Publications 2014

  1. A

    1. S. Alvarez Barcia, J. R. Flores, and J. Kästner, “Tunneling Above the Crossover Temperature,” J. Phys. Chem. A, vol. 118, p. 78, 2014, doi: 10.1021/jp411189m.
    2. V. Andrikopoulos, S. Gómez Saez, D. Karastoyanova, and A. Weiß, “Collaborative, Dynamic & Complex Systems: Modeling, Provision & Execution,” Proceedings of the Fourth International Conference on Cloud Computing and Service Science, pp. 276--286, 2014, doi: 10.5220/0004852402760286.
  2. B

    1. K. Baber, B. Flemisch, and R. Helmig, “Modelling drop dynamics at the interface between free and porous-medium flow using the mortar method,” International Journal of Heat and Mass Transfer, 2014, [Online]. Available: http://www.hydrosys.uni-stuttgart.de/institut/hydrosys/publikationen/paper/2014/SimTech_Preprint_Baber2014.pdf
    2. P. Bader, S. Schneegass, N. Henze, V. Schwind, and K. Wolf, “A mobile see-through 3D display with front- and back-touch,” Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, 2014, doi: 10.1145/2639189.2670276.
    3. A. Barth and F. E. Benth, “The forward dynamics in energy markets - infinite-dimensional modelling and simulation,” Stochastics, vol. 86, no. 6, Art. no. 6, 2014, doi: 10.1080/17442508.2014.895359.
    4. A. Barth and S. Moreno-Bromberg, “Optimal risk and liquidity management with costly refinancing opportunities,” Insurance Math. Econom., vol. 57, pp. 31--45, 2014, doi: 10.1016/j.insmatheco.2014.05.001.
    5. F. Bayer and F. Allgöwer, “Robust Economic Model Predictive Control with Linear Average Constraints,” Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 6707--6712, 2014, doi: 10.1109/CDC.2014.7040442.
    6. F. Bayer, M. A. Müller, and F. Allgöwer, “Set-based Disturbance Attenuation in Economic Model Predictive Control,” 19th IFAC World Congress, pp. 1898--1903, 2014, doi: 10.3182/20140824-6-ZA-1003.00951.
    7. F. Bayer, M. A. Müller, and F. Allgöwer, “Tube-based Robust Economic Model Predictive Control,” Journal of Process Control, vol. 24, no. 8, Art. no. 8, 2014, doi: 10.1016/j.jprocont.2014.06.006.
    8. A. Beck et al., “High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations,” International Journal of Numerical Methods in Fluids, vol. 76, pp. 522--548, 2014, doi: 10.1002/fld.3943.
    9. SP. Benson and J. Pleiss, “Solvent flux method (SFM): a case study of water access to Candida antarctica lipase B,” J Chem Theory Comput, vol. 11, pp. 5206--5214, 2014, doi: 10.1021/ct500791e.
    10. SP. Benson and J. Pleiss, “Molecular dynamics simulations of self-emulsifying drug delivery systems (SEDDS): influence of excipients on droplet nanostructure and drug localization,” Langmuir, vol. 30, pp. 8471--8480, 2014, doi: 10.1021/la501143z.
    11. A. Benzing, B. Koldehofe, and K. Rothermel, “Bandwidth-Minimized Distribution of Measurements in Global Sensor Networks,” Proceedings of the 14th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS 2014), 2014, doi: 10.1007/978-3-662-43352-2_13.
    12. F. Berg, F. Dürr, and K. Rothermel, “Optimal Predictive Code Offloading,” Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2014, doi: 10.4108/icst.mobiquitous.2014.258023.
    13. F. Berg, F. Dürr, and K. Rothermel, “Increasing the Efficiency and Responsiveness of Mobile Applications with Preemptable Code Offloading,” Proceedings of the 3rd IEEE International Conference on Mobile Services: MS14, 2014, doi: 10.1109/MobServ.2014.20.
