2012

  1. A

    1. G. L. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kr�nkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp  interface limits and numerics,” in ESAIM Proceedings Vol. 38, 2012, pp. 54–77, doi: 10.1051/proc/201238004.
    2. F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger, “The Localized Reduced Basis Multiscale Method,” Algoritmy 2012 - Proceedings of contributed papers and posters, vol. 1, pp. 393--403, 2012, [Online]. Available: http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/40Albrecht.pdf.
    3. C. Appel, “Mathematische Methoden zur Bestimmung alterungskritischer Parameter  von Lithium-Ionen Zellen,” Diploma thesis, 2012.
    4. E. Audusse et al., “Sediment transport modelling : Relaxation schemes for Saint-Venant  - Exner and three layer models,” in ESAIM Proceedings Vol. 38, 2012, pp. 78–98, doi: 10.1051/proc/201238005.
  2. B

    1. K. Baber, K. Mosthaf, B. Flemisch, R. Helmig, S. Müthing, and B. Wohlmuth, “Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow,” IMA Journal of Applied Mathematics, pp. 1--23, 2012, doi: 10.1093/imamat/hxs048.
    2. S. Bachthaler, F. Sadlo, R. Weeber, S. Kantorovich, C. Holm, and D. Weiskopf, “Magnetic Flux Topology of 2D Point Dipoles,” Computer Graphics Forum, vol. 31, p. 955, 2012, doi: 10.1111/j.1467-8659.2012.03088.x.
    3. S. Bachthaler, F. Sadlo, R. Weeber, S. Kantorovich, C. Holm, and D. Weiskopf, “Magnetic Flux Topology of 2D Point Dipoles,” Computer Graphics Forum, vol. 31, p. 955, 2012, doi: 10.1111/j.1467-8659.2012.03088.x.
    4. P. Baier, F. Dürr, and K. Rothermel, “PSense: Reducing Energy Consumption in Public Sensing Systems,” Proceedings of the 26th IEEE International Conference on Advanced Information Networking and Applications, 2012, doi: 10.1109/AINA.2012.33.
    5. P. Baier, F. Dürr, and K. Rothermel, “TOMP: Opportunistic Traffic Offloading Using Movement Predictions,” Proceedings of the 37th IEEE Conference on Local Computer Networks (LCN), 2012, doi: 10.1109/LCN.2012.6423668.
    6. H. M. N. K. Balini, J. Witte, and C. W. Scherer, “Synthesis and implementation of gain-scheduling and LPV controllers for an AMB system,” Automatica, 2012, doi: 10.1016/j.automatica.2011.08.061.
    7. A. Barth and A. Lang, “Simulation of stochastic partial differential equations using finite  element methods,” Stochastics, vol. 84, no. 2–3, pp. 217--231, 2012, doi: 10.1080/17442508.2010.523466.
    8. A. Barth and A. Lang, “Milstein approximation for advection-diffusion equations driven by  multiplicative noncontinuous martingale noises,” Appl. Math. Optim., vol. 66, no. 3, pp. 387--413, 2012, doi: 10.1007/s00245-012-9176-y.
    9. A. Barth and A. Lang, “Multilevel Monte Carlo method with applications to stochastic  partial differential equations,” Int. J. Comput. Math., vol. 89, no. 18, pp. 2479--2498, 2012, doi: 10.1080/00207160.2012.701735.
    10. J. Bernl�hr, “Online Reduzierte Basis Generierung f�r Parameterabh�ngige Elliptische  Partielle Differentialgleichungen,” Diploma thesis, 2012.
    11. T. Binz, F. Leymann, A. Nowak, and D. Schumm, “Improving the Manageability of Enterprise Topologies Through Segmentation, Graph Transformation, and Analysis Strategies,” Proceedings of Enterprise Distributed Object Computing Conference (EDOC 2012), 2012, doi: 10.1109/EDOC.2012.17.
    12. T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm, “Formalizing the Cloud through Enterprise Topology Graphs,” Proceedings of  International Conference on Cloud Computing, 2012, doi: 10.1109/CLOUD.2012.143.
    13. T. Binz, F. Leymann, A. Nowak, and D. Schumm, “Improving the Manageability of Enterprise Topologies Through Segmentation, Graph Transformation, and Analysis Strategies,” Proceedings of Enterprise Distributed Object Computing Conference (EDOC 2012), 2012, doi: 10.1109/EDOC.2012.17.
    14. T. Brandes, A. Arnold, T. Soddemann, and D. Reith, “CPU vs. GPU-Performance comparison for the Gram-Schmidt algorithm,” The European Physical Journal Special Topics, vol. 210, no. 1, pp. 73--88, 2012, doi: 10.1140/epjst/e2012-01638-7.
    15. C. Braun, M. Daub, A. Schoell, G. Schneider, and H.-J. Wunderlich, “Parallel Simulation of Apoptotic Receptor-Clustering on GPGPU Many-Core Architectures,” Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM’12), 2012, doi: 10.1109/BIBM.2012.6392661.
    16. C. Braun, S. Holst, J. M. Castillo, J. Gross, and H.-J. Wunderlich, “Acceleration of Monte-Carlo Molecular Simulations on Hybrid Computing Architectures,” Proceedings of the IEEE International Conference on Computer Design (ICCD12), 2012, doi: 10.1109/ICCD.2012.6378642.
    17. C. Braun, M. Daub, A. Schoell, G. Schneider, and H.-J. Wunderlich, “Parallel Simulation of Apoptotic Receptor-Clustering on GPGPU Many-Core Architectures,” Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM’12), 2012, doi: 10.1109/BIBM.2012.6392661.
    18. S. Brdar, M. Baldauf, A. Dedner, and R. Klöfkorn, “Comparison of dynamical cores for NWP models - Comparison of COSMO and DUNE,” Theoretical and Computational Fluid Dynamics, 2012, doi: 10.1007/s00162-012-0264-z.
    19. S. Brdar, M. Baldauf, A. Dedner, and R. Klöfkorn, “Comparison of dynamical cores for NWP models: comparison of COSMO  and Dune,” Theoretical and Computational Fluid Dynamics, pp. 1–20, 2012, doi: 10.1007/s00162-012-0264-z.
    20. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and stable Discontinuous Galerkin methods for convection-diffusion  problems.,” SIAM J. Sci. Comput., vol. 34, no. 1, 2012, doi: 10.1137/100817528.
    21. C. Breindl, M. Chaves, J. Gouze, and F. Allgöwer, “Structure estimation for unate Boolean models of gene regulation networks,” Proceedings of the 16th IFAC Symposium on System Identification, pp. 1725--1730, 2012, doi: 10.3182/20120711-3-BE-2027.00278.
    22. C. Breindl, M. Chaves, J. Gouze, and F. Allgöwer, “Structure estimation for unate Boolean models of gene regulation networks,” Proceedings of the 16th IFAC Symposium on System Identification, pp. 1725--1730, 2012, doi: 10.3182/20120711-3-BE-2027.00278.
    23. C. Böhm, M. Lazar, and F. Allgöwer, “Stability of periodically time-varying systems: Periodic Lyapunov functions,” Automatica, vol. 48, no. 10, pp. 2663--2669, 2012, doi: 10.1016/j.automatica.2012.06.070.
    24. M. Bürger, G. Notarstefano, F. Allgöwer, and F. Bullo, “A Distributed Simplex Algorithm for Degenerate Linear Programs and Multi-Agent Assignments,” Automatica, vol. 48, pp. 2298--2304, 2012, doi: 10.1016/j.automatica.2012.06.040.
  3. C

    1. C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition Problems,” SIAM Journal on Scientific Computing, vol. 34, pp. A1753–A1776, 2012, doi: 10.1137/110848815.
    2. J. Chaudenson, D. Beauvois, S. Bennani, M. Ganet-Schoeller, G. Sandou, C, and C. Frechin, PWM Modeling for Attitude Control of a Launcher During Ballistic Phase and Comparative Stability Analysis. 7th IFAC Symposium on Robust Control Design, 2012.
    3. J. Chaudenson, D. Beauvois, S. Bennani, M. Ganet-Schoeller, G. Sandou, C, and C. Frechin, PWM Modeling for Attitude Control of a Launcher During Ballistic Phase and Comparative Stability Analysis. 7th IFAC Symposium on Robust Control Design, 2012.
    4. O. A. Cirpka, M. Rolle, G. Chiogna, F. P. J. de Barros, and W. Nowak, “Stochastic Evaluation of Mixing-Controlled Steady-State Plume Lengths in Two-Dimensional Heterogeneous Domains,” Journal of Contaminant Hydrology, vol. 138–139, pp. 22--39, 2012, doi: 10.1016/j.jconhyd.2012.05.007.
    5. F. Cluzel, B. Yannou, and M. Dihlmann, “Using Evolutionary Design to Interactively Sketch Car Silhouettes  and Stimulate Designer’s Creativity,” Engineering Applications of Artificial Intelligence, vol. 25, no. 7, pp. 1413–1424, 2012.
    6. R. M. Colombo and V. Schleper, “Two-phase flows: non-smooth well posedness and the compressible to  incompressible limit,” Nonlinear Anal. Real World Appl., vol. 13, no. 5, pp. 2195--2213, 2012, doi: 10.1016/j.nonrwa.2012.01.015.
    7. F. Coquel, M. Gutnic, P. Helluy, F. Lagoutière, C. Rohde, and N. Seguin, Eds., CEMRACS 2011, Multiscale Coupling of Complex Models, vol. 38. ESAIM Proceedings, 2012.
    8. O. Corcho et al., “Workflow-centric research objects: First class citizens in scholarly discourse.,” in Proceedings of Workshop on the Semantic Publishing, 2012, pp. 1--12, [Online]. Available: http://oa.upm.es/20401/.
    9. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” Journal of  Differential Equations, vol. 253, 2012, doi: 10.1016/j.jde.2012.05.006.
    10. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” Journal of  Differential Equations, vol. 253, 2012, doi: 10.1016/j.jde.2012.05.006.
  4. D

    1. A. Dadalau and A. Verl, “Modeling linear guide systems with CoFEM - Experimental validation,” Production Engineering Research and Development, 2012, doi: 10.1007/s11740-012-0377-7.
    2. A. Dedner, B. Flemisch, and R. Klöfkorn, Advances in DUNE. Proceedings of the 1st DUNE User Meeting. Springer, 2012.
    3. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “Dune-Fem: A General Purpose Discretization Toolbox for Parallel and  Adaptive Scientific Computing,” in Advances in DUNE, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer Berlin Heidelberg, 2012, pp. 17–31.
    4. A. Dedner, B. Flemisch, and R. Klöfkorn, Advances in DUNE. Springer, 2012.
    5. A. Dedner, B. Flemisch, and R. Klöfkorn, Advances in DUNE. Proceedings of the 1st DUNE User Meeting. Springer, 2012.
    6. M. Deininger, J. Jung, R. Skoda, P. Helluy, and C.-D. Munz, “Evaluation of interface models for 3D-1D coupling of compressible Euler methods for the application on cavitating  ows,” ESAIM: Proceedings, vol. 38, pp. 298--318, 2012, doi: 10.1051/proc/201238016.
    7. M. Deininger, J. Jung, R. Skoda, P. Helluy, and C.-D. Munz, “Evaluation of interface models for 3D-1D coupling of compressible Euler methods for the application on cavitating  ows,” ESAIM: Proceedings, vol. 38, pp. 298--318, 2012, doi: 10.1051/proc/201238016.
    8. K. Diethelm, “The Limits of Reproducibility in Numerical Simulation.,” Computing in Science and Engineering, vol. 14, no. 1, pp. 64–72, 2012, [Online]. Available: http://dblp.uni-trier.de/db/journals/cse/cse14.html#Diethelm12.
    9. M. Dihlmann, S. Kaulmann, and B. Haasdonk, “Online Reduced Basis Construction Procedure for Model Reduction of Parametrized Evolution Systems,” Proceedings of Mathmod 2012, 2012, doi: 10.3182/20120215-3-at-3016.00020.
    10. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic analysis for Korteweg models,” Interfaces and free boundaries, vol. 14, pp. 105--143, 2012, doi: 10.4171/IFB/275.
    11. M. Drohmann, B. Haasdonk, and S. Kaulmann, “A Software Framework for Reduced Basis Methods Using Dune-RB and RBmatlab,” Advances in DUNE, pp. 77--88, 2012, doi: 10.1007/978-3-642-28589-9_6.
    12. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Model Reduction of Parametrized Two-phase Flow in Porous  Media,” in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling, 2012, doi: https://doi.org/10.3182/20120215-3-AT-3016.00128.
    13. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation,” SIAM-SISC, vol. 34, pp. A937–A969, 2012, doi: 10.1137/10081157x.
    14. M. Drohmann, B. Haasdonk, and M. Ohlberger, “A Software Framework for Reduced Basis Methods Using DUNE-RB and  RBMATLAB,” in Advances in DUNE: Proceedings of the DUNE User Meeting, Held in October  6th-8th 2010 in Stuttgart, Germany, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer, 2012.
  5. E

    1. P. Eberhard and Q. Tang, “Sensor Data Fusion for the Localization and Position Control of One Kind of Omnidirectional Mobile Robots,” Multibody System Dynamics, Robotics and Control, pp. 45--73, 2012, doi: 10.1007/978-3-7091-1289-2_4.
    2. P. Eberhard and Q. Tang, “Sensor Data Fusion for the Localization and Position Control of One Kind of Omnidirectional Mobile Robots,” Multibody System Dynamics, Robotics and Control, pp. 45--73, 2012, doi: 10.1007/978-3-7091-1289-2_4.
    3. C. Effenberger and S. Rühle, “Dublin Core Leitfaden,” 2012. http://moodle.dnb.de/course/view.php?id=18.
    4. C. Effenberger and S. Rühle, “Einführung in Metadaten und Metadatenformate,” 2012. http://moodle.dnb.de/course/view.php?id=14.
    5. C. Effenberger and S. Rühle, “Einführung in die Gestaltung von Metadatenprofilen,” 2012. http://moodle.dnb.de/course/view.php?id=15.
    6. H. A. ElMaraghy, Enabling Manufacturing Competitiveness and Economic Sustainability. Springer, 2012.
    7. H. A. ElMaraghy, Enabling Manufacturing Competitiveness and Economic Sustainability. Springer, 2012.
    8. P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” Series in Contemporary Applied Mathematics, vol. 0, 2012, doi: 10.1142/9789814417099_0038.
    9. R. Enzenhöfer, W. Nowak, and R. Helmig, “Probabilistic Exposure Risk Assessment with Advective-Dispersive Well Vulnerability Criteria,” Advances in Water Resources, vol. 36, pp. 121--132, 2012, doi: 10.1016/j.advwatres.2011.04.018.
    10. R. Enzenhöfer, W. Nowak, and R. Helmig, “Probabilistic Exposure Risk Assessment with Advective-Dispersive Well Vulnerability Criteria,” Advances in Water Resources, vol. 36, pp. 121--132, 2012, doi: 10.1016/j.advwatres.2011.04.018.
    11. K. Erbertseder, J. Reichold, B. Flemisch, P. Jenny, and R. Helmig, “A Coupled Discrete / Continuum Model for Describing Cancer-Therapeutic Transport in the Lung,” PLoS ONE, 2012, doi: 10.1371/journal.pone.0031966.
    12. C. Ergenzinger, R. Seifried, and P. Eberhard, “A discrete element model predicting the strength of ballast stones,” Computers & Structures, vol. 108–109, pp. 3--13, 2012, doi: 10.1016/j.compstruc.2012.02.006.
    13. C. Ergenzinger, R. Seifried, and P. Eberhard, “A Discrete Element Approach to Model Breakable Railway Ballast,” Journal of Computational and Nonlinear Dynamics, vol. 7, no. 4, 2012, doi: 10.1115/1.4006731.
    14. C. Ergenzinger, R. Seifried, and P. Eberhard, “A Discrete Element Approach to Model Breakable Railway Ballast,” Journal of Computational and Nonlinear Dynamics, vol. 7, no. 4, 2012, doi: 10.1115/1.4006731.
  6. F

    1. M. Falk, M. Krone, and T. Ertl, “Atomistic Visualization of Mesoscopic Whole-Cell Simulations,” Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM), pp. 123--130, 2012, doi: 10.2312/VCBM/VCBM12/123-130.
    2. C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin, and D. Schumm, “Capturing Cloud Computing Knowledge and Experience in Patterns,” Proceedings of the 2012 IEEE International Conference on Cloud Computing (CLOUD 2012), 2012, doi: 10.1109/CLOUD.2012.124.
    3. J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, “Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 93, pp. 501--519, 2012, doi: 10.1002/zamm.201200014.
    4. M. Feistauer and A.-M. Sändig, “Graded mesh refinement and error estimates of higher order for DGFE  solutions of elliptic boundary value problems in polygons,” Numerical Methods for Partial Differential Equations, vol. 28, no. 4, pp. 1124--1151, 2012, doi: 10.1002/num.20668.
    5. M. Fornasier, Y. Kim, A. Langer, and C.-B. Sch�nlieb, “Wavelet Decomposition Method for L\_2//TV-Image Deblurring,” SIAM Journal on Imaging Sciences, vol. 5, no. 3, pp. 857--885, 2012, [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/100819801.
    6. J. Fournier, T. Klages, and H. Pampel, Open-Access-Strategien für wissenschaftliche Einrichtungen : Bausteine und Beispiele. 2012, p. 39.
    7. S. Frey, G. Reina, and T. Ertl, “SIMT Microscheduling: Reducing Thread Stalling in Divergent Iterative Algorithms,” Parallel, Distributed and Network-Based Processing (PDP), 2012 20th Euromicro International Conference on, pp. 399--406, 2012, doi: 10.1109/PDP.2012.62.
    8. S. Frey, F. Sadlo, and T. Ertl, “Visualization of Temporal Similarity in Field Data,” Transactions on Visualization and Computer Graphics, vol. 18, pp. 2023--2032, 2012, doi: 10.1109/TVCG.2012.284.
  7. G

    1. D. Garmatter, “Reduzierte Basis Methoden f�r lineare Evolutionsprobleme am Beispiel  von European Option Pricing,” Diploma thesis, 2012.
    2. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, 2012.
    3. J. Giesselmann, “Sharp interface limits for Korteweg Models,” in Hyperbolic Problems: Theory, Numerics, Applications, 2012, vol. 2, pp. 422–430.
    4. C. C. Gruber and J. Pleiss, “Molecular Modeling of Lipase Binding to a Substrate-Water Interface,” Lipases and Phospholipases, vol. 861, pp. 313--327, 2012, doi: 10.1007/978-1-61779-600-5_19.
    5. I. Gueven, P. Kurzeja, S. Luding, and H. Steeb, “Experimental evaluation of phase velocities and tortuosity in fluid saturated highly porous media,” PAMM, vol. 12, no. 1, pp. 401--402, 2012, doi: 10.1002/pamm.201210189.
    6. M. Günther, O. Röhrle, D. Häufle, and S. Schmitt, “Spreading out muscle mass within a hill-type model: a computer simulation study,” Computational and mathematical methods in medicine, 2012, doi: 10.1155/2012/848630.
    7. M. Günther, O. Röhrle, D. F. Haeufle, and S. Schmitt, “Spreading out muscle mass within a Hill-type model: a computer simulation study,” Computational and Mathematical Methods in Medicine, vol. 2012, 2012.
  8. H

    1. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for the Simulation of American Options,” Numerical Mathematics and Advanced Applications 2011, pp. 821--829, 2012, doi: 10.1007/978-3-642-33134-3_85.
    2. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for Parametrized Variational Inequalities,” SIAM Journal on Numerical Analysis, vol. 50, no. 5, pp. 2656--2676, 2012.
    3. D. F. B. Haeufle, M. D. Taylor, S. Schmitt, and H. Geyer, “A clutched parallel elastic actuator concept: Towards energy efficient powered legs in prosthetics and robotics,” in 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012, pp. 1614–1619, doi: 10.1109/BioRob.2012.6290722.
    4. D. Haeufle, M. Günther, R. Blickhan, and S. Schmitt, “Can quick release experiments reveal the muscle structure? A bionic approach,” Journal of Bionic Engineering, vol. 9, no. 2, pp. 211--223, 2012.
    5. H. Harbrecht, M. Peters, and R. Schneider, “On the low-rank approximation by the pivoted Cholesky decomposition,” Applied Numerical Mathematics, vol. 62, pp. 428--440, 2012, doi: 10.1016/j.apnum.2011.10.001.
    6. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” Journal of Mathematical Analysis and Applications, vol. 393, pp. 397--412, 2012, doi: 10.1016/j.jmaa.2012.04.019.
    7. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” Journal of Mathematical Analysis and Applications, vol. 393, pp. 397--412, 2012, doi: 10.1016/j.jmaa.2012.04.019.
    8. J. Hasenauer, D. Schittler, and F. Allgöwer, “Analysis and simulation of division- and label-structured population models,” Bulletin of Mathematical Biology, vol. 74, no. 11, pp. 2692--2732, 2012, doi: 10.1007/s11538-012-9774-5.
    9. J. Hasenauer, J. Heinrich, M. Doszczak, P. Scheurich, D. Weiskopf, and F. Allgöwer, “A visual analytics approach for models of heterogeneous cell populations,” EURASIP Journal on Bioinformatics and Systems Biology, vol. 2012, no. 4, 2012, doi: 10.1186/1687-4153-2012-4.
    10. J. Hasenauer, M. Löhning, M. Khammash, and F. Allgöwer, “Dynamical optimization using reduced order models: A method to guarantee performance,” Journal of Process Control, vol. 22, no. 8, pp. 1490--1501, 2012, doi: 10.1016/j.jprocont.2012.01.017.
    11. J. Hasenauer, D. Schittler, and F. Allgöwer, “Analysis and simulation of division- and label-structured population models,” Bulletin of Mathematical Biology, vol. 74, no. 11, pp. 2692--2732, 2012, doi: 10.1007/s11538-012-9774-5.
    12. T. Heidlauf and O. Röhrle, “A geometrical model of skeletal muscle,” PAMM, vol. 1, pp. 119--120, 2012, doi: 10.1002/pamm.201210050.
    13. F. E. Hildebrand and C. Miehe, “A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains,” Philosophical Magazine, vol. 92, pp. 4250--4290, 2012, doi: 10.1080/14786435.2012.705039.
    14. F. E. Hildebrand and C. Miehe, “Comparison of two bulk energy approaches for the phasefield modeling of two-variant martensitic laminate microstructure,” Technische Mechanik, vol. 32, pp. 3--20, 2012, [Online]. Available: http://www.ovgu.de/ifme/zeitschrift_tm/02_HTML_Inhalt/2012.htm.
    15. F. E. Hildebrand and C. Miehe, “A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains,” Philosophical Magazine, vol. 92, pp. 4250--4290, 2012, doi: 10.1080/14786435.2012.705039.
    16. M. Hofacker and C. Miehe, “Continuum phase field modeling of dynamic fracture: Variational principles and staggered FE implementation,” International Journal of Fracture, vol. 178, pp. 113--129, 2012, doi: 10.1007/s10704-012-9753-8.
    17. M. Hofacker and C. Miehe, “Continuum phase field modeling of dynamic fracture: Variational principles and staggered FE implementation,” International Journal of Fracture, vol. 178, pp. 113--129, 2012, doi: 10.1007/s10704-012-9753-8.
    18. S. Hoher, P. Schindler, S. G?ttlich, V. Schleper, and S. Röck, “System Dynamic Models and Real-time Simulation of Complex Material  Flow Systems,” in Enabling Manufacturing Competitiveness and Economic Sustainability, H. A. ElMaraghy, Ed. Springer Berlin Heidelberg, 2012, pp. 316–321.
    19. K. Häberle and W. Ehlers, “Carbon-dioxide storage and phase transitions: towards an understanding of crack development in the cap-rock layer,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 377--378, 2012, doi: 10.1002/pamm.201210177.
    20. D. F. B. Häufle, M. Günther, R. Blickhan, and S. Schmitt, “Proof of concept: model based bionic muscle with hyperbolic force-velocity relation,” Applied Bionics and Biomechanics, vol. 9, no. 3, pp. 276–274, 2012.
    21. A. H�cker, “A mathematical model for mesenchymal and chemosensitive cell dynamics,” Journal of mathematical Biology, vol. 64, pp. 361–401, 2012, doi: 10.1007/s00285-011-0415-7.
  9. J

    1. A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and  Transport Phenomena in Porous Medium Systems: 9. Transition Region Models,” Advances in Water Resources, 2012, doi: 10.1016/j.advwatres.2012.01.006.
    2. E. A. Jaegle and E. J. Mittemeijer, “Interplay of kinetics and microstructure in the recrystallisation of pure copper: comparing mesoscopic simulations and experiments,” Metallurgical and Materials Transactions, vol. 43, no. 7, pp. 2534--2551, 2012, doi: 10.1007/s11661-012-1094-8.
    3. E. A. Jaegle and E. J. Mittemeijer, “Interplay of kinetics and microstructure in the recrystallisation of pure copper: comparing mesoscopic simulations and experiments,” Metallurgical and Materials Transactions, vol. 43, no. 7, pp. 2534--2551, 2012, doi: 10.1007/s11661-012-1094-8.
    4. F. Jaegle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface tension,” ESAIM Proceedings, vol. 38, pp. 387--408, 2012, doi: 10.1051/proc/201238022.
    5. R. Jänicke and H. Steeb, “Wave propagation in periodic microstructures by homogenisation of extended continua,” Computational Materials Science, vol. 52, no. 1, pp. 209--211, 2012, doi: 10.1016/j.commatsci.2011.04.011.
    6. R. Jänicke and H. Steeb, “Minimal loading conditions for higher-order numerical homogenisation schemes,” Archive of Applied Mechanics, vol. 82, no. 8, pp. 1075--1088, 2012, doi: 10.1007/s00419-012-0614-8.
  10. K

    1. D. Karastoyanova, D. Dentsas, D. Schumm, M. Sonntag, L. Sun, and K. Vukojevic, “Service-based Integration of Human Users in Workflow-driven Scientific Experiments,” Proceedings of the 8th IEEE International Conference on eScience, pp. 1--8, 2012, doi: 10.1109/eScience.2012.6404435.
    2. D. Karastoyanova, D. Dentsas, D. Schumm, M. Sonntag, L. Sun, and K. Vukojevic, “Service-based Integration of Human Users in Workflow-driven Scientific Experiments,” Proceedings of the 8th IEEE International Conference on eScience, pp. 1--8, 2012, doi: 10.1109/eScience.2012.6404435.
    3. G. K. Karch, F. Sadlo, D. Weiskopf, C.-D. Munz, and T. Ertl, “Visualization of Advection-Diffusion in Unsteady Fluid Flow,” Computer Graphics Forum (Proceedings of EUROVIS 2012), vol. 31, no. 3, pp. 1105--1114, 2012, doi: 10.1111/j.1467-8659.2012.03103.x.
    4. G. K. Karch, F. Sadlo, D. Weiskopf, C. D. Hansen, G.-S. Li, and T. Ertl, “Dye-Based Flow Visualization,” IEEE Computing in Science and Engineering, vol. 14, no. 6, pp. 80--86, 2012, doi: 10.1109/MCSE.2012.118.
    5. R. Kazakeviciute-Makovska, H. Steeb, and A. Ö. Aydin, “On the evolution law for the frozen fraction in linear theories of shape memory polymers,” Archive of Applied Mechanics, vol. 82, no. 8, pp. 1103--1115, 2012, doi: 10.1007/s00419-012-0615-7.
    6. J. Kelkel and C. Surulescu, “A Multiscale Approach to Cell Migration in Tissue Networks,” Mathematical Models and Methods in Applied Sciences (M3AS), vol. 22, no. 3, 2012, doi: 10.1142/S0218202511500175.
    7. J. H. K. Kim, M. L. Trew, A. J. Pullan, and O. Röhrle, “Simulating a dual-array electrode configuration to investigate the influence of skeletal muscle fatigue following functional electrical stimulation,” Computers in Biology and Medicine, vol. 42, pp. 915--924, 2012, doi: 10.1016/j.compbiomed.2012.07.004.
    8. F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 469--478.
    9. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone Using a Multiscale Approach,” Vadose Zone Journal, vol. 11, no. 3, 2012, doi: 10.2136/vzj2011.0193.
    10. R. Klöfkorn, “Efficient Matrix-Free Implementation of Discontinuous Galerkin Methods  for Compressible Flow Problems,” in Proceedings of the ALGORITMY 2012, 2012, pp. 11–21.
    11. R. Klöfkorn and M. Nolte, “Performance Pitfalls in the Dune Grid Interface,” in Advances in DUNE, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer Berlin Heidelberg, 2012, pp. 45–58.
    12. D. Koch and W. Ehlers, : “On the flow characteristics of a geothermal plant in a heterogeneous subsurface,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 373--374, 2012, doi: 10.1002/pamm.201210175.
    13. A. Kohler, P. Gschwandtner, M. Radetzki, and T. Fahringer, “Low-Latency Collectives for the Intel SCC,” Proceedings of the International Conference on Cluster Computing (CLUSTER ’12), 2012, doi: 10.1109/CLUSTER.2012.58.
    14. A. Kohler and M. Radetzki, “Optimized Reduce for Mesh-Based NoC Multiprocessors,” Proceedings of the International Parallel & Distributed Processing Symposium, Workshops & PhD forum (IPDPSW ’12), 2012, doi: 10.1109/IPDPSW.2012.111.
    15. A. Kohler, J. M. Castillo-Sanchez, J. Gross, and M. Radetzki, “Minimal MPI as Programming Interface for Multicore System-on-Chips,” Proceedings of the Forum on Specification and Design Languages (FDL ’12), 2012, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6336998.
    16. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Estimators for Control Constrained Optimal Control  Problems,” in Constrained Optimiziation and Optimal Control for Partial Differential  Equations, vol. 160, L. et al., Ed. Springer, 2012, pp. 431–443.
    17. M. Kohr, C. Pintea, and W. L. Wendland, “Potential analysis for pseudodifferential matrix operators in Lipschitz  domains on Riemannian manifolds: Applications to Brinkman operators.,” Mathematica, vol. 54, pp. 159–176, 2012.
    18. M. Kohr, G. P. Raja Sekhar, E. M. Ului, and W. L. Wendland, “Two-dimensional Stokes-Brinkman cell model---a boundary integral  formulation,” Appl. Anal., vol. 91, no. 2, pp. 251--275, 2012, doi: 10.1080/00036811.2011.614604.
    19. B. Koldehofe, F. D?rr, M. A. Tariq, and K. Rothermel, “The Power of Software-defined Networking: Line-rate Content-based Routing Using OpenFlow,” Proceedings of the 7th MW4NG Workshop of the 13th International Middleware Conference, 2012, doi: 10.1145/2405178.2405181.
    20. B. Koldehofe, B. Ottenwälder, K. Rothermel, and U. Ramachandran, “Moving Range Queries in Distributed Complex Event Processing,” Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems (DEBS), 2012, doi: 10.1145/2335484.2335507.
    21. B. Koldehofe, F. D?rr, M. A. Tariq, and K. Rothermel, “The Power of Software-defined Networking: Line-rate Content-based Routing Using OpenFlow,” Proceedings of the 7th MW4NG Workshop of the 13th International Middleware Conference, 2012, doi: 10.1145/2405178.2405181.
    22. O. Kopp, T. Binz, U. Breitenbücher, and Leymann. Frank, “A Domain-Specific Language to Model Management Plans for Composite Applications,” in 4th International Workshop on the Business Process Model and Notation., 2012.
    23. R. Krause, D. Schittler, S. Waldherr, F. Allgöwer, B. Markert, and W. Ehlers, “Remodelling Processes in Bones: A Biphasic Porous Media Model,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 131--132, 2012, doi: 10.1002/pamm.201210056.
    24. C. Kreuzer, C. Möller, A. Schmidt, and K. G. Siebert, “Design and Convergence Analysis for an Adaptive Discretization of  the Heat Equation,” IMA Journal of Numerical Analysis, 2012. http://dx.doi.org/10.1093/imanum/drr026.
    25. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative noise,” Applied Numerical Mathematics, vol. 62, pp. 441--456, 2012, doi: 10.1016/j.apnum.2011.01.011.
    26. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative  noise,” Appl. Numer. Math., vol. 62, no. 4, pp. 441--456, 2012, doi: 10.1016/j.apnum.2011.01.011.
    27. P. S. Kurzeja and H. Steeb, “About the transition frequency in Biot’s theory,” The Journal of the Acoustical Society of America, vol. 131, no. 6, pp. EL454--EL460, 2012, doi: 10.1121/1.4710834.
  11. L

    1. U. Langer, M. Schanz, O. Steinbach, and W. L. Wendland, Eds., “Fast Boundary Element Methods on Engineering and Industrial Applications.” Springer, p. 269, 2012.
    2. P. Leube, A. Geiges, and W. Nowak, “Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design,” Water Resources Research, vol. 48, no. 2, p. 16, 2012, doi: 10.1029/2010WR010137.
    3. P. Leube, W. Nowak, and G. Schneider, “Temporal Moments revisited: Why there is no better way for physically-based model reduction in time,” Water Resources Research, vol. 48, no. 11, p. 14, 2012, doi: 10.1029/2012WR011973.
    4. C. Linder and C. Miehe, “Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics,” Journal of the Mechanics and Physics of Solids, vol. 60, pp. 882--903, 2012, doi: 10.1016/j.jmps.2012.01.012.
    5. C. Linder, “An analysis of the exponential electric displacement saturation model in fracturing piezoelectric ceramics,” Technische Mechanik, 2012, [Online]. Available: http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2012_Heft1/04_Linder.pdf.
  12. M

    1. J. Mabuma, B. Markert, and W. Ehlers, “Towards a Method for Parameter Estimation of Articular Cartilage and a Staggered Procedure for Synovial Fluid-Cartilage Interaction,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 129--130, 2012, doi: 10.1002/pamm.201210055.
    2. J. Mabuma, B. Markert, and W. Ehlers, “Towards a Method for Parameter Estimation of Articular Cartilage and a Staggered Procedure for Synovial Fluid-Cartilage Interaction,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 129--130, 2012, doi: 10.1002/pamm.201210055.
    3. N. M. Mascarenhas and J. Kästner, “Are different stoichiometries feasible for complexes between lymphotoxin-alpha and tumor necrosis factor receptor 1?,” BMC Structural Biology, vol. 12, p. 8, 2012, doi: 10.1186/1472-6807-12-8.
    4. O. Meister, K. Rahnema, and M. Bader, “cover A Software Concept for Cache-Efficient Simulation on Dynamically Adaptive Structured Triangular Grids,” Advances in Parallel Computing, vol. 22, pp. 251--260, 2012, doi: 10.3233/978-1-61499-041-3-251.
    5. O. Meister, K. Rahnema, and M. Bader, “cover A Software Concept for Cache-Efficient Simulation on Dynamically Adaptive Structured Triangular Grids,” Advances in Parallel Computing, vol. 22, pp. 251--260, 2012, doi: 10.3233/978-1-61499-041-3-251.
    6. C. Miehe, D. Zäh, and D. Rosato, “Variational-Based Modeling of Micro-Electro-Elasticity with Electric Field- and Stress-Driven Domain Evolution,” International Journal for Numerical Methods in Engineering, vol. 91, no. 2, pp. 115--141, 2012, doi: 10.1002/nme.4254.
    7. C. Miehe, “Mixed variational principles for the evolution problem of gradient-extended dissipative solids,” GAMM-Mitteilungen, vol. 35, pp. 8--25, 2012, doi: 10.1002/gamm.201210002.
    8. C. Miehe and G. Ethiraj, “A Geometrically Consistent Incremental Variational Formulation for Phase Field Models in Micromagnetics,” Computer Methods in Applied Mechanics and Engineering, 2012, doi: 10.1016/j.cma.2012.03.021.
    9. C. Miehe, “Mixed variational principles for the evolution problem of gradient-extended dissipative solids,” GAMM-Mitteilungen, vol. 35, pp. 8--25, 2012, doi: 10.1002/gamm.201210002.
    10. J. Mohammadpour and C. W. Scherer, Control of Linear Parameter Varying Systems with Applications. Springer, 2012.
    11. D. Molnar, C. Niedermeier, P. Binkele, A. Mora, and S. Schmauder, “Activation Energies for Nucleation and Growth and Critical Cluster Size Dependence in JMAK Analyses of Kinetic Monte-Carlo Simulations of Precipitation,” Continuum Mechanics and Thermodynamics, vol. 24, pp. 607--617, 2012, doi: 10.1007/s00161-012-0258-5.
    12. D. Molnar et al., “Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics and Phase-Field simulations,” Acta Materialia, vol. 60, p. 6961?6971, 2012, doi: 10.1016/j.actamat.2012.08.051.
    13. D. Molnar, P. Binkele, S. Hocker, and S. Schmauder, “Atomistic multiscale simulations on the anisotropic tensile behaviour of copper-alloyed alpha-iron at different states of thermal ageing,” Philosophical Magazine, vol. 92, pp. 586--607, 2012, doi: 10.1080/14786435.2011.630690.
    14. D. Molnar, F. Maier, P. Binkele, and S. Schmauder, “Molecular Dynamics simulations on the coherency of Cu nano precipitates in BCC-Fe,” Proceedings of the 20th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), 2012, [Online]. Available: http://eccomas2012.conf.tuwien.ac.at/.
    15. D. Molnar et al., “Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics and Phase-Field simulations,” Acta Materialia, vol. 60, p. 6961?6971, 2012, doi: 10.1016/j.actamat.2012.08.051.
    16. F. Mörl, T. Siebert, S. Schmitt, R. Blickhan, and M. Guenther, “Electro-mechanical delay in Hill-type muscle models,” Journal of Mechanics in Medicine and Biology, vol. 12, no. 05, p. 1250085, 2012.
    17. M. A. Müller and F. Allgöwer, “Improving performance in model predictive control: switching cost functionals under average dwell-time,” Automatica, Elsevier, vol. 48, pp. 402--409, 2012, doi: 10.1016/j.automatica.2011.11.005.
    18. M. A. Müller, P. Martius, and F. Allgöwer, “Model predictive control of switched nonlinear systems under average dwell-time,” Journal of Process Control, vol. 22, pp. 1702--1710, 2012, doi: 10.1016/j.jprocont.2012.07.004.
    19. M. A. Müller, D. Liberzon, and F. Allgöwer, “Relaxed conditions for norm-controllability of nonlinear systems,” Proceedings of the 51st IEEE Conference on Decision and Control (CDC), pp. 314--319, 2012, doi: 10.1109/CDC.2012.6426430.
    20. M. A. Müller and F. Allgöwer, “Robustness of steady-state optimality in economic model predictive control,” Proceedings of the 51st IEEE Conference on Decision and Control (CDC), pp. 1011--1016, 2012, doi: 10.1109/CDC.2012.6426754.
    21. M. A. Müller, M. Reble, and F. Allgöwer, “Cooperative control of dynamically decoupled systems via distributed model predictive control,” International Journal of Robust and Nonlinear Control, vol. 22, pp. 1376--1397, 2012, doi: 10.1002/rnc.2826.
    22. M. A. Müller, B. Schürmann, and F. Allgöwer, “Robust cooperative control of dynamically decoupled systems via distributed MPC,” Proceedings of the IFAC Conference on Nonlinear Model Predictive Control, pp. 412--417, 2012, doi: 10.3182/20120823-5-NL-3013.00007.
    23. M. A. Müller, M. Reble, and F. Allgöwer, “Cooperative control of dynamically decoupled systems via distributed model predictive control,” International Journal of Robust and Nonlinear Control, vol. 22, pp. 1376--1397, 2012, doi: 10.1002/rnc.2826.
  13. N

    1. J. M. Nordbotten et al., “Uncertainties in practical simulation of CO2 storage,” International Journal of Greenhouse Gas Control, vol. 9, pp. 234--242, 2012, doi: 10.1016/j.ijggc.2012.03.007.
    2. A. Nowak, D. Karastoyanova, F. Leymann, A. Rapoport, and D. Schumm, “Flexible Information Design for Business Process Visualizations,” Proceedings of the International Conference on Service-Oriented Computing and Applications, 2012, doi: 10.1109/SOCA.2012.6449436.
    3. W. Nowak, Y. Rubin, and F. P. J. de Barros, “A Hypothesis-Driven Approach to Optimal Site Investigation,” Water Resources Research, vol. 48, p. W06509, 2012, doi: 10.1029/2011WR011016.
    4. W. Nowak, Y. Rubin, and F. P. J. de Barros, “A Hypothesis-Driven Approach to Optimal Site Investigation,” Water Resources Research, vol. 48, p. W06509, 2012, doi: 10.1029/2011WR011016.
    5. C. Nowakowski, J. Fehr, M. Fischer, and P. Eberhard, “Model Reduction in Elastic Multibody Systems using the Floating Frame of Reference Formulation,” Mathematical Modelling, vol. 7, pp. 40--48, 2012, doi: 10.3182/20120215-3-AT-3016.00007.
  14. O

    1. S. Oladyshkin and W. Nowak, “Polynomial response surfaces for probabilistic risk assessment and risk control via robust design,” Novel Approaches and Their Applications in Risk. ISBN: 978-953-51-0519-0, pp. 317--344, 2012, doi: 10.5772/38170.
    2. S. Oladyshkin and M. Panfilov, “Open thermodynamic model for compressible multicomponent two-phase flow in porous media,” Journal of Petroleum Science and Engineering, vol. 81, pp. 41--48, 2012, doi: 10.1016/j.petrol.2011.12.001.
    3. S. Oladyshkin and W. Nowak, “Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion,” Reliability Engineering and System Safety, vol. 106, pp. 179--190, 2012, doi: 10.1016/j.ress.2012.05.002.
    4. S. Oladyshkin, F. P. J. de Barros, and W. Nowak, “Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology,” Advances in Water Resources, vol. 37, pp. 10--22, 2012, doi: 10.1016/j.advwatres.2011.11.001.
    5. S. Oladyshkin, F. P. J. de Barros, and W. Nowak, “Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology,” Advances in Water Resources, vol. 37, pp. 10--22, 2012, doi: 10.1016/j.advwatres.2011.11.001.
  15. P

    1. E. Pebesma, D. Nüst, and R. Bivand, “The R software environment in reproducible geoscientific research,” Eos, Transactions American Geophysical Union, vol. 93, no. 16, pp. 163--163, 2012, doi: 10.1029/2012EO160003.
    2. B. Pfleging, S. Schneegass, and A. Schmidt, “Multimodal Interaction in the Car - Combining Speech and Gestures on the Steering Wheel,” Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2012, doi: 10.1145/2390256.2390282.
    3. B. Pfleging, F. Alt, and A. Schmidt, “Meaningful Melodies - Personal Sonification of Text Messages for Mobile Devices,” Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services companion, pp. 189--192, 2012, doi: 10.1145/2371664.2371706.
    4. B. Pfleging, T. Döring, I. Alvarez, M. Kranz, G. Weinberg, and J. Healey, “AutoNUI: 2nd Workshop on Automotive Natural User Interfaces,” Adjunct Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2012, [Online]. Available: http://www.auto-ui.org/12/docs/AutomotiveUI-2012-Adjunct-Proceedings.pdf#page=41.
    5. I. Polhat and C. W. Scherer, “Stability Analysis for Bilateral Teleoperation: An IQC Formulation,” IEEE T. Robot., vol. 28, pp. 1294--1308, 2012, doi: 10.1109/TRO.2012.2209230.
  16. Q

    1. B. Quintal, H. Steeb, M. Frehner, S. M. Schmalholz, and E. H. Saenger, “Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow,” Geophysics, vol. 77, no. 3, pp. L13--L23, 2012, doi: 10.1190/geo2011-0233.1.
  17. R

    1. N. Radde, “Analyzing fixed points of intracellular regulation networks with complex feedback topology,” BMC Syst Biol, vol. 6, no. 57, 2012, doi: 10.1186/1752-0509-6-57.
    2. N. Radde, “Analyzing fixed points of intracellular regulation networks with complex feedback topology,” BMC Syst Biol, vol. 6, no. 57, 2012, doi: 10.1186/1752-0509-6-57.
    3. H. Ramézani, H. Steeb, and J. Jeong, “Analytical and numerical studies on Penalized Micro-Dilatation (PMD) theory: Macro-micro link concept,” European Journal of Mechanics - A/Solids, vol. 34, pp. 130--148, 2012, doi: 10.1016/j.euromechsol.2011.11.002.
    4. P. Rauschenberger, J. Schlottke, and B. Weigand, “A Computation Technique for Rigid Particle Flows in an Eulerian Framework Using the Multiphase DNS Code FS3D,” High Performance Computing in Science and Engineering 11 Transactions of the High Performance Computing Center, Stuttgart (HLRS), 2012, doi: 10.1007/978-3-642-23869-7_23.
    5. M. Reble and F. Allgöwer, “Unconstrained Model Predictive Control and Suboptimality Estimates for Nonlinear Continuous-Time Systems,” Automatica, vol. 48, no. 8, pp. 1812--1817, 2012, doi: 10.1016/j.automatica.2012.05.067.
    6. M. Reble, E. Quevedo, and F. Allgöwer, “A Unifying Framework for Stability in MPC using a Generalized Integral Terminal Cost,” Proceedings of the American Control Conference, pp. 1211--1216, 2012, doi: 10.1109/ACC.2012.6315070.
    7. M. Reble, E. Quevedo, and F. Allgöwer, “Improved stability conditions for unconstrained nonlinear model predictive control by using additional weighting terms,” Proceedings of the 51st IEEE Conference on Decision and Control, pp. 1625--1630, 2012, doi: 10.1109/CDC.2012.6426743.
    8. M. Reble and F. Allgöwer, “Unconstrained Model Predictive Control and Suboptimality Estimates for Nonlinear Continuous-Time Systems,” Automatica, vol. 48, no. 8, pp. 1812--1817, 2012, doi: 10.1016/j.automatica.2012.05.067.
    9. M. Reble, E. Quevedo, and F. Allgöwer, “A Unifying Framework for Stability in MPC using a Generalized Integral Terminal Cost,” Proceedings of the American Control Conference, pp. 1211--1216, 2012, doi: 10.1109/ACC.2012.6315070.
    10. M. Reiter et al., “On Analyzing Quality of Data Influences on Performance of Finite Elements driven Computational Simulations,” Proceedings of the 18th International Conference, Euro-Par 2012, vol. 7484, pp. 793--804, 2012, doi: 10.1007/978-3-642-32820-6_79.
    11. M. Reiter, U. Breitenb?cher, O. Kopp, and D. Karastoyanova, “Quality of Data Driven Simulation Workflows,” IEEE (Hrsg): 2012 8th IEEE International Conference on eScience, pp. 1--8, 2012, doi: 10.1109/eScience.2012.6404417.
    12. T. Richter et al., “ViPLab: a virtual programming laboratory for mathematics and engineering,” Interactive Technology and Smart Education, vol. 9, pp. 246--262, 2012, doi: 10.1109/ISM.2011.95.
    13. T. Richter et al., “ViPLab: a virtual programming laboratory for mathematics and engineering,” Interactive Technology and Smart Education, vol. 9, pp. 246–262, 2012, doi: 10.1108/17415651211284039.
    14. C. Rohde and F. Xie, “Global existence and blowup phenomenon for a 1D radiation hydrodynamics  model problem,” Math. Methods Appl. Sci., vol. 35, no. 5, pp. 564--573, 2012, doi: 10.1002/mma.1593.
    15. T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori Error Estimation for Second Order Mechanical Systems. Acta Mechanica Sinica,” Acta Mechanica Sinica, vol. 28, pp. 854--862, 2012, doi: 10.1007/s10409-012-0114-7.
    16. T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori error estimation for second order mechanical systems,” Acta Mechanica Sinica, vol. 28(3), pp. 854–862, 2012.
    17. T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori Error Estimation for Second Order Mechanical Systems. Acta Mechanica Sinica,” Acta Mechanica Sinica, vol. 28, pp. 854--862, 2012, doi: 10.1007/s10409-012-0114-7.
    18. D. Röhm and A. Arnold, “Lattice boltzmann simulations on GPUs with ESPResSo,” The European Physical Journal Special Topics, vol. 210, no. 1, pp. 89--100, 2012, doi: 10.1140/epjst/e2012-01639-6.
    19. D. Röhm and A. Arnold, “Lattice boltzmann simulations on GPUs with ESPResSo,” The European Physical Journal Special Topics, vol. 210, no. 1, pp. 89--100, 2012, doi: 10.1140/epjst/e2012-01639-6.
    20. O. Röhrle, J. B. Davidson, and A. J. Pullan, “A physiologically based, multi-scale model of skeletal muscle structure and function,” Frontiers in Striated Muscle Physiology, vol. 3, 2012, doi: 10.3389/fphys.2012.00358.
  18. S

    1. F. Sadlo, M. Üffinger, T. Ertl, and D. Weiskopf, “On the Finite-Time Scope for Computing Lagrangian Coherent Structures from Lyapunov Exponents,” TopoInVis 2011, vol. 0, p. 14, 2012, doi: 10.1007/978-3-642-23175-9_18.
    2. F. Sadlo, M. Üffinger, T. Ertl, and D. Weiskopf, “On the Finite-Time Scope for Computing Lagrangian Coherent Structures from Lyapunov Exponents,” TopoInVis 2011, vol. 0, p. 14, 2012, doi: 10.1007/978-3-642-23175-9_18.
    3. E. H. Saenger, D. Uribe, R. Jänicke, O. Ruiz, and H. Steeb, “Digital material laboratory: Wave propagation effects in open-cell aluminium foams,” International Journal of Engineering Science, vol. 58, pp. 115--123, 2012, doi: 10.1016/j.ijengsci.2012.03.030.
    4. M. Schenke, B. Markert, and W. Ehlers, “On the dynamic behaviour of fluid-saturated soil within the framework of elasto-plasticity,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 753--754, 2012, doi: 10.1002/pamm.201210365.
    5. M. Schenke and W. Ehlers, “On the Analysis of Porous Media Dynamics using a DUNE-PANDAS Interface,” Advances in DUNE - Proceedings of the DUNE User Meeting, pp. 157--167, 2012, doi: 10.1007/978-3-642-28589-9_12.
    6. C. W. Scherer, Distributed control with dynamic dissipation constraints. 50th Annual Allertin Conference on Communication, Control, and Computing, 2012.
    7. C. W. Scherer and I. E. Kose, “Gain scheduled Control Synthesis for dynamic D-scales,” IEEE T. Automat. Contr., vol. 57, pp. 2219--2234, 2012, doi: 10.1109/TAC.2012.2184609.
    8. C. W. Scherer, Gain-scheduled synthesis with dynamic positive real multipliers. 51st IEEE Conf. Decision and Control, Hawaii, 2012.
    9. C. W. Scherer and J. Veenman, Robust Controller Synthesis is Convex for Systems without Control Channel Uncertainties. 7th IFAC Symposium on Robust Control Design, 2012.
    10. D. Schittler, J. Hasenauer, and F. Allgöwer, “A model for proliferating cell populations that accounts  for cell types,” Proc. of the 9th Workshop on Comp. Syst. Biol., pp. 79--82, 2012, [Online]. Available: http://www.cs.tut.fi/wcsb12/WCSB2012.pdf#page=87.
    11. V. Schleper, “On the coupling of compressible and incompressible fluids,” in Numerical Methods for Hyperbolic Equations, 2012, [Online]. Available: http://www.taylorandfrancis.com/books/details/9780415621502/.
    12. V. Schleper, M. Gugat, M. Herty, A. Klar, and G. Leugering, “Well-posedness of networked hyperbolic systems of balance laws,” in Constrained Optimization and Optimal Control for Partial Differential  Equations, vol. 160, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, Eds. Birkh�user, 2012.
    13. G. S. Schmidt, A. Papachristodoulou, U. Münz, and F. Allgöwer, “Frequency synchronization and phase agreement in Kuramoto oscillator networks with delays,” Automatica, vol. 48, no. 12, pp. 3008--3017, 2012, doi: 10.1016/j.automatica.2012.08.013.
    14. G. S. Schmidt, C. Ebenbauer, and F. Allgower, “A solution for a class of output regulation problems on SO(n),” American Control Conference, pp. 1773--1779, 2012, doi: 10.1109/ACC.2012.6315147.
    15. S. Schmitt, D. Haeufle, R. Blickhan, and M. Günther, “Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle,” Bioinspiration & Biomimetics, vol. 7, no. 3, p. 036022, 2012.
    16. S. Schmitt, D. Häufle, R. Blickhan, and M. Gu?nther, Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle. 2012.
    17. D. Schumm, D. Dentsas, M. Hahn, D. Karastoyanova, F. Leymann, and M. Sonntag, “Web Service Composition Reuse through Shared Process Fragment Libraries,” Proceedings of the 12th International Conference on Web Engineering (ICWE 2012), 2012, doi: 10.1007/978-3-642-31753-8_53.
    18. F. Schäfer, L. Walter, H. Class, and C. Müller, “The regional pressure impact of CO storage: a showcase study from the North German Basin,” Environmental Earth Sciences, vol. 65, pp. 2037--2049, 2012, doi: 10.1007/s12665-011-1184-8.
    19. A. Schöniger, W. Nowak, and H.-J. Hendricks Franssen, “Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography,” Water Resources Research, vol. 48, 2012, doi: 10.1029/2011WR010462.
    20. G. S. Seyboth, D. V. Dimarogonas, K. H. Johansson, and F. Allgöwer, “Static Diffusive Couplings in Heterogeneous Linear Networks,” Proc. 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NECSYS), pp. 258--263, 2012, doi: 10.3182/20120914-2-US-4030.00041.
    21. G. S. Seyboth, G. S. Schmidt, and F. Allgöwer, “Cooperative control of linear parameter-varying systems,” Proc. American Control Conference (ACC), pp. 2407--2412, 2012, doi: 10.1109/ACC.2012.6314912.
    22. G. S. Seyboth, G. S. Schmidt, and F. Allgöwer, “Output Synchronization of Linear Parameter-varying Systems via Dynamic Couplings,” Proc. 51st IEEE Conference on Decision and Control (CDC), pp. 3777--3782, 2012, doi: 10.1109/CDC.2012.6426752.
    23. T. Shiiba, J. Fehr, and P. Eberhard, “Flexible Multibody Simulation of Automotive Systems with Non-modal Model Reduction Techniques,” Vehicle System Dynamics, vol. 50, 2012, doi: 10.1080/00423114.2012.700403.
    24. K. G. Siebert, “Mathematically Founded Design of Adaptive Finite Element Software,” in Multiscale and Adaptivity: Modelling, Numerics and Applications, vol. 2040, Berlin: Springer, 2012, pp. 227–309.
    25. M. Sonntag and D. Karastoyanova, “Ad hoc Iteration and Re-execution of Activities in Workflows,” International Journal on Advances in Software, vol. 5, pp. 91--109, 2012, [Online]. Available: http://www.iariajournals.org/software/soft_v5_n12_2012_paged.pdf.
    26. T. Spatzier, T. Binz, F. Leyman, and G. Breiter, “Portable Cloud Services Using TOSCA,” IEEE Internet Computing, vol. 16, pp. 80–85, 2012, doi: doi.ieeecomputersociety.org/10.1109/MIC.2012.43.
    27. M. Sprenger, S. Schmitt, and O. Röhrle, “Coupling 3D and 1D Skeletal Muscle Models,” PAMM, vol. 12, pp. 111--112, 2012, doi: 10.1002/pamm.201210046.
    28. M. Sprenger, S. Schmitt, and O. Röhrle, “Coupling 3D and 1D Skeletal Muscle Models,” PAMM, vol. 12, pp. 111--112, 2012, doi: 10.1002/pamm.201210046.
    29. H. Steeb, P. S. Kurzeja, M. Frehner, and S. M. Schmalholz, “Phase Velocity Dispersion and Attenuation of Seismic Waves due to Trapped Fluids in Residual Saturated Porous Media,” Vadose Zone Journal, vol. 11, no. 3, p. 0, 2012, doi: 10.2136/vzj2011.0121.
    30. P. Steinhorst and A.-M. Sändig, “Reciprocity principle for the detection of planar cracks in anisotropic  elastic material,” Inverse Problems, vol. 28, no. 8, p. 085010, 2012, [Online]. Available: http://stacks.iop.org/0266-5611/28/i=8/a=085010.
  19. T

    1. D. M. Tartakovsky, W. Nowak, and D. Bolster, “Introduction to the special issue on uncertainty quantification and risk assessment,” Advances in Water Resources, vol. 36, pp. 1--2, 2012, doi: 10.1016/j.advwatres.2011.12.010.
    2. M. Tkachuk and C. Linder, “The maximal advance path constraint for the homogenization of materials with random network microstructure,” Philosophical Magazine, vol. 92, pp. 2779--2808, 2012, [Online]. Available: http://dx.doi.org/10.1080/14786435.2012.675090.
    3. M. Troldborg, W. Nowak, I. Lange, M. Santos, P. Binning, and P. L. Bjerg, “Application of Bayesian geostatistics for evaluation of mass discharge uncertainty at contaminated sites,” Water Resources Research, vol. 48, no. W09535, 2012, doi: 10.1029/2011WR011785.
  20. V

    1. J. Veenman and C. W. Scherer, Robust gain-scheduled controller synthesis is convex for systems without control channel uncertainties. 51st IEEE Conf. Decision and Control, 2012.
    2. J. Veenman, C. W. Scherer, and I. E. Koese, “Robust Estimation with Partial Gain-Scheduling through Convex Optimization,” Control of Linear Parameter Varying Systems with Applications, pp. 253--278, 2012, doi: 10.1007/978-1-4614-1833-7_10.
    3. C. Vehlow et al., “Uncertainty-aware visual analysis of biochemical reaction networks,” Proc. of the IEEE Symp on Biol Data Visualization, pp. 79--82, 2012, doi: 10.1109/BioVis.2012.6378598.
  21. W

    1. A. Wagner and W. Ehlers, “Multiphasic modelling of human brain tissue for intracranial drug-infusion studies,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 107--110, 2012, doi: 10.1002/pamm.201210045.
    2. S. Wagner, C. Fehling, D. Karastoyanova, and D. Schumm, “State Propagation-based Monitoring of Business Transactions,” Proceedings of the International Conference on Service-Oriented Computing and Applications, 2012, doi: 10.1109/SOCA.2012.6449464.
    3. S. Waldherr and B. Haasdonk, “Efficient parametric analysis of the chemical master equation through model order reduction,” BMC Systems Biology, vol. 6, 2012, doi: 10.1186/1752-0509-6-81.
    4. S. Waldherr and B. Haasdonk, “Efficient parametric analysis of the chemical master equation through model order reduction,” BMC Systems Biology, vol. 6, 2012, doi: 10.1186/1752-0509-6-81.
    5. L. Walter, P. J. Binning, S. Oladyshkin, B. Flemisch, and H. Class, “Brine migration resulting from CO2 injection into saline aquifers - An approach to risk estimation including various levels of uncertainty,” International Journal of Greenhouse Gas Control, vol. 9, pp. 495--506, 2012, doi: 10.1016/j.ijggc.2012.05.004.
    6. Y. K. Wang, M. P. Nash, A. J. Pullan, J. A. Kieser, and O. Röhrle, “Model-based Identification of Motion Sensor Placement for Tracking Retraction and Elongation of the Tongue,” Biomechanics and Modeling in Mechanobiology, 2012, doi: 10.1007/s10237-012-0407-6.
    7. Y. K. Wang, M. P. Nash, A. J. Pullan, J. A. Kieser, and O. Röhrle, “Model-based Identification of Motion Sensor Placement for Tracking Retraction and Elongation of the Tongue,” Biomechanics and Modeling in Mechanobiology, 2012, doi: 10.1007/s10237-012-0407-6.
    8. P. Weber, A. Kramer, C. Dingler, and N. Radde, “Trajectory-oriented Bayesian experiment design versus Fisher A-optimal design: an in depth comparison study,” Bioinformatics, vol. 28, pp. i535–i541, 2012, doi: 10.1093/bioinformatics/bts377.
    9. R. Weeber, S. Kantorovich, and C. Holm, “Deformation mechanisms in 2D magnetic gels studied by computer simulations,” Soft Matter, vol. 8, p. 9923, 2012, doi: 10.1039/C2SM26097b.
    10. M. Weigel, A. Arnold, and P. Virnau, “Editorial,” The European Physical Journal Special Topics, 2012, doi: 10.1140/epjst/e2012-01633-0.
    11. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” Math. Biosci. Eng., vol. 9, pp. 663–683, 2012, doi: 10.3934/mbe.2012.9.663.
    12. D. Wirtz and B. Haasdonk, “An Improved Vectorial Kernel Orthogonal Greedy Algorithm,” University of Stuttgart, SimTech Preprint, 2012. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=742.
    13. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A-posteriori error estimation for DEIM reduced nonlinear dynamical  systems,” University of Stuttgart, SimTech Preprint, 2012. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=733.
    14. D. Wirtz, N. Karajan, and B. Haasdonk, “Model order reduction of multiscale models using kernel methods,” SRC SimTech, University of Stuttgart, Germany, Preprint, 2012.
    15. D. Wirtz and B. Haasdonk, “A-posteriori error estimation for parameterized kernel-based systems,” Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling, 2012, doi: 10.3182/20120215-3-at-3016.00135.
    16. D. Wirtz and B. Haasdonk, “Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems,” System and Control Letters, vol. 61, pp. 203--211, 2012, doi: 10.1016/j.sysconle.2011.10.012.
    17. D. Wirtz and B. Haasdonk, “A-posteriori error estimation for parameterized kernel-based systems,” Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling, 2012, doi: 10.3182/20120215-3-at-3016.00135.
    18. J. Wu and F. Allgöwer, “A constructive approach to synchronization using relative information,” Proc. 51st IEEE Conference on Decision and Control, pp. 5960--5965, 2012, doi: 10.1109/CDC.2012.6426372.
    19. J. Wu and F. Allgöwer, “A constructive approach to synchronization using relative information,” Proceedings of the 51st IEEE Conference on Decision and Control, 2012, doi: 10.1109/CDC.2012.6426372.
  22. Y

    1. S. Yu, C. Böhm, H. Chen, and F. Allgöwer, “Model predictive control of constrained LPV systems,” International Journal of Control, vol. 85, no. 6, pp. 671--683, 2012, doi: 10.1080/00207179.2012.661878.
    2. S. Yu, C. Böhm, H. Chen, and F. Allgöwer, “Model predictive control of constrained LPV systems,” International Journal of Control, vol. 85, no. 6, pp. 671--683, 2012, doi: 10.1080/00207179.2012.661878.
  23. Z

    1. S. Zinatbakhsh, B. Markert, and W. Ehlers, “Stability Analysis of Decoupled Solution Strategies for Coupled Multi-field Problems - A General Framework,” Proceedings in Applied Mathematics and Mechanics, vol. 12, pp. 359--360, 2012, doi: 10.1002/pamm.201210168.
  24. Ü

    1. M. Üffinger, F. Sadlo, M. Kirby, C. Hansen, and T. Ertl, “FTLE Computation Beyond First-Order Approximation,” Eurographics Short Papers, 2012, doi: 10.2312/conf/EG2012/short/061-064.
    2. M. Üffinger, F. Sadlo, and T. Ertl, “A Time-Dependent Vector Field Topology Based on Streak Surfaces,” IEEE Transaction on Visualization and Computer Graphics, 2012, doi: 10.1109/TVCG.2012.131.
Zum Seitenanfang