--11621, 2014, doi: 10.1021/jp507062r.
    27. K. Kuritz and F. Allgöwer, “Determining cell-cycle induced variations from snap-shot data sets,” in Conference on Systems Biology of Mammalian Cells, Berlin, 2014.
    28. P. S. Kurzeja and H. Steeb, “Variational formulation of oscillating fluid clusters and oscillator-like classification. II. Numerical study of pinned liquid clusters,” Physics of Fluids, vol. 26, no. 4, p. 042107, 2014, doi: 10.1063/1.4871489.
    29. P. S. Kurzeja and H. Steeb, “Variational formulation of oscillating fluid clusters and oscillator-like classification. I. Theory,” Physics of Fluids, vol. 26, no. 4, p. 042106, 2014, doi: 10.1063/1.4871486.
    30. J. Kästner, “Theory and Simulation of Atom Tunneling in Chemical Reactions,” WIREs Comput. Mol. Sci., vol. 4, p. 158, 2014, doi: 10.1002/wcms.1165.
    31. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” Finite Volumes for Complex Applications VII Methods and Theoretical Aspects, vol. 77, pp. 353--361, 2014, doi: 10.1007/978-3-319-05684-5_34.
    32. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, vol. 77, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 353–361.
  11. L

    1. C. Linder and A. Raina, “A homogenization approach for nonwoven materials based on fiber undulations and reorientation,” Journal of the Mechanics and Physics of Solids, vol. 65, pp. 12--34, 2014, doi: 10.1016/j.jmps.2013.12.011.
    2. C. Linder and A. Raina, “A homogenization approach for nonwoven materials based on fiber undulations and reorientation,” Journal of the Mechanics and Physics of Solids, vol. 65, pp. 12--34, 2014, doi: 10.1016/j.jmps.2013.12.011.
    3. M. Löhning, M. Reble, J. Hasenauer, S. Yu, and F. Allgöwer, “Model predictive control using reduced order models: Guaranteed stability for constrained linear systems,” Journal of Process Control, vol. 24, no. 11, pp. 1647--1659, 2014, doi: 10.1016/j.jprocont.2014.07.006.
  12. M

    1. I. Maier and B. Haasdonk, “A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems,” Applied Numerical Mathematics, vol. 78, pp. 31--48, 2014, doi: 10.1016/j.apnum.2013.12.001.
    2. I. Maier and B. Haasdonk, “A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems,” Applied Numerical Mathematics, vol. 78, pp. 31--48, 2014, doi: 10.1016/j.apnum.2013.12.001.
    3. R. E. Mayer, The Cambridge Handbook of Multimedia Learning. Cambridge University Press, 2014.
    4. J. Menzel, P. Weil, and S. Y. Nussbeck, “Minimierung des Dokumentationsaufwandes für die medizinische Grundlagenforschung mithilfe eines elektronischen Laborbuches: Aufgezeigt am Beispiel eines Western Blot Metadatenschemata,” 2014, doi: 10.3205/14gmds120.
    5. S. Micciulla et al., “Layer-by-layer formation of oligoelectrolyte multilayers: a combined experimental and computational study,” Soft Materials, vol. 12, p. 1, 2014, doi: 10.1080/1539445X.2014.930046.
    6. C. Miehe, S. Mauthe, and F. E. Hildebrand, “Variational gradient plasticity at finite strains. Part III: Local-global updates and regularization techniques in multiplicative plasticity for single crystals,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 735--762, 2014, doi: 10.1016/j.cma.2013.08.022.
    7. C. Miehe and L. Schänzel, “Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure,” Journal of the Mechanics and Physics of Solids, vol. 65, pp. 93--113, 2014, doi: 10.1016/j.jmps.2013.06.007.
    8. C. Miehe, F. Welschinger, and F. Aldakheel, “Variational gradient plasticity at finite strains. Part II: Local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 704--734, 2014, doi: 10.1016/j.cma.2013.07.015.
    9. C. Miehe, S. Mauthe, and H. Ulmer, “Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids,” International Journal for Numerical Methods in Engineering, vol. 99, pp. 737--762, 2014, doi: 10.1002/nme.4700.
