1. A

    1. A. Abdulle, A. Barth, and C. Schwab, “Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs,” Multiscale Model. Simul., vol. 11, pp. 1033--1070, 2013, doi: 10.1137/120894725.
    2. F. Alt, S. Schneegass, M. Girgis, and A. Schmidt, “Cognitive Effects of Interactive Public Display Applications,” Proceedings of the 2Nd ACM International Symposium on Pervasive Displays, 2013, doi: 10.1145/2491568.2491572.
    3. F. Alt, B. Pfleging, and A. Schmidt, “Sonify - A Platform for the Sonification of Text Messages,” Mensch & Computer 2013 - Tagungsband, pp. 149--158, 2013, doi: 10.1524/9783486781229.149.
    4. D. Amsallem, B. Haasdonk, and G. Rozza, “A Conference within a Conference for MOR Researchers,” SIAM News, vol. 46, no. 6, p. 8, 2013, [Online]. Available: http://www.siam.org/news/news.php?id=2089.
    5. V. Andrikopoulos, S. Gómez Saez, D. Karastoyanova, and A. Weiß, “Towards Collaborative, Dynamic & Complex Systems,” Proceedings of the 6th International Conference on Service-Oriented Computing and Applications, pp. 241--245, 2013, doi: 10.1109/SOCA.2013.35.
    6. A. Arnold et al., “Comparison of scalable fast methods for long-range interactions,” Physical Review E, vol. 88, no. 6, p. 063308, 2013, doi: 10.1103/PhysRevE.88.063308.
    7. A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz, and C. Holm, “Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts,” Entropy, vol. 15, no. 11, pp. 4569--4588, 2013, doi: 10.3390/e15114569.
    8. A. Arnold et al., Espresso 3.1: Molecular dynamics software for coarse-grained models. Springer, 2013.
    9. M. Ashraf, S. Oladyshkin, and W. Nowak, “Geological storage of CO2: global sensitivity analysis and risk assessment using arbitrary polynomial chaos expansion,” International Journal of Greenhouse Gas Control, vol. 19, pp. 704--719, 2013, doi: 10.1016/j.ijggc.2013.03.023.
  2. B

    1. P. Baier, F. Dürr, and K. Rothermel, “Efficient Distribution of Sensing Queries in Public Sensing Systems,” Proceedings of the 10th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2013), 2013, doi: 10.1109/MASS.2013.11.
    2. P. Baier, F. Dürr, and K. Rothermel, “Opportunistic Position Update Protocols for Mobile Devices,” Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2013), 2013, doi: 10.1145/2493432.2493439.
    3. W. Bangerth and T. Heister, “What makes computational open source software libraries successful?,” Computational Science & Discovery, vol. 6, no. 1, p. 015010, 2013, doi: 10.1088/1749-4699/6/1/015010.
    4. A. Barth, A. Lang, and C. Schwab, “Multilevel Monte Carlo method for parabolic stochastic partial  differential equations,” BIT, vol. 53, no. 1, pp. 3--27, 2013, doi: 10.1007/s10543-012-0401-5.
    5. A. Barth and A. Lang, “L^p and almost sure convergence of a Milstein scheme for stochastic  partial differential equations,” Stochastic Process. Appl., vol. 123, no. 5, pp. 1563--1587, 2013, doi: 10.1016/j.spa.2013.01.003.
    6. F. Bayer, G. Notarstefano, and F. Allgöwer, “A Projected SQP Method for Nonlinear Optimal Control with Quadratic Convergence,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 6463--6468, 2013, doi: 10.1109/CDC.2013.6760912.
    7. F. Bayer, M. Bürger, and F. Allgöwer, “Discrete-time Incremental ISS: A Framework for Robust NMPC,” Proceedings of the 12th IEEE Euorpean Control Conference, pp. 2068--2073, 2013, [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669322.
    8. S. Bechhofer et al., “Why linked data is not enough for scientists,” Future Generation Computer Systems, vol. 29, no. 2, pp. 599–611, 2013, doi: https://doi.org/10.1016/j.future.2011.08.004.
    9. SP. Benson and J. Pleiss, “Incomplete mixing versus clathrate-like structures: a molecular view on hydrophobicity in methanol-water mixtures,” J Mol Model, vol. 19, pp. 3427--3436, 2013, doi: 10.1007/s00894-013-1857-1.
    10. S. Bidier and W. Ehlers, “Particle simulation of granular media and homogenisation towards continuum quantities,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 575--576, 2013, doi: 10.1002/pamm.201310269.
    11. C. L. Bird, C. Willoughby, and J. G. Frey, “Laboratory notebooks in the digital era: the role of ELNs in record keeping for chemistry and other sciences,” Chem. Soc. Rev., vol. 42, no. 20, pp. 8157–8175, 2013, doi: 10.1039/C3CS60122F.
    12. T. Bissinger, “Verfahren zur Stabilen Kerninterpolation.” 2013.
    13. W. Blajer, R. Seifried, and K. Ko?odziejczyk, “Diversity of Servo-Constraint Problems for Underactuated Mechanical Systems: A Case Study Illustration,” Solid State Phenomena, vol. 198, pp. 473--482, 2013, doi: 10.4028/www.scientific.net/SSP.198.473.
    14. C. Breindl, M. Chaves, and F. Allgöwer, “A linear reformulation of Boolean optimization problems and structure identi?cation of gene regulation networks,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 733--738, 2013, doi: 10.1109/CDC.2013.6759969.
    15. F. D. Brunner, M. Lazar, and F. Allgöwer, “An Explicit Solution to Constrained Stabilization via Polytopic Tubes,” 52nd IEEE Conference on Decision and Control, pp. 7721--7727, 2013, doi: 10.1109/CDC.2013.6761115.
    16. F. D. Brunner, M. Lazar, and F. Allgöwer, “Stabilizing Linear Model Predictive Control: On the Enlargement of the Terminal Set,” Proceedings of the European Control Conference (2013), pp. 511--517, 2013, [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6669436.
    17. M. Bürger, D. Zelazo, and F. Allgöwer, “Hierarchical Clustering of Dynamical Networks Using a Saddle-Point Analysis,” IEEE Transactions on Automatic Control, vol. 58, pp. 113--124, 2013, doi: 10.1109/TAC.2012.2206695.
    18. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clari,” Zamm, 2013, doi: 10.1002/zamm.201200174.
  3. C

    1. L. Candela, D. Castelli, and P. Pagano, “Virtual Research Environments: An Overview and a Research Agenda,” Data Science Journal, vol. 12, pp. GRDI75–GRDI81, 2013, doi: 10.2481/dsj.GRDI-013.
    2. M. Castagné, “Consider the Source: The Value of Source Code to Digital Preservation Strategies,” vol. 2, no. 2, 2013, [Online]. Available: https://scholarworks.sjsu.edu/slissrj/vol2/iss2/5/.
    3. A. Chanda, A. Fischer, P. Eberhard, and S. K. Dwivedy, “Stability analysis of a thin-walled cylinder in turning operation using the semi- discretization method,” Acta Mechanica Sinica, 2013, doi: 10.1007/s10409-013-0097-z.
    4. J. Chaudenson et al., “Stability analysis of pulse-modulated systems with an application to space launchers,” 19th IFAC Symposium on Automatic Control in Aerospace, 2013, doi: 10.3182/20130902-5-DE-2040.00082.
    5. F. S. Chirigati, M. Troyer, D. E. Shasha, and J. Freire, “A Computational Reproducibility Benchmark.,” IEEE Data Eng. Bull., vol. 36, no. 4, pp. 54–59, 2013, [Online]. Available: http://dblp.uni-trier.de/db/journals/debu/debu36.html#ChirigatiTSF13.
    6. G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “SYBL: An Extensible Language for Controlling Elasticity in Cloud Applications,” in 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, 2013, pp. 112–119, doi: 10.1109/CCGrid.2013.42.
  4. D

    1. M. Daub, “An Appropriate Bounded Invariant Region for a Bistable Reaction-Diffusion Model of the Caspase-3/8 Feedback Loop,” Bulletin of Mathematical Biology, vol. 75, no. 11, pp. 2271--2288, 2013, doi: 10.1007/s11538-013-9892-8.
    2. S. De Marchi and G. Santin, “A new stable basis for radial basis function interpolation,” J. Comput. Appl. Math., vol. 253, pp. 1--13, 2013, doi: 10.1016/j.cam.2013.03.048.
    3. M. Dihlmann and B. Haasdonk, “Certified Nonlinear Parameter Optimization with Reduced Basis Surrogate  Models,” PAMM, Proc. Appl. Math. Mech., Special Issue: 84th Annual Meeting  of the International Association of Applied Mathematics and Mechanics  (GAMM), Novi Sad 2013; Editors: L. Cvetkovic, T. Atanackovic and  V. Kostic, vol. 13, no. 1, pp. 3–6, 2013, doi: doi: 10.1002/pamm.201310002.
    4. M. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems,” Computational Optimization and Applications, 2013, doi: 10.1007/s10589-014-9697-1.
    5. M. Dihlmann and B. Haasdonk, “Certifed Nonlinear Parameter Optimization with Reduced Basis Surrogate Models,” Proc. Appl. Math. Mech., vol. 13, pp. 3--6, 2013, doi: 10.1002/pamm.201310002.
    6. Y. Dorozhko, K. Kratzer, Y. Yudin, A. Arnold, C. W. Glass, and M. Resch, Rare Event Sampling using the Science Experimental Grid Laboratory. Civil Comp Press, 2013.
    7. M. Dumbser, U. Iben, and C.-D. Munz, “Efficient implementation of high order unstructured WENO schemes for cavitating flows,” Computers & Fluids, vol. 86, pp. 141--168, 2013, doi: 10.1016/j.compfluid.2013.07.011.
    8. H. Dürr, M. Stakonvic, K. Johansson, and C. Ebenbauer, “Lie bracket approximation of extremum seeking systems,” Automatica, vol. 49, p. 1538?1552, 2013, doi: 10.1016/j.automatica.2013.02.016.
  5. E

    1. C. Eck, M. Kutter, A.-M. Sändig, and C. Rohde, “A two scale model for liquid phase epitaxy with elasticity: An iterative procedure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 93, pp. 745--761, 2013, doi: 10.1002/zamm.201200238.
    2. Ch. Eck, M. Kutter, A.-M. Sändig, and Ch. Rohde, “A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, no. 10–11, pp. 745--761, 2013, doi: 10.1002/zamm.201200238.
    3. W. Ehlers and A. Wagner, “Constitutive and Computational Aspects in Tumour Therapies of Multiphasic Brain Tissue,” G. A. Holzapfel & E. Kuhl (eds.): Computer Models in Biomechanics, vol. 0, pp. 263--276, 2013, doi: 10.1007/978-94-007-5464-5_19.
    4. W. Ehlers and A. Wagner, “Multi-component Modelling of Human Brain Tissue,” Computer Methods in Biomechanics and Biomedical Engineering, 2013, doi: 10.1080/10255842.2013.853754.
    5. W. Ehlers, S. Zinatbakhsh, and B. Markert, “Stability analysis of finite difference schemes revisited: A study of decoupled solution strategies for coupled multi-field problems,” International Journal for Numerical Methods in Engineering, vol. 94, pp. 758--786, 2013, doi: 10.1002/nme.4480.
    6. K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid  scale,” in ILASS�Europe, 25th European Conference on Liquid Atomization and  Spray Systems, 2013.
    7. J. Elming, A. Johannsen, S. Klerke, E. Lapponi, H. Martinez Alonso, and A. Søgaard, “Down-stream effects of tree-to-dependency conversions,” in Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, 2013, pp. 617–626, [Online]. Available: http://www.aclweb.org/anthology/N13-1070.
    8. M. Ertl, N. Roth, G. Brenn, H. Gomaa, and B. Weigand, “Simulations and Experiments on Shape Oscillations of Newtonian and Non-Newtonian Liquid Droplets,” Proceedings of the ILASS - Europe 2013, 2013, [Online]. Available: http://ilasseurope.org/events/25th-ilass-europe/.
  6. F

    1. M. Falk, M. Krone, and T. Ertl, “Atomistic Visualization of Mesoscopic Whole-Cell Simulations using Ray-Casted Instancing,” Computer Graphics Forum, vol. 32, no. 8, pp. 195--206, 2013, doi: 10.1111/cgf.12197.
    2. S. Fechter, F. Jägle, and V. Schleper, “Exact and approximate Riemann solvers at phase boundaries,” Computers & Fluids, vol. 75, pp. 112--126, 2013, doi: 10.1016/j.compfluid.2013.01.024.
    3. J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, “Greedy-based Approximation of Frequency-weighted Gramian Matrices  for Model Reduction in Multibody Dynamics,” ZAMM, vol. 93, no. 8, pp. 501–519, 2013, doi: 10.1002/zamm.201200014.
    4. C. Feller and C. Ebenbauer, “Ein zeitkontinuierlicher Optimierungsalgorithmus für die modellprädiktive Regelung linearer Systeme,” Tagungsband zum 18. Steirischen Seminar ueber Regelungstechnik und Prozessautomatisierung, pp. 1--28, 2013, [Online]. Available: http://portal.tugraz.at/portal/page/portal/TU_Graz/Einrichtungen/Institute/Homepages/i4430/Veranstaltungen/Retzhof.
    5. C. Feller and C. Ebenbauer, “A barrier function based continuous-time algorithm for linear model predictive control,” Proceedings of  the 12th IEEE Euorpean Control Conference, pp. 19--26, 2013, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669710&tag=1.
    6. D. Fericean, T. Grosan, M. Kohr, and W. L. Wendland, “Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications,” Math. Methods Appl. Sci., vol. 36, pp. 1631–1648, 2013, doi: 10.1002/mma.2716.
    7. D. Fericean and W. L. Wendland, “Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n,” ZAMM, vol. 93, pp. 762–776, 2013, doi: 10.1002/zamm.20100185.
    8. A. Fischer, P. Eberhard, and J. Ambr?sio, “Parametric flexible multibody model for material removal during turning,” Journal of Computational and Nonlinear Dynamics, vol. 9, 2013, doi: 10.1115/1.4025283.
    9. C. Fischer, K.-P. Fritz, P. Eberhard, and H. Kück, “Investigation and design of an impact actuated micro shift valve,” Archive of Applied Mechanics, vol. 83, pp. 1171--1192, 2013, doi: 10.1007/s00419-013-0741-x.
    10. S. Frey, F. Sadlo, and T. Ertl, “Explorable Volumetric Depth Images from Raycasting,” SIBGRAPI 13 Proceedings of the 2013 XXVI Conference on Graphics, Patterns and Images, pp. 123--130, 2013, doi: 10.1109/SIBGRAPI.2013.26.
    11. S. Frey, F. Sadlo, and T. Ertl, “Mesh Generation From Layered Depth Images Using Isosurface Raycasting,” Lecture Notes in Computer Science, vol. 8034, pp. 373--383, 2013, doi: 10.1007/978-3-642-41939-3_36.
    12. M. Funk, A. Schmidt, and L. E. Holmquist, Antonius: a mobile search engine for the physical world. 2013.
  7. G

    1. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Unstructured  Grid Finite Element Geometric Multigrid solvers with strong smoothers  based on Sparse Approximate Inverses,” Computers & Fluids, vol. 80, pp. 327--332, 2013, doi: 10.1016/j.compfluid.2012.01.025.
    2. J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in PAMM 13, 2013, pp. 363–364, doi: 10.1002/pamm.201310177.
    3. J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” in S�minaire Laurent Schwartz � EDP et applications, 2013, [Online]. Available: http://slsedp.cedram.org/cedram-bin/article/SLSEDP_2012-2013____A14_0.pdf.
    4. T. Gorius, R. Seifried, and P. Eberhard, “Approximate End-Effector Tracking Control of Flexible Multibody Systems Using Singular Perturbations,” Journal of Computational and Nonlinear Dynamics, vol. 9, no. 1, 2013, doi: 10.1115/1.4025635.
    5. L. Guibault and A. Wiebe, Safe to be open. Study on the protection of research data and recommendations für access and usage. Universitätsverlag Göttingen, 2013.
    6. D. Göddeke et al., “Energy efficiency vs. performance of the numerical solution of PDEs:  an application study on a low-power ARM-based cluster,” Journal of Computational Physics, vol. 237, pp. 132--150, 2013, doi: 10.1016/j.jcp.2012.11.031.
    7. S. Göttlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl, “Modeling, simulation and validation of material flow on conveyor belts,” Applied Mathematical Modelling, 2013, doi: 10.1016/j.apm.2013.11.039.
    8. S. Göttlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl, “Modeling, simulation and validation of material flow on conveyor  belts,” Appl. Math. Modell., vol. 38, no. 13, pp. 3295–3313, 2013, [Online]. Available: http://dx.doi.org/10.1016/j.apm.2013.11.039.
  8. H

    1. B. Haasdonk, K. Urban, and B. Wieland, “Reduced basis methods for parametrized partial differential equations  with stochastic influences using the Karhunen Loeve expansion,” SIAM/ASA J. Unc. Quant., vol. 1, pp. 79–105, 2013.
    2. B. Haasdonk, K. Urban, and B. Wieland, “Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Lou00e8ve Expansion,” SIAM/ASA Journal on Uncertainty Quantification, vol. 1, pp. 79--105, 2013, doi: 10.1137/120876745.
    3. B. Haasdonk, “Convergence Rates of the POD-Greedy Method,” M2AN, vol. 47, pp. 859--873, 2013, doi: 10.1051/m2an/2012045.
    4. J. D. Halverson et al., “ESPResSo++: A modern multiscale simulation package for soft matter systems,” Computer Physics Communications, vol. 184, no. 4, pp. 1129--1149, 2013, doi: 10.1016/j.cpc.2012.12.004.
    5. T. Heidlauf and O. Röhrle, “On the treatment of active behaviour in continuum muscle mechanics,” PAMM, vol. 13, pp. 71--72, 2013, doi: 10.1002/pamm.201310031.
    6. T. Heidlauf and O. Röhrle, “Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library OpenCMISS,” Computational and Mathematical Methods in Medicine, vol. 2013, pp. 1--14, 2013, doi: 10.1155/2013/517287.
    7. C.-J. Heine, C. A. M�ller, M. A. Peter, and K. G. Siebert, “Multiscale adaptive simulations of concrete carbonation taking into  account the evolution of the microstructure,” in Poromechanics, 2013, vol. V, p. 1964�1972, doi: http://dx.doi.org/10.1061/9780784412992.232.
    8. S. Heinrich et al., “Determinants of robustness in spindle assembly checkpoint signalling,” Nature Cell Biology, vol. 15, pp. 1328--1339, 2013, doi: 10.1038/ncb2864.
    9. R. Helmig, B. Flemisch, M. Wolff, A. Ebigbo, and H. Class, “Model coupling for multiphase flow in porous media,” Advances in Water Resources, vol. 51, pp. 52--66, 2013, doi: 10.1016/j.advwatres.2012.07.003.
    10. M. Hintermüller and A. Langer, “Subspace Correction Methods for a Class of Nonsmooth and Nonadditive  Convex Variational Problems with Mixed L\^1/L\^2 Data-Fidelity  in Image Processing,” SIAM Journal on Imaging Sciences, vol. 6, no. 4, pp. 2134--2173, 2013, [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/120894130.
    11. M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Predictability-Based Adaptive Mouse Interaction and Zooming for Visual Flow Exploration,” International Journal for Uncertainty Quantification, vol. 3, pp. 225--240, 2013, doi: 10.1615/Int.J.UncertaintyQuantification.2012003943.
    12. M. Hlawatsch, F. Sadlo, M. Burch, and D. Weiskopf, “Scale-Stack Bar Charts,” Computer Graphics Forum, vol. 32, no. 3, pp. 181--190, 2013, doi: 10.1111/cgf.12105.
    13. M. Hofacker and C. Miehe, “A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns,” International Journal for Numerical Methods in Engineering, vol. 93, pp. 276--301, 2013, doi: 10.1002/nme.4387.
    14. K. Häberle and W. Ehlers, “Carbon-dioxide storage and phase transitions: on the numerical modelling of injection and leakage,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 195--196, 2013, doi: 10.1002/pamm.201310093.
  9. J

    1. J. Jeong, P. Sardini, H. Ramézani, M. Siitari-Kauppi, and H. Steeb, “Modeling of the induced chemo-mechanical stress through porous cement mortar subjected to CO2: Enhanced micro-dilatation theory and 14C-PMMA method,” Computational Materials Science, vol. 69, pp. 466--480, 2013, doi: 10.1016/j.commatsci.2012.11.031.
  10. K

    1. N. Karajan, O. Röhrle, W. Ehlers, and S. Schmitt, “Linking continuous and discrete intervertebral disc models through homogenisation,” Biomechanics and Modeling in Mechanobiology, vol. 12, no. 3, pp. 453--466, 2013, doi: 10.1007/s10237-012-0416-5.
    2. D. Karastoyanova and V. Andrikopoulos, “eScienceSWaT -- Towards an eScience Software Engineering Methodology,” Enterprise Distributed Object Computing Conference Workshops, pp. 229--238, 2013, doi: 10.1109/EDOCW.2013.32.
    3. G. K. Karch et al., “Visualization of Piecewise Linear Interface Calculation,” Proceedings of Pacific Visualization Symposium (PacificVis) 2013, pp. 121--128, 2013, doi: 10.1109/PacificVis.2013.6596136.
    4. S. Kaulmann and B. Haasdonk, “Online Greedy Reduced Basis Construction Using Dictionaries,” in VI International Conference on Adaptive Modeling and Simulation (ADMOS  2013), Lisbon, Portugal, 2013, pp. 365--376, [Online]. Available: http://www.lacan.upc.edu/admos2013/Proceedings.html.
    5. R. Kazakevičiūtė-Makovska, S. Mogharebi, H. Steeb, G. Eggeler, and K. Neuking, “A Critical Assessment of Experimental Methods for Determining the Dynamic Mechanical Characteristics of Shape Memory Polymers,” Advanced Engineering Materials, vol. 15, no. 8, pp. 732--739, 2013, doi: 10.1002/adem.201200341.
    6. T. Kempka et al., “A Dynamic Flow Simulation Code Intercomparison based on the Revised Static Model of the Ketzin Pilot Site,” Energy Procedia, vol. 40, pp. 418--427, 2013, doi: 10.1016/j.egypro.2013.08.048.
    7. F. Kissling and K. H. Karlsen, “On the singular limit of a two-phase flow equation with heterogeneities  and dynamic capillary pressure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, p. n/a--n/a, 2013, doi: 10.1002/zamm.201200141.
    8. F. Kissling, “Analysis and Numerics for Nonclassical Wave Fronts in Porous Media,” Universit�t Stuttgart, 2013.
    9. D. A. Kistemaker, A. J. K. V. Soest, J. D. Wong, I. Kurtzer, and P. L. Gribble, “Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback,” Journal of Neurophysiology, vol. 109, no. 4, pp. 1126--1139, 2013, doi: 10.1152/jn.00751.2012.
    10. M. Klinkigt, R. Weeber, S. Kantorovich, and C. Holm, “Cluster formation in systems of shifted-dipole particles,” Soft Matter, 2013, doi: 10.1039/C2SM27290C.
    11. J. Knittel, A. Sahami Shirazi, N. Henze, and A. Schmidt, “Utilizing contextual information for mobile communication,” CHI 13 Extended Abstracts on Human Factors in Computing Systems, 2013, doi: 10.1145/2468356.2468601.
    12. D. Koch and W. Ehlers, “On heat exchange and heat transport in a geothermal plant,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 201--202, 2013, doi: 10.1002/pamm.201310096.
    13. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for pseudodifferential Brinkman operators  on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian  manifolds,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, pp. 446–458, 2013, doi: 10.1002/zamm.201100194.
    14. M. Kohr, C. Pintea, and W. L. Wendland, “Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators,” International Mathematics Research Notices, vol. 2013 (19), pp. 4499–4588, 2013, doi: 10.1093/imnr/run999.
    15. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations  on Euclidean Lipschitz Domains,” Potential Analysis, vol. 38, pp. 1123–1171, 2013, doi: 10.1007/s.11118-012-9310-0.
    16. K. Kratzer, A. Arnold, and R. J. Allen, “Automatic, optimized interface placement in forward flux sampling simulations,” The Journal of Chemical Physics, vol. 138, no. 16, p. 164112, 2013, doi: 10.1063/1.4801866.
    17. D. Kreplin, “Adaptive Reduzierte Basis Methoden f�r Evolutionsprobleme.” 2013.
    18. I. Kröker, “Stochastic models for nonlinear convection-dominated flows,” Universit�t Stuttgart, 2013.
    19. M. Kuberek, “Die Forschungsdaten-Infrastruktur der TU Berlin,” Bibliotheksdienst, vol. 47, pp. 833–846, 2013, doi: 10.1515/bd-2013-0096.
    20. K. Kuritz, N. Radde, and M. Olayioye, “Multi-scale modeling reveals membrane domain variations as mechanism behind augmented ErbB receptor activation,” in 14th International Conference on Systems Biology, Copenhagen, 2013.
    21. J. Kästner, “The Path Length Determines the Tunneling Decay of Substituted Carbenes,” Chem. Eur. J., vol. 19, p. 8207, 2013, doi: 10.1002/chem.201203651.
    22. T. Köppl, B. I. Wohlmuth, and R. Helmig, “Reduced one-dimensional modelling and numerical simulation for mass transport in fluids,” International Journal for Numerical Methods in Fluids, vol. 72, pp. 135--156, 2013, doi: 10.1002/fld.3728.
    23. M. K�ppel, “Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with  a Two Mesh Concept,” Diplomarbeit, Institut f�r Wasserbau, Universit�t Stuttgart, Zusammenarbeit mit  Pomdapi INRIA Rocquencourt . Paris, France., 2013.
  11. L

    1. A. Langer, S. Osher, and C.-B. Schönlieb, “Bregmanized domain decomposition for image restoration,” Journal of Scientific Computing, vol. 54, no. 2–3, pp. 549--576, 2013, [Online]. Available: http://link.springer.com/article/10.1007/s10915-012-9603-x.
    2. T. Lebo et al., “PROV-O: The PROV Ontology,” 2013, [Online]. Available: https://www.w3.org/TR/prov-o/.
    3. P. Leube, F. P. J. de Barros, W. Nowak, and R. Rajagopal, “Towards optimal allocation of computer resources: Trade-offs between uncertainty quantification, discretization and model reduction,” Environmental Modelling & Software, vol. 50, pp. 97--107, 2013, doi: 10.1016/j.envsoft.2013.08.008.
    4. C. Linder and A. Raina, “A strong discontinuity approach on multiple levels to model solids at failure,” Computer Methods in Applied Mechanics and Engineering, vol. 253, pp. 558--583, 2013, doi: 10.1016/j.cma.2012.07.005.
    5. J. Ludwig and H. Enke, Eds., Leitfaden zum Forschungsdaten-Management. Handreichungen aus dem WissGrid-Projekt. 2013.
    6. J. Ludwig, Leitfaden zum Forschungsdaten-Management. Glückstadt: Verlag Werner Hülsbusch, 2013.
  12. M

    1. J. Mabuma, B. Markert, and W. Ehlers, “Towards a Standardised Method for Visualisation of Stress Distribution at the Cartilage-Bone Interface,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 69--70, 2013, doi: 10.1002/pamm.201310030.
    2. N. M. Mascarenhas and J. Kästner, “How maltose influences structural changes to bind to maltose binding protein: Results from umbrella sampling simulation,” Proteins, vol. 81, p. 185, 2013, doi: 10.1002/prot.24174.
    3. C. Miehe, F. Aldakheel, and S. Mauthe, “Mixed variational principles and robust finite element implementations of gradient plasticity at small strains,” International Journal for Numerical Methods in Engineering, vol. 94, pp. 1037--1074, 2013, doi: 10.1002/nme.4486.
    4. P. Missier, K. Belhajjame, and J. Cheney, “The W3C PROV Family of Specifications for Modelling Provenance Metadata,” in Proceedings of the 16th International Conference on Extending Database Technology, Genoa, Italy, 2013, pp. 773--776, doi: 10.1145/2452376.2452478.
    5. S. Mogharebi, R. Kazakeviciute-Makovska, H. Steeb, G. Eggeler, and K. Neuking, “On the cyclic material stability of shape memory polymer,” Materialwissenschaft und Werkstofftechnik, vol. 44, no. 6, pp. 521--526, 2013, doi: 10.1002/mawe.201300023.
    6. J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Practical Cluster Synchronization of Heterogeneous Systems on Graphs with Acyclic Topology,” Proc. 52nd IEEE Conference on Decision and Control, pp. 692--697, 2013, doi: 10.1109/CDC.2013.6759962.
    7. J. M. Montenbruck, G. S. Seyboth, and F. Allgöwer, “Practical and Robust Synchronization of Systems with Additive Linear Uncertainties,” Proc. 9th IFAC Symposium on Nonlinear Control Systems, pp. 743--748, 2013, doi: 10.3182/20130904-3-FR-2041.00134.
    8. M. Mottahedi, S. Röck, and A. Verl, “Simulation-Based Parameter Identification for Online Condition Monitoring of Spindle Nut Drive,” Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives, pp. 193--205, 2013, doi: 10.1007/978-3-642-34471-8_16.
    9. S. Moutari, M. Herty, A. Klein, M. Oeser, V. Schleper, and G. Steinaur, “Modeling road traffic accidents using macroscopic second-order models  of traffic flow,” IMA Journal of Applied Mathematics, vol. 78, no. 5, pp. 1087–1108, 2013, doi: doi: 10.1093/imamat/hxs012.
    10. M. A. Müller and F. Allgöwer, “Economic model predictive control with self-tuning terminal cost,” European Journal of Control, vol. 19, pp. 408--416, 2013, doi: 10.1016/j.ejcon.2013.05.019.
    11. M. A. Müller, D. Angeli, and F. Allgöwer, “Economic model predictive control with self-tuning terminal weight,” Proceedings of the European Control Conference (ECC), pp. 2044--2049, 2013, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669271.
    12. M. A. Müller, D. Angli, and F. Allgöwer, “On convergence of averagely constrained economic MPC and necessity of dissipativity for optimal steady-state operation,” Proceedings of the American Control Conference (ACC), pp. 3147--3152, 2013, doi: 10.1109/ACC.2013.6580314.
    13. M. A. Müller, D. Liberzon, and F. Allgöwer, “Norm-controllability, or how a nonlinear system responds to large inputs,” Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems (NOLCOS), pp. 104--109, 2013, doi: 10.3182/20130904-3-FR-2041.00052.
    14. M. A. Müller, D. Angeli, and F. Allgöwer, “Economic model predictive control with transient average constraints,” Proceedings of the 52nd IEEE Conference on Decision and Control (CDC), pp. 5119--5124, 2013, doi: 10.1109/CDC.2013.6760693.
    15. P. Müller, R. Kazakeviciute-Makovska, and H. Steeb, “On strain measurements in soft (rubbery) and stiff (glassy) polymeric materials,” Kautschuk Gummi Kunststoffe: KGK, vol. 4–13, pp. 48–54, 2013.
  13. N

    1. H. Neuroth, N. Lossau, and A. Rapp, Eds., Evolution der Informationsinfrastruktur. 2013.
    2. F. Nitsch, “Stability Analysis of Linear Time-periodic Systems.” 2013.
    3. W. Nowak and A. Litvinenko, “Kriging and spatial design accelerated by orders of magnitude: combining low-rank covariance approximations with FFT-techniques,” Mathematical Geosciences, vol. 45, no. 4, pp. 411--435, 2013, doi: 10.1007/s11004-013-9453-6.
  14. O

    1. S. Oladyshkin, H. Class, and W. Nowak, “Bayesian updating via Bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations,” Computational Geosciences, vol. 17, no. 4, pp. 671--687, 2013, doi: 10.1007/s10596-013-9350-6.
    2. S. Oladyshkin, P. Schroeder, H. Class, and W. Nowak, “Chaos expansion based Bootstrap filter to calibrate CO2 injection models,” Energy Procedia, vol. 40, pp. 398--407, 2013, doi: 10.1016/j.egypro.2013.08.046.
    3. C.-I. T. G. on Data Citation Standards and O. of M. T. C. S. PractOut of Cite, “Out of Cite, Out of Mind: The Current State of Practice, Policy, and Technology for the Citation of Data,” Data Science Journal, vol. 12, pp. CIDCR1–CIDCR7, 2013, doi: http://doi.org/10.2481/dsj.OSOM13-043.
    4. V. Ortmann, “Empirische Matrixinterpolation.” 2013.
    5. L. Ostrowski, “LQR control for Parametric Systems with Reduced Basis Controllers.” 2013.
    6. B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran, “MigCEP: Operator Migration for Mobility Driven Distributed Complex Event Processing,” Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems (DEBS), 2013, doi: 10.1145/2488222.2488265.
  15. P

    1. B. Pfleging, S. Schneegass, and A. Schmidt, “Exploring User Expectations for Context and Road Video Sharing While Calling and Driving,” Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 132--139, 2013, doi: 10.1145/2516540.2516547.
    2. B. Pfleging, N. Henze, A. Schmidt, D. Rau, and B. Reitschuster, “Influence of subliminal cueing on visual search tasks,” CHI 13 Extended Abstracts on Human Factors in Computing Systems, 2013, doi: 10.1145/2468356.2468583.
    3. D. Philipp, J. Stachowiak, F. Dürr, and K. Rothermel, “Model-Driven Public Sensing in Sparse Networks,” Proceedings of the 10th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2013, doi: 10.1007/978-3-319-11569-6_2.
    4. D. Philipp, J. Stachowiak, P. Alt, F. Dürr, and K. Rothermel, “DrOPS: Model-Driven Optimization for Public Sensing Systems,” 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom 2013), 2013, doi: 10.1109/PerCom.2013.6526731.
  16. R

    1. P. Rauschenberger et al., “Comparative assessment of Volume-of-Fluid and Level-Set methods by relevance to dendritic ice growth in supercooled water,” Journal of Computers and Fluids, vol. 79, pp. 44--52, 2013, doi: 10.1016/j.compfluid.2013.03.010.
    2. M. Reble, E. Quevedo, and F. Allgöwer, “Control over Erasure Channels: Stochastic Stability and Performance of Packetized Unconstrained Model Predictive Control,” International Journal of Robust and Nonlinear Control, pp. 1151--1167, 2013, doi: 10.1002/rnc.2853.
    3. M. Redeker and C. Eck, “A fast and accurate adaptive solution strategy for two-scale models  with continuous inter-scale dependencies,” Journal of Computational Physics, vol. 240, pp. 268–283, 2013, doi: 10.1016/j.jcp.2012.12.025.
    4. P. Reimann and H. Schwarz, “Datenmanagementpatterns in Simulationsworkflows,” 15. GI-Fachtagung Datenbanksysteme für Business, Technologie und Web (BTW 2013), pp. 279--293, 2013, [Online]. Available: http://www.btw-2013.de/proceedings/Datenmanagementpatterns%20in%20Simulationsworkflows.pdf.
    5. C. Rohde and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 3, pp. 441--469, 2013, doi: 10.1142/S0218202512500522.
    6. C. Rohde, W. Wang, and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 03, pp. 441--469, 2013, doi: 10.1142/S0218202512500522.
    7. C. Rohde, W. Wang, and F. Xie, “Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves,” Communications on Pure and Applied Analysis, vol. 12, no. 5, pp. 2145--2171, 2013, doi: 10.3934/cpaa.2013.12.2145.
    8. N. Roth et al., “Collision of Droplets: An Experimental, Numerical and Analytical Approach,” Proceedings of the ILASS - Europe 2013, 2013, [Online]. Available: http://ilasseurope.org/events/25th-ilass-europe/.
    9. O. Röhrle, M. Sprenger, E. Ramasamy, and T. Heidlauf, “Multiscale Skeletal Muscle Modeling: From Cellular Level to a Multi-segment Skeletal Muscle Model of the Upper Limb,” Computer Models in Biomechanics, pp. 103--116, 2013, doi: 10.1007/978-94-007-5464-5_8.
  17. S

    1. A. Sachs, “Proper-Generalized-Decomposition-Methode für elliptische partielle  Differentialgleichungen,” 2013.
    2. S. Sahoo, T. Lebo, and D. McGuinness, “PROV-O: The PROV Ontology,” W3C, {W3C} Recommendation, 2013.
    3. G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, “Ten Simple Rules for Reproducible Computational Research,” PLOS Computational Biology, vol. 9, no. 10, pp. 1–4, Oct. 2013, doi: 10.1371/journal.pcbi.1003285.
    4. V. Schauer and C. Linder, “All-electron Kohn-Sham density functional theory on hierarchic finite element spaces,” Journal of Computational Physics, vol. 250, pp. 644--664, 2013, doi: 10.1016/j.jcp.2013.04.020.
    5. A. Schaufler, C. Becker, and H. Steeb, “Infiltration processes in cohesionless soils,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 93, no. 2–3, pp. 138--146, 2013, doi: 10.1002/zamm.201200047.
    6. D. Scheer, “Risk governance and emerging technologies: learning from case study integration,” Journal of Risk Research, vol. 16/3–4, pp. 355--368, 2013, doi: 10.1080/13669877.2012.729519.
    7. D. Scheer, Computersimulationen in politischen Entscheidungsprozessen: Zur Politikrelevanz von Simulationswissen am Beispiel der CO2-Speicherung. Springer SV, Wiesbaden, 2013.
    8. M. Schenke, B. Markert, and W. Ehlers, “Liquefaction in fluid-saturated soils,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 145--146, 2013, doi: 10.1002/pamm.201310068.
    9. C. W. Scherer, “Gain-scheduled synthesis with dynamic stable strictly positive real multipliers: A complete solution,” ECC, 2013, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669184&tag=1.
    10. C. W. Scherer, “Structured H∞-Optimal Control for Nested Interconnections: A State-Space Solution,” Syst. Contr. Letters, vol. 62, pp. 1105--1113, 2013, doi: 10.1016/j.sysconle.2013.09.001.
    11. C. W. Scherer, Gain-scheduled synthesis with dynamic generalized strictly positive real multipliers: A complete solution. 52nd IEEE Conf. Decision and Control, Firenze, 2013.
    12. C. W. Scherer and I. E. Koese, “From transfer matrices to realizations: Convergence properties and parametrization of robustness analysis conditions,” Syst. Contr. Letters, vol. 62, pp. 632--642, 2013, doi: 10.1016/j.sysconle.2013.04.001.
    13. A. Schmidt, “Galerkin-Radiosity.” 2013.
    14. G. S. Schmidt, S. Michalowsky, C. Ebenbauer, and F. Allgöwer, “Global Output Regulation for the Rotational Dynamics of a Rigid Body / Globale Ausgangsregelung für die Drehbewegung eines Starrkörpersystems,” at - Automatisierungstechnik, vol. 61, no. 8, pp. 567--582, 2013, doi: 10.1524/auto.2013.1013.
    15. G. S. Schmidt, C. Ebenbauer, and F. Allgower, “Output regulation for attitude control: A global approach,” American Control Conference, pp. 5251--5256, 2013, doi: 10.1109/ACC.2013.6580656.
    16. S. Schmitt, M. Günther, T. Rupp, A. Bayer, and D. Häufle, “Theoretical Hill-type muscle and stability: numerical model and application,” Computational and Mathematical Methods in Medicine, vol. 2013, p. 570878, 2013.
    17. S. Schmitt, M. Gu?nther, T. Rupp, A. Bayer, and D. Häufle, Theoretical Hill-Type Muscle and Stability: Numerical Model and Application. 2013.
    18. S. Schneegass, B. Pfleging, N. Broy, F. Heinrich, and A. Schmidt, “A data set of real world driving to assess driver workload,” Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2013, doi: 10.1145/2516540.2516561.
    19. T. Schüler, R. Manke, R. Jänicke, M. Radenberg, and H. Steeb, “Multi-scale modelling of elastic/viscoelastic compounds,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 93, no. 2–3, pp. 126--137, 2013, doi: 10.1002/zamm.201200055.
    20. M. Sega, S. S. Kantorovich, A. Arnold, and C. Holm, On the Calculation of the Dielectric Properties of Liquid Ionic Systems. Springer, 2013.
    21. R. Seifried and W. Blajer, “Analysis of servo-constraint problems for underactuated multibody systems,” Mechanical Sciences, vol. 4, pp. 113--129, 2013, doi: 10.5194/ms-4-113-2013.
    22. D. Seus, “Spektralasymptotiken auf dem Loopgraphen,” 2013.
    23. G. S. Seyboth and F. Allgöwer, “Clock Synchronization over Directed Graphs,” Proc. 52nd IEEE Conference on Decision and Control (CDC), pp. 6105--6111, 2013, doi: 10.1109/CDC.2013.6760854.
    24. S. Silcher, J. Königsberger, P. Reimann, and B. Mitschang, “Cooperative service registries for the service-based Product Lifecycle Management architecture,” Proceedings of the 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2013, doi: 10.1109/CSCWD.2013.6581003.
    25. A. Simon, “Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen  Residuums im Zusammenhang mit der Reduzierte-Basis-Methode,” 2013.
    26. D. Simon, “Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen,” 2013.
    27. M. Sonntag and D. Karastoyanova, “Model-as-you-go: An Approach for an Advanced Infrastructure for Scientific Workflows,” Journal of Grid Computing, vol. 11, pp. 553--583, 2013, doi: 10.1007/s10723-013-9268-1.
    28. M. Sprenger, S. Schmitt, and O. Röhrle, “Towards modelling the dynamics of a 3D continuum-mechanical two-muscle musculoskeletal system,” PAMM, vol. 13, pp. 65--66, 2013, doi: 10.1002/pamm.201310028.
    29. H. Steeb, J. Singh, and S. K. Tomar, “Time harmonic waves in thermoelastic material with microtemperatures,” Mechanics Research Communications, vol. 48, pp. 8--18, 2013, doi: 10.1016/j.mechrescom.2012.11.006.
    30. A. Stein, “Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten,” Bachelor Thesis, Germany, 2013.
    31. S. Strauch, V. Andrikopoulos, T. Bachmann, D. Karastoyanova, S. Passow, and K. Vukojevic-Haupt, “Decision Support for the Migration of the Application Database Layer to the Cloud,” Proceedings of the 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom13), 2013, doi: 10.1109/CloudCom.2013.90.
    32. T. Strecker, “Simulation and Model Reduction of a Skeletal Muscle Fibre System.” 2013.
    33. Z. Sun, A. Dadalau, and A. Verl, “Component oriented and automatic generation of FE models for parallel kinematics,” Prod. Eng. Res. Devel., vol. 7, pp. 233--237, 2013, doi: 10.1007/s11740-012-0440-4.
    34. C. Surulescu and N. Surulescu, “Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems,” Lecture Notes in Mathematics, Nonautonomous Dynamical Systems in the Life Sciences, vol. 2102, pp. 269--307, 2013, doi: 10.1007/978-3-319-03080-7.
  18. T

    1. Q. Tang and P. Eberhard, “Cooperative Search by Combining Simulated and Real Robots in a Swarm under the View of Multibody System Dynamics,” Advances in Mechanical Engineering, vol. 5, no. 284782, 2013, doi: 10.1155/2013/284782.
    2. Q. Tang and P. Eberhard, “Mechanical PSO Aided by Extremum Seeking for Swarm Robots Cooperative Search,” Advances in Swarm Intelligence, vol. 7928, pp. 64--71, 2013, doi: 10.1007/978-3-642-38703-6_7.
    3. M. A. Tariq, B. Koldehofe, and K. Rothermel, “Efficient content-based routing with network topology inference,” Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems (DEBS), 2013, doi: 10.1145/2488222.2488262.
    4. C. Thomaseth, P. Weber, T. Hamm, K. Kashima, and N. Radde, “Modeling sphingomyelin synthase 1 driven reaction at the Golgi apparatus can explain data by inclusion of a positive feedback mechanism,” Journal of Theoretical Biology, vol. 337, pp. 174--180, 2013, doi: 10.1016/j.jtbi.2013.08.022.
    5. S. Tomar, J. Bhagwan, and H. Steeb, “Time harmonic waves in a thermo-viscoelastic material with voids,” Journal of Vibration and Control, vol. 20, no. 8, pp. 1119--1136, 2013, doi: 10.1177/1077546312470479.
    6. S. Turek and D. Göddeke, “Hardware-oriented Numerics for PDE,” in Encyclopedia of Applied and Computational Mathematics, B. Engquist, T. Chan, W. J. Cook, E. Hairer, J. Hastad, A. Iserles, H. P. Langtangen, C. Le Bris, P. L. Lions, C. Lubich, A. J. Majda, J. R. McLaughlin, R. M. Nieminen, J. T. Oden, P. Souganidis, and A. Tveito, Eds. Springer, 2013.
  19. V

    1. J. Veenman and C. W. Scherer, Stability analysis with integral quadratic constraints: A dissipativity based proof. 52nd IEEE Conf. Decision and Control, Firenze, 2013.
    2. C. Vehlow et al., “iVUN: Interactive Visualization of Uncertain Biochemical Reaction Networks,” BMC Bioinformatics, vol. 14, p. Suppl 19:S2, 2013, doi: 10.1186/1471-2105-14-S19-S2.
    3. D. von Suchodoletz, K. Rechert, and I. Valizada, “Towards Emulation-as-a-Service: Cloud Services for Versatile Digital Object Access,” International Journal of Digital Curation, vol. 8, no. 1, pp. 131--142, 2013, doi: 10.2218/ijdc.v8i1.250.
    4. K. Vukojevic-Haupt, D. Karastoyanova, and F. Leymann, “On-demand Provisioning of Infrastructure, Middleware and Services for Simulation Workflows,” Proceedings of the 6th IEEE International Conference on Service Oriented Computing & Applications (SOCA 2013), 2013, doi: 10.1109/SOCA.2013.21.
  20. W

    1. A. Wagner et al., “Porous-media simulation of bone-cement spreading during vertebroplasty,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 67--68, 2013, doi: 10.1002/pamm.201310029.
    2. T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service Provisioning Approach to Enable Secure Cloud Computing,” Proceedings of the On the Move to Meaningful Internet Systems (OTM) Conferences, 2013, doi: 10.1007/978-3-642-41030-7_26.
    3. L. Walter, P. Binning, and H. Class, “Predicting salt intrusion into freshwater aquifers resulting from CO2 injection - A study on the influence of conservative assumptions,” Advances in Water Resources, vol. 62, pp. 543--554, 2013, doi: 10.1016/j.advwatres.2013.09.017.
    4. R. Weeber, M. Klinkigt, S. Kantorovich, and C. Holm, “Microstructure and magnetic properties of magnetic fluids consisting of shifted dipole particles under the influence of an external,” Journal of chemical physics, vol. 21, p. 214901, 2013, doi: 10.1063/1.4832239.
    5. W. Weimer-Jehle, S. Prehofer, and S. Vögele, “Kontextszenarien - Ein Konzept zur Behandlung von Kontextunsicherheit und Kontextkomplexität bei der Entwicklung von Energieszenarien,” Technikfolgenabschätzung - Theorie und Praxis, vol. 22, no. 2, pp. 27--36, 2013, [Online]. Available: http://www.tatup-journal.de/tatup132_weua13a.php.
    6. N. Wengert, M. Nefzi, P. Eberhard, and B. Geuppert, “Dynamics in Lithographic Projection Objectives,” Multibody System Dynamics, vol. 30, pp. 233--245, 2013, doi: 10.1007/s11044-013-9344-0.
    7. N. Wengert and P. Eberhard, “Vibration Modification in an Opto-Dynamical Test Setup for Suppressing Aberrations,” Proceedings of the 11th ICOVP, Lisbon, Portugal, 2013, [Online]. Available: http://www.icovp.com/components/com_breezingforms/uploads/405_paper0.pdf.
    8. P. Wieland, J. Wu, and F. Allgöwer, “On synchronous steady states and internal models of diffusively coupled systems,” IEEE Transactions on Automatic Control, vol. 58, no. 10, pp. 2591--2602, 2013, doi: 10.1109/TAC.2013.2266868.
    9. D. Wirtz and B. Haasdonk, “An Improved Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Research Notes on Approximation, vol. 6, pp. 83–100, 2013, [Online]. Available: http://drna.di.univr.it/papers/2013/WirtzHaasdonk.2013.VKO.pdf.
    10. D. Wirtz and B. Haasdonk, “A Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Research Notes on Approximation, vol. 6, pp. 83--100, 2013, [Online]. Available: http://www.emis.ams.org/journals/DRNA/papers/2013/WirtzHaasdonk.2013.VKO.pdf.
    11. P. Wittenburg and P. Gietz, “Technische Infrastrukturen, Dienste und Services für die digitalen GW,” in Evolution der Informationsinfrastruktur, H. Neuroth, N. Lossau, and A. Rapp, Eds. 2013, pp. 301–321.
    12. T. Woehling, A. Geiges, W. Nowak, and S. Gayler, “Towards optimizing experiments for maximum-confidence model selection between different soil-plant models,” Procedia Environmental Sciences, vol. 19, pp. 514--523, 2013, doi: 10.1016/j.proenv.2013.06.058.
    13. J.-P. Wolf and M. Ganser, “Modelling and Simulation of Lithium-Ion Batteries.” 2013.
    14. M. Wolff, B. Flemisch, and R. Helmig, “An adaptive multiscale approach for modeling two-phase flow in porous media including capillary pressure,” Water Resources Research, vol. 49, pp. 8139--8159, 2013, doi: 10.1002/2013WR013800.
    15. J. Wu, J. Qin, C. Yu, and F. Allgöwer, “Leaderless synchronization of linear multi-agent systems under directed switching topologies: An invariance approach,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 6043--6048, 2013, doi: 10.1109/CDC.2013.6760844.
    16. H.-J. Wunderlich, C. Braun, and S. Halder, “Efficacy and Efficiency of Algorithm-Based Fault-Tolerance on GPUs,” IEEE 19th International  On-Line Testing Symposium (IOLTS), pp. 240--243, 2013, doi: 10.1109/IOLTS.2013.6604090.
  21. Y

    1. B. Yannou, F. Cluzel, and M. Dihlmann, “Evolutionary and interactive sketching tool for innovative car shape  design,” Machanics & Industry, vol. 14, pp. 1–22, 2013.
  22. Z

    1. D. Zelazo, M. Bürger, and F. Allgöwer, “A Finite-Time Dual Method for Negotiation between Dynamical Systems,” SIAM Journal of Control and Optimization, vol. 51, pp. 172--194, 2013, doi: 10.1137/100819175.
    2. C. Zhu, M. Ertl, and B. Weigand, “Numerical Investigation on the Primary Breakup of an Inelastic Non-Newtonian Liquid Jet with Inflow Turbulence,” Physics of Fluids, vol. 25, no. 8, 2013, doi: 10.1063/1.4818305.
    3. S. Zinatbakhsh and W. Ehlers, “Coupled Multi-field and Multi-rate Problems - Numerical Solution and Stability Analysis,” Proceedings in Applied Mathematics and Mechanics, vol. 13, pp. 241--242, 2013, doi: 10.1002/pamm.201310116.
    4. D. Zäh and C. Miehe, “Computational homogenization in dissipative electro-mechanics of functional materials,” Computer Methods in Applied Mechanics and Engineering, vol. 267, pp. 487--510, 2013, doi: 10.1016/j.cma.2013.09.012.

Add a new title here

Fehler beim Darstellen der Publikationsliste
Zum Seitenanfang