    14. S. Bidier and W. Ehlers, “Localisation in granular media: Particle approach, homogenisation and continuum modelling,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 575--576, 2014, doi: 10.1002/pamm.201410275.
    15. T. Blaschek, K. Vukojevic-Haupt, D. Weber, D. Karastoyanova, and T. Ertl, “Towards Automated Analysis of Eye Tracking Studies using the Workflow Technology,” Proceedings of the Workshop on Simulation Technology: Systems for Data Intensive Simulations (INFORMATIK 2014), 2014, [Online]. Available: http://subs.emis.de/LNI/Proceedings/Proceedings232/149.pdf
    16. C. Bleiler et al., “Multiphasic Modelling of the Vertebral Bone for Cement-Injection Studies,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 117--118, 2014, doi: 10.1002/pamm.201410046.
    17. M. Boger, F. Jaegele, R. Klein, and C.-D. Munz, “Coupling of compressible and incompressible flow regions using the multiple pressure variables approach,” Mathematical Methods in the Applied Sciences, 2014, doi: 10.1002/mma.3081.
    18. M. Boger, F. Jaegele, B. Weigand, and C.-D. Munz, “A pressure-based treatment for the direct numerical simulation of compressible multi-phase flow using multiple pressure variables,” Computers & Fluids, vol. 96, pp. 338--349, 2014, doi: 10.1016/j.compfluid.2014.01.029.
    19. M. U. Bohner, J. Zeman, J. Smiatek, A. Arnold, and J. Kästner, “Nudged-elastic band used to find reaction coordinates based on the free energy,” The Journal of Chemical Physics, vol. 140, no. 7, Art. no. 7, 2014, doi: 10.1063/1.4865220.
    20. C. Braun, S. Halder, and H.-J. Wunderlich, “A-ABFT: Autonomous Algorithm-Based Fault Tolerance for Matrix Multiplications on Graphics Processing Units,” Proceedings of The 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2014), pp. 443--454, 2014, doi: 10.1109/DSN.2014.48.
    21. K. Breitsprecher, P. Kosovan, and C. Holm, “Coarse-grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge localization,” Journal of Physics: Condensed Matter, vol. 26, no. 28, Art. no. 28, 2014, doi: 10.1088/0953-8984/26/28/284114.
    22. F. D. Brunner and F. Allgöwer, “Approximate Predictive Control of Polytopic Systems,” Proceedings of the 19th IFAC World Congress, pp. 11060--11066, 2014, doi: 10.3182/20140824-6-ZA-1003.00546.
    23. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Robust Self-Triggered MPC for Constrained Linear Systems.,” Proceedings of the European Control Conference (2014), pp. 472--477, 2014, doi: 10.1109/ECC.2014.6862397.
    24. F. D. Brunner, M. Lazar, and F. Allgöwer, “Computation of Piecewise Affine Terminal Cost Functions for Model Predictive Control,” Proceedings of the 17th international conference on Hybrid systems: computation and control, pp. 1--10, 2014, doi: 10.1145/2562059.2562108.
    25. M. Burkhardt, R. Seifried, and P. Eber, “Aspects of Symbolic Formulations in Flexible Multibody Systems,” Journal of Computational and Nonlinear Dynamics, vol. 9, no. 4, Art. no. 4, 2014, doi: 10.1115/1.4025897.
    26. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” SIAM Journal on Financial Mathematics (SIFIN), 2014, doi: 10.1137/140981216.
    27. M. Bürger, G. Notarstefano, and F. Allgöwer, “A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization.,” IEEE Transactions on Automatic Control, vol. 59, no. 2, Art. no. 2, 2014, doi: 10.1109/TAC.2013.2281883.
  3. C