    10. C. Miehe, F. E. Hildebrand, and L. Böger, “Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 470, 2014, doi: 10.1098/rspa.2013.0641.
    11. C. Miehe, “Variational gradient plasticity at finite strains. Part I: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 677--703, 2014, doi: 10.1016/j.cma.2013.03.014.
    12. C. Miehe and L. Schänzel, “Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure,” Journal of the Mechanics and Physics of Solids, vol. 65, pp. 93--113, 2014, doi: 10.1016/j.jmps.2013.06.007.
    13. E. Minina and A. Arnold, “Induction of entropic segregation: the first step is the hardest,” Soft Matter, vol. 10, no. 31, pp. 5836--5841, 2014, doi: 10.1039/C4SM00286E.
    14. D. Molnar, P. Binkele, A. Mora, R. Mukherjee, B. Nestler, and S. Schmauder, “Molecular Dynamics virtual testing of thermally aged Fe-Cu microstructures obtained from multiscale simulations,” Computational Materials Science, vol. 81, pp. 466--470, 2014, doi: 10.1016/j.commatsci.2013.08.057.
    15. J. M. Montenbruck, H.-B. Dürr, C. Ebenbauer, and F. Allgöwer, “Extremum Seeking and Obstacle Avoidance on the Special Orthogonal Group,” Proc. 19th IFAC World Congress, pp. 8229--8234, 2014, doi: 10.3182/20140824-6-ZA-1003.01446.
    16. J. M. Montenbruck and F. Allgöwer, “Pinning Capital Stock and Gross Investment Rate in Competing Rationally Managed Firms,” Proc. 19th IFAC World Congress, pp. 10719--10724, 2014, doi: 10.3182/20140824-6-ZA-1003.01449.
    17. K. Mosthaf, R. Helmig, and D. Or, “Modeling and analysis of evaporation processes from porous media on the REV scale,” Water Resources Research, vol. 50, pp. 1059--1079, 2014, doi: 10.1002/2013WR014442.
    18. F. Mwalongo, M. Krone, G. K. Karch, M. Becher, G. Reina, and T. Ertl, “Visualization of Molecular Structures using State-of-the-Art Techniques in WebGL,” International Conference on 3D Web Technology (Web3D 14), pp. 133--141, 2014, doi: 10.1145/2628588.2628597.
    19. M. A. Müller and F. Allgöwer, “Distributed economic MPC: a framework for cooperative control problems,” Proc. of the 19th IFAC World Congress, pp. 1029--1034, 2014, doi: 10.3182/20140824-6-ZA-1003.01177.
    20. M. A. Müller, D. Angeli, and F. Allgöwer, “On necessity and robustness of dissipativity in economic model predictive control,” IEEE Transactions on Automatic Control, vol. 60, no. 6, pp. 1671--1676, 2014, doi: 10.1109/TAC.2014.2361193.
    21. M. A. Müller and F. Allgöwer, “Distributed MPC for consensus and synchronization,” J. M. Maestre, R. Negenborn, editors, Distributed MPC Made Easy, pp. 89--100, 2014, doi: 10.1007/978-94-007-7006-5.
    22. M. A. Müller, D. Angeli, and F. Allgöwer, “On the performance of economic model predictive control with self-tuning terminal cost,” Journal of Process Control, vol. 24, no. 8, pp. 1179--1186, 2014, doi: 10.1016/j.jprocont.2014.05.009.
    23. M. A. Müller, D. Angeli, and F. Allgöwer, “Transient average constraints in economic model predictive control,” Automatica, vol. 50, no. 11, pp. 2943--2950, 2014, doi: 10.1016/j.automatica.2014.10.024.
    24. M. A. Müller, D. Angeli, F. Allgöwer, R. Amrit, and J. B. Rawlings, “Convergence in economic model predictive control with average constraints,” Automatica, vol. 50, no. 12, pp. 3100--3111, 2014, doi: 10.1016/j.automatica.2014.10.059.
    25. M. A. Müller, D. Angeli, and F. Allgöwer, “Performance analysis of economic MPC with self-tuning terminal cost,” Proc. of the American Control Conference (ACC), pp. 2845--2850, 2014, doi: 10.1109/ACC.2014.6858962.
    26. M. A. Müller and F. Allgöwer, “Distributed economic MPC: a framework for cooperative control problems,” Proc. of the 19th IFAC World Congress, pp. 1029--1034, 2014, doi: 10.3182/20140824-6-ZA-1003.01177.
    27. M. A. Müller and F. Allgöwer, “Distributed MPC for consensus and synchronization,” J. M. Maestre, R. Negenborn, editors, Distributed MPC Made Easy, pp. 89--100, 2014, doi: 10.1007/978-94-007-7006-5.
    28. M. A. Müller, D. Angeli, F. Allgöwer, R. Amrit, and J. B. Rawlings, “Convergence in economic model predictive control with average constraints,” Automatica, vol. 50, no. 12, pp. 3100--3111, 2014, doi: 10.1016/j.automatica.2014.10.059.
    29. S. Müthing, P. Bastian, D. Göddeke, and D. Ribbrock, “Node-level performance engineering for an advanced density driven  porous media flow solver,” in 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany, 2014, pp. 109--113.
  13. N

    1. S. Neumann, J. Hasenauer, N. Pollak, and P. Scheurich, “Dominant negative effects of TNF-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes,” JBC, vol. 289, no. 23, pp. 16576--87, 2014, doi: 10.1074/jbc.M114.559468.
    2. W. Nowak, F. Bode, and M. Loschko, “A multi-objective optimization concept for risk-based early-warning monitoring networks in well catchments,” Procedia Environmental Sciences, vol. 25, pp. 191--198, 2014, doi: 10.1016/j.proenv.2015.04.026.
    3. W. Nowak, F. Bode, and M. Loschko, “A multi-objective optimization concept for risk-based early-warning monitoring networks in well catchments,” Procedia Environmental Sciences, vol. 25, pp. 191--198, 2014, doi: 10.1016/j.proenv.2015.04.026.
    4. S. Y. Nussbeck, P. Weil, J. Menzel, B. Marzec, K. Lorberg, and B. Schwappach, “The laboratory notebook in the 21st century: The electronic laboratory notebook would enhance good scientific practice and increase research productivity,” EMBO reports, 2014, doi: 10.15252/embr.201338358.
  14. O

    1. B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, and U. Ramachandran, “RECEP: Selection-based Reuse for Distributed Complex Event Processing,” Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems (DEBS 2014), 2014, doi: 10.1145/2611286.2611297.
    2. B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, and U. Ramachandran, “RECEP: Selection-based Reuse for Distributed Complex Event Processing,” Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems (DEBS 2014), 2014, doi: 10.1145/2611286.2611297.
    3. D. Otto and W. Ehlers, “Model reduction of porous-media problems using proper orthogonal decomposition,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 451--452, 2014, doi: 10.1002/pamm.201410213.
    4. D. Otto and W. Ehlers, “Model reduction of porous-media problems using proper orthogonal decomposition,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 451--452, 2014, doi: 10.1002/pamm.201410213.
  15. P

    1. L. Peer, A. Green, and E. Stephenson, “Committing to Data Quality Review,” International Journal of Digital Curation, vol. 9, no. 1, pp. 263--291, 2014, doi: 10.2218/ijdc.v9i1.317.
    2. D. Philipp et al., “MapGENIE: Grammar-enhanced Indoor Map Construction from Crowd-sourced Data,” Proceedings of the 12th IEEE International Conference on Pervasive Computing and Communications (PerCom 2014), 2014, doi: 10.1109/PerCom.2014.6813954.
    3. D. Philipp et al., “MapGENIE: Grammar-enhanced Indoor Map Construction from Crowd-sourced Data,” Proceedings of the 12th IEEE International Conference on Pervasive Computing and Communications (PerCom 2014), 2014, doi: 10.1109/PerCom.2014.6813954.
    4. B. Poppinga, A. Sahami Shirazi, N. Henze, W. Heuten, and S. Boll, “Understanding shortcut gestures on mobile touch devices,” Proceedings of the 16th international conference on Human-computer interaction with mobile devices & services, 2014, doi: 10.1145/2628363.2628378.
  16. Q

    1. B. Quintal, R. Jänicke, J. G. Rubino, H. Steeb, and K. Holliger, “Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks,” GEOPHYSICS, vol. 79, no. 5, pp. WB15--WB24, 2014, doi: 10.1190/geo2013-0409.1.
  17. R

    1. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” Advances in Computational Mathematics, 2014, doi: 10.1007/s10444-014-9367-y.
    2. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” Advances in Computational Mathematics, 2014, doi: 10.1007/s10444-014-9367-y.
    3. M. Redeker, “Adaptive two-scale models for processes with evolution of microstructures,” University of Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2014.
    4. P. Reimann and H. Schwarz, “Simulation Workflow Design Tailor-Made for Scientists,” 26th International Conference on Scientific and Statistical Database Management (SSDBM 2014), 2014, doi: 10.1145/2618243.2618291.
    5. P. Reimann, H. Schwarz, and B. Mitschang, “Data Patterns to Alleviate the Design of Scientific Workflows Exemplified by a Bone Simulation,” 26th International Conference on Scientific and Statistical Database Management (SSDBM 2014), 2014, doi: 10.1145/2618243.2618279.
    6. P. Reimann, H. Schwarz, and B. Mitschang, “A Pattern Approach to Conquer the Data Complexity in Simulation Workflow Design,” On the Move to Meaningful Internet Systems: OTM 2014 Conferences, pp. 21--38, 2014, doi: 10.1007/978-3-662-45563-0_2.
    7. P. Reimann, T. Waizenegger, M. Wieland, and H. Schwarz, “Datenmanagement in der Cloud für den Bereich Simulationen und Wissenschaftliches Rechnen,” 2. Workshop Data Management in the Cloud auf der 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 2014, [Online]. Available: http://subs.emis.de/LNI/Proceedings/Proceedings232/article176.html.
    8. P. Reimann, H. Schwarz, and B. Mitschang, “A Pattern Approach to Conquer the Data Complexity in Simulation Workflow Design,” On the Move to Meaningful Internet Systems: OTM 2014 Conferences, pp. 21--38, 2014, doi: 10.1007/978-3-662-45563-0_2.
    9. M. Reiter, U. Breitenbücher, O. Kopp, and D. Karastoyanova, “Quality of Data Driven Simulation Workflows,” Journal of Systems Integration, vol. 5, no. 1, 2014, [Online]. Available: http://www.si-journal.org/index.php/JSI/article/view/189.
    10. J. Renner and H. Steeb, “Modeling of Fluid Transport in Geothermal Research,” in Handbook of Geomathematics, W. Freeden, M. Z. Nashed, and T. Sonar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1443–1505.
    11. H. Riedmann, B. Kniesner, M. Frey, and C.-D. Munz, “Modeling of combustion and flow in a single element GH2/GO2 combustor,” CEAS Space Journal, vol. 6, pp. 47--59, 2014, doi: 10.1007/s12567-013-0056-3.
    12. R. Rockenfeller, M. Guenther, S. Schmitt, and T. Goetz, Comparing different muscle activation dynamics using sensitivity analysis. 2014.
    13. D. Roehm, S. Kesselheim, and A. Arnold, “Hydrodynamic interactions slow down crystallization of soft colloids,” Soft Matter, vol. 10, no. 30, pp. 5503--5509, 2014, doi: 10.1039/C4SM00686K.
    14. D. Roehm, S. Kesselheim, and A. Arnold, “Hydrodynamic interactions slow down crystallization of soft colloids,” Soft Matter, vol. 10, no. 30, pp. 5503--5509, 2014, doi: 10.1039/C4SM00686K.
    15. D. Rosato and C. Miehe, “Dissipative ferroelectricity at finite strains. Variational principles, constitutive assumptions and algorithms,” International Journal of Engineering Science, vol. 74, pp. 162--189, 2014, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0020722513001262.
    16. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions,” 2014, [Online]. Available: http://www.mathematik.uni-stuttgart.de/preprints/downloads/2015/2015-003.pdf.
    17. I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts,” in Finite Volumes for Complex Applications VII - Elliptic, Parabolic  and Hyperbolic Problems, FVCA 7, 2014, vol. 78, pp. 703--711, doi: 10.1007/978-3-319-05591-6_70.
    18. I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium  systems,” J. Comput. Phys., vol. 272, pp. 327--342, 2014, doi: 10.1016/j.jcp.2014.04.036.
  18. S

    1. F. Sadlo, G. K. Karch, and T. Ertl, “Topological Features in Time-Dependent Advection-Diffusion Flow,” Topological Methods in Data Analysis and Visualization III (Proceedings of TopoInVis 2013), 2014, doi: 10.1007/978-3-319-04099-8_14.
    2. F. Sadlo, G. K. Karch, and T. Ertl, “Topological Features in Time-Dependent Advection-Diffusion Flow,” Topological Methods in Data Analysis and Visualization III (Proceedings of TopoInVis 2013), 2014, doi: 10.1007/978-3-319-04099-8_14.
    3. R. M. Schaich, M. A. Müller, and F. Allgöwer, “A distributed model predictive control scheme for networks with communication failure,” Proc. of the 19th IFAC World Congress, pp. 12004--12009, 2014, doi: 10.3182/20140824-6-ZA-1003.01507.
    4. K. Scharnowski, M. Krone, G. Reina, T. Kulschewski, J. Pleiss, and T. Ertl, “Comparative Visualization of Molecular Surfaces Using Deformable Models,” Computer Graphics Forum, vol. 33, no. 3, pp. 191--200, 2014, doi: 10.1111/cgf.12375.
    5. D. Scheer and O. Renn, “Public Perception of Geoengineering and Its Consequences for Public Debate,” Climatic Change, vol. 125/3–4, pp. 305--318, 2014, doi: 10.1007/s10584-014-1177-1.
    6. D. Scheer and W. Konrad, “Partizipative Modellierung im Versuchslabor: Das CO2BRIM-Projekt,” DIALOGIK (Hrsg.): Innovativ und partizipativ: Einblicke in die Arbeit von DIALOGIK, Stuttgart, pp. 67--77, 2014, [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2014/9217/pdf/AB030_DIALOGIK.pdf.
    7. D. Scheer and O. Renn, “Public Perception of Geoengineering and Its Consequences for Public Debate,” Climatic Change, vol. 125/3–4, pp. 305--318, 2014, doi: 10.1007/s10584-014-1177-1.
    8. M. Schenke and W. Ehlers, “On the simulation of soils under rapid cyclic loading conditions,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 417--418, 2014, doi: 10.1002/pamm.201410196.
    9. M. Schenke and W. Ehlers, “On the simulation of soils under rapid cyclic loading conditions,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 417--418, 2014, doi: 10.1002/pamm.201410196.
    10. C. W. Scherer, H?- and H2-synthesis for nested interconnections: A direct state-space approach by linear matrix inequalities. MTNS 2014, 2014.
    11. K. S. Schmid, J. Gross, and R. Helmig, “Chemical osmosis in two-phase flow and salinity-dependent capillary pressures in rocks with microporosity,” Water Resources Research, vol. 50, pp. 763--789, 2014, doi: 10.1002/2013WR013848.
    12. A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic regulator,” Proceedings of MATHMOD 2015, vol. 8, pp. 713--718, 2014, doi: 10.1016/j.ifacol.2015.05.016.
    13. G. S. Schmidt, D. Wilson, F. Allgöwer, and J. Moehlis, “Selective averaging with application to phase reduction and neural control,” Nonlinear Theory and Its Applications, IEICE, vol. 5, no. 4, pp. 424--435, 2014, doi: 10.1587/nolta.5.424.
    14. G. S. Schmidt, C. Ebenbauer, and F. Allgöwer, “Output Regulation for Control Systems on SE(n) : A Separation Principle Based Approach,” Automatic Control, vol. 59, no. 11, pp. 3057--3062, 2014, doi: 10.1109/TAC.2014.2320310.
    15. S. Schneegass, F. Steimle, A. Bulling, F. Alt, and A. Schmidt, “SmudgeSafe: Geometric Image Transformations for Smudge-resistant User Authentication,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014, doi: 10.1145/2632048.2636090.
    16. T. Schwindt, “latexcheat-de – A LaTeX cheat sheet, in German.” 2014, [Online]. Available: https://ctan.org/pkg/latexcheat-de.
    17. A. Schöll, C. Braun, M. Daub, G. Schneider, and H.-J. Wunderlich, “Adaptive Parallel Simulation of a Two-Timescale Model for Apoptotic Receptor-Clustering on GPUs,” 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 424--431, 2014, doi: 10.1109/BIBM.2014.6999195.
    18. A. Schöll, C. Braun, M. Daub, G. Schneider, and H.-J. Wunderlich, “Adaptive Parallel Simulation of a Two-Timescale Model for Apoptotic Receptor-Clustering on GPUs,” 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 424--431, 2014, doi: 10.1109/BIBM.2014.6999195.
    19. A. Schöniger, T. Wöhling, L. Samaniego, and W. Nowak, “Model selection on solid ground: rigorous comparison of nine ways to evaluate Bayesian evidence,” Water Resources Research, vol. 50, no. 12, pp. 9484--9513, 2014, doi: 10.1002/2014WR016062.
    20. A. Schöniger, T. Wöhling, L. Samaniego, and W. Nowak, “Model selection on solid ground: rigorous comparison of nine ways to evaluate Bayesian evidence,” Water Resources Research, vol. 50, no. 12, pp. 9484--9513, 2014, doi: 10.1002/2014WR016062.
    21. M. Sega, S. S. Kantorovich, C. Holm, and A. Arnold, “Communication: Kinetic and pairing contributions in the dielectric spectra of electrolyte solutions,” The Journal of Chemical Physics, vol. 140, no. 21, p. 211101, 2014, doi: 10.1063/1.4880237.
    22. G. S. Seyboth and F. Allgöwer, “Synchronized model matching: a novel approach to cooperative control of non-linear multi-agent systems,” Proc. 19th IFAC World Congress, pp. 1985--1990, 2014, doi: 10.3182/20140824-6-ZA-1003.00983.
    23. G. S. Seyboth, J. Wu, J. Qin, C. Yu, and F. Allgöwer, “Collective Circular Motion of Unicycle Type Vehicles with Non-identical Constant Velocities,” IEEE Transactions on Control of Network Systems, vol. 1, no. 2, pp. 167--176, 2014, doi: 10.1109/TCNS.2014.2316995.
    24. A. Shirazi, Y. Abdelrahman, N. Henze, S. Schneegass, M. Khalilbeigiy, and A. Schmidt, “Exploiting Thermal Reflection for Interactive Systems,” CHI 14 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3483--3492, 2014, doi: 10.1145/2556288.2557208.
    25. A. Shirazi, Y. Abdelrahman, N. Henze, S. Schneegass, M. Khalilbeigiy, and A. Schmidt, “Exploiting Thermal Reflection for Interactive Systems,” CHI 14 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3483--3492, 2014, doi: 10.1145/2556288.2557208.
    26. R. Sivanesapillai, H. Steeb, and A. Hartmaier, “Transition of effective hydraulic properties from low to high Reynolds number flow in porous media,” Geophysical Research Letters, vol. 41, no. 14, pp. 4920--4928, 2014, doi: 10.1002/2014GL060232.
    27. J. Smiatek, A. Wohlfarth, and C. Holm, “The solvation and ion condensation properties for sulfonated polyelectrolytes in different solvents-a computational study,” New Journal of Physics, vol. 16, no. 2, p. 025001, 2014, doi: 10.1088/1367-2630/16/2/025001.
    28. J. Smiatek, A. Wohlfarth, and C. Holm, “The solvation and ion condensation properties for sulfonated polyelectrolytes in different solvents-a computational study,” New Journal of Physics, vol. 16, no. 2, p. 025001, 2014, doi: 10.1088/1367-2630/16/2/025001.
    29. A. Sorg and M. Bischoff, “Adaptive discrete-continuous modeling of evolving discontinuities,” Engineering Computations, vol. 31, no. 7, pp. 1305--1320, 2014, doi: 10.1108/EC-03-2013-0072.
    30. M. Staehle, “Anisotrope Diffusion zur Bildfilterung,” 2014.
    31. H. Steeb, P. S. Kurzeja, and S. M. Schmalholz, “Wave propagation in unsaturated porous media,” Acta Mechanica, vol. 225, no. 8, pp. 2435--2448, 2014, doi: 10.1007/s00707-014-1135-z.
    32. V. Stodden and S. Miguez, “Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research,” Journal of Open Research Software, vol. 2, no. 1, 2014, doi: 10.5334/jors.ay.
    33. Z. Sun, A. Dadalau, and A. Verl, “Generation of rotation matrix for assembly models with arbitrary angle constraints,” International Journal of Advanced Manufacturing Technology, vol. 74, pp. 563--568, 2014, doi: 10.1007/s00170-014-5907-3.
  19. T

    1. Q. Tang and P. Eberhard, “Relative observation for multi-robot collaborative localisation based on multi-source signals,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 26, no. 4, pp. 571--591, 2014, doi: 10.1080/0952813X.2014.930597.
    2. P. Tempel, “SimTech Status Seminar 2014 - Status Update: Improved Modeling of Cables for Kinematics and Dynamics of Light-weight Robots.” Dec. 12, 2014.
  20. U

    1. Umweltbundesamt, Ed., “Dokumentation des Fachgesprächs „Nachhaltige Software“ am 28.11.2014.” 2014, [Online]. Available: http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/dokumentation_fachgespraech_nachhaltige_software.pdf.
  21. V

    1. J. Veenman and C. W. Scherer, “IQC-synthesis with general dynamic multipliers,” Int. J. Robust Nonlin., 2014, doi: 10.1002/rnc.3042.
    2. J. Veenman and C. W. Scherer, “A synthesis framework for robust gain-scheduling controllers,” Automatica, 2014, doi: 10.1016/j.automatica.2014.10.002.
    3. J. Veenman and C. W. Scherer, “A synthesis framework for robust gain-scheduling controllers,” Automatica, 2014, doi: 10.1016/j.automatica.2014.10.002.
    4. C. Vinci, J. Renner, and H. Steeb, “A hybrid-dimensional approach for an efficient numerical modeling of the hydro-mechanics of fractures,” Water Resources Research, vol. 50, no. 2, pp. 1616--1635, 2014, doi: 10.1002/2013WR014154.
    5. C. Vinci, J. Renner, and H. Steeb, “On attenuation of seismic waves associated with flow in fractures,” Geophysical Research Letters, vol. 41, no. 21, pp. 7515--7523, 2014, doi: 10.1002/2014GL061634.
    6. K. Vukojevic-Haupt, F. Haupt, D. Karastoyanova, and F. Leymann, “Replicability of Dynamically Provisioned Scientific Experiments,” Proceedings of the 7th IEEE International Conference on Service Oriented Computing & Applications (SOCA 2014), 2014, doi: 10.1109/SOCA.2014.54.
    7. K. Vukojevic-Haupt, F. Haupt, D. Karastoyanova, and F. Leymann, “Service Selection for On-demand Provisioned Services,” Proceedings of the 18th IEEE International EDOC Conference (EDOC 2014), 2014, doi: 10.1109/EDOC.2014.25.
  22. W

    1. A. Wagner and W. Ehlers, “On the multi-component modelling of human brain tissue to survey clinical interventions,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 125--126, 2014, doi: 10.1002/pamm.201410050.
    2. R. Weeber, Simulation of novel magnetic materials in the field of soft matter. 2014.
    3. A. Weiß, D. Karastoyanova, D. Molnar, and S. Schmauder, “Coupling of Existing Simulations using Bottom-up Modeling of Choreographies,” Workshop on Simulation Technology: Systems for Data Intensive Simulations (SimTech@GI) in Conjunction with INFORMATIK 2014, vol. 101, p. 112, 2014, [Online]. Available: https://www.gi.de/fileadmin/redaktion/2014_LNI/lni-p-232.pdf.
    4. A. Weiß and D. Karastoyanova, “A Life Cycle for Coupled Multi-Scale, Multi-Field Experiments Realized through Choreographies,” Proceedings of the 18th IEEE International EDOC Conference, pp. 234--241, 2014, doi: 10.1109/EDOC.2014.39.
    5. A. Weiß and D. Karastoyanova, “Enabling coupled multi-scale, multi-field experiments through choreographies of data-driven scientific simulations,” Computing, pp. 1--29, 2014, doi: 10.1007/s00607-014-0432-7.
    6. A. Weiß and D. Karastoyanova, “A Life Cycle for Coupled Multi-Scale, Multi-Field Experiments Realized through Choreographies,” Proceedings of the 18th IEEE International EDOC Conference, pp. 234--241, 2014, doi: 10.1109/EDOC.2014.39.
    7. A. Weiß and D. Karastoyanova, “Enabling coupled multi-scale, multi-field experiments through choreographies of data-driven scientific simulations,” Computing, pp. 1--29, 2014, doi: 10.1007/s00607-014-0432-7.
    8. W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” Math. Methods Appl. Sci., vol. 37 (13), pp. 1924–1955, 2014.
    9. G. Wilson et al., “Best practices for scientific computing,” PLoS Biol, vol. 12, no. 1, 2014, doi: 10.1371/journal.pbio.1001745.
    10. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,” International Journal for Numerical Methods in Engineering, vol. 101, pp. 1--28, 2014, doi: 10.1002/nme.4767.
    11. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A-posteriori error estimation for DEIM reduced nonlinear dynamical systems,” SIAM Journal on Scientific Computing, vol. 36, pp. A311–A338, 2014, doi: 10.1137/120899042.
    12. D. Wittwar, “Empirische Interpolation and Anwendung zur Numerischen Integration.” 2014.
    13. P. Wo?niak, L. Lischke, B. Schmidt, S. Zhao, and M. Fjeld, Thaddeus: a dual device interaction space for exploring information visualisation. 2014.
    14. P. Wo?niak, L. Lischke, B. Schmidt, S. Zhao, and M. Fjeld, Thaddeus: a dual device interaction space for exploring information visualisation. 2014.
    15. K. Worthmann, M. Reble, L. Grüne, and F. Allgöwer, “The Role of Sampling for Stability and Performance in Unconstrained Nonlinear Model Predictive Control,” SIAM Journal on Control and Optimization, vol. 52, no. 1, pp. 581--605, 2014, doi: 10.1137/12086652X.
    16. J. Wu, V. Ugrinovskii, and F. Allgöwer, “Cooperative estimation for synchronization of heterogeneous multi-agent systems using relative information,” Proc. IFAC World Congress, pp. 4662--4667, 2014, doi: 10.3182/20140824-6-ZA-1003.01938.
  23. Y

    1. S. Yu, M. Reble, H. Chen, and F. Allgöwer, “Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control,” Automatica, vol. 50, no. 9, pp. 2269--2280, 2014, doi: 10.1016/j.automatica.2014.07.014.
    2. S. Yu, M. Reble, H. Chen, and F. Allgöwer, “Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control,” Automatica, vol. 50, no. 9, pp. 2269--2280, 2014, doi: 10.1016/j.automatica.2014.07.014.
  24. Z

    1. S. Zeng, S. Waldherr, and F. Allgöwer, “An inverse problem of tomographic type in population dynamics,” Decision and Control, pp. 1643--1648, 2014, doi: 10.1109/CDC.2014.7039635.
    2. S. Zinatbakhsh and W. Ehlers, “Staggered solution of fluid-porous-media interaction using the method of local Lagrange multipliers,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 473--474, 2014, doi: 10.1002/pamm.201410224.
Zum Seitenanfang