    1. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-driven time parallelism via forecasting,” SIAM Journal on Scientific Computing, vol. 41, no. 3, Art. no. 3, 2019, doi: 10.1137/18M1174362.
    2. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, pp. 554--579, 2014, doi: 10.1137/120897821.
    3. A. M. Cooper and J. Kästner, “Averaging techniques for reaction barriers in QM/MM simulations,” ChemPhysChem, vol. 15, p. 3264, 2014, doi: 10.1002/cphc.201402382.
  4. D

    1. C. Dibak and B. Koldehofe, “Towards Quality-aware Simulations on Mobile Devices,” Proceedings of the 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI) (Informatik 2014), 2014, [Online]. Available: ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2014-54/INPROC-2014-54.pdf
  5. E

    1. P. Eberhard et al., “Particles-bridging the Gap between Solids and Fluids,” Procedia IUTAM, vol. 10, pp. 161--179, 2014, doi: 10.1016/j.piutam.2014.01.016.
    2. W. Ehlers, “Porous Media in the Light of History,” The History of Theoretical, Material and Computational Mechanics, pp. 211--227, 2014, doi: 10.1007/978-3-642-39905-3_13.
    3. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, p. 559, 2014, doi: 10.1002/zamm.201400559.
    4. W. Ehlers, M. Schenke, and B. Markert, “Liquefaction phenomena in fluid-saturated soil based on the Theory of Porous Media and the framework of elasto-plasticity,” Journal of Applied Mathematics and Mechanics, vol. 94, pp. 668--677, 2014, doi: 10.1002/zamm.201200220.
    5. A. Elsheikh, S. Oladyshkin, W. Nowak, and M. Christie, “Probability of CO2 Leakage Using Rare Event Simulation,” ECMOR XIV-14th, vol. We, p. B25, 2014, doi: 10.3997/2214-4609.20141876.
    6. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition Dynamics,” Portugaliae Mathematica, vol. 70, pp. 319--344, 2014, doi: 10.4171/PM/1937.
    7. R. Enzenhöfer, T. Bunk, and W. Nowak, “Nine steps to risk-informed wellhead protection and management: A case study,” Ground Water, vol. 52, pp. 161--174, 2014, doi: 10.1111/gwat.12161.
  6. F

    1. C. Feller and C. Ebenbauer, “Continuous-time linear MPC algorithms based on relaxed logarithmic barrier functions,” IFAC Proceedings Volumes, vol. 47, no. 3, Art. no. 3, 2014, doi: 10.3182/20140824-6-ZA-1003.01022.
    2. C. Feller and C. Ebenbauer, “Barrier function based linear model predictive control with polytopic terminal sets,” Conference on Decision and Control, pp. 6683--6688, 2014, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7040438&tag=1
    3. O. Fernandes, S. Frey, F. Sadlo, and T. Ertl, “Space-Time Volumetric Depth Images for In-Situ Visualization,” Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on, pp. 59--65, 2014, doi: 10.1109/LDAV.2014.7013205.
    4. A. Fischer and P. Eberhard, “Controlling vibrations of a cutting process using predictive control,” Computational Mechanics, vol. 54, no. 1, Art. no. 1, 2014, doi: 10.1007/s00466-014-1014-4.
    5. S. Frey, F. Sadlo, K.-L. Ma, and T. Ertl, “Interactive Progressive Visualization with Space-Time Error Control,” IEEE Transactions on Visualization & Computer Graphics, 2014, doi: 10.1109/TVCG.2014.2346319.
    6. J. Fuhrmann, M. Ohlberger, and C. Rohde (Eds, “Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems,” FVCA 7, vol. 77/78, 2014, doi: 10.1007/978-3-319-05591-6.
    7. M. Funk, R. Boldt, B. Pfleging, M. Pfeiffer, N. Henze, and A. Schmidt, Representing indoor location of objects on wearable computers with head-mounted displays. 2014. doi: 10.1145/2582051.2582069.
    8. M. Funk, A. Sahami Shirazi, N. Henze, and A. Schmidt, Using a touch-sensitive wristband for text entry on smart watches. 2014. doi: 10.1145/2559206.2581143.
  7. G

    1. M. Greis, F. Alt, N. Henze, and N. Memarovic, “I can wait a minute: uncovering the optimal delay time for pre-moderated user-generated content on public displays,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014, doi: 10.1145/2556288.2557186.
    2. L. Grüne et al., “Distributed and Networked Model Predictive Control,” Control Theory of Digitally Networked Dynamic Systems, pp. 111--167, 2014, doi: 10.1007/978-3-319-01131-8_4.
  8. H

    1. M. Hahn, S. Gómez Su00e1ez, V. Andrikopoulos, D. Karastoyanova, and F. Leymann, “SCE^MT: A Multi-tenant Service Composition Engine,” Proceedings of the 7th International Conference on Service-Oriented Computing and Applications (SOCA), pp. 89--96, 2014, doi: 10.1109/SOCA.2014.9.
    2. M. Hahn, S. Gómez Su00e1ez, V. Andrikopoulos, D. Karastoyanova, and F. Leymann, “Development and Evaluation of a Multi-tenant Service Middleware PaaS Solution,” Proceedings of the 7th International Conference on Utility and Cloud Computing (UCC), pp. 278--287, 2014, doi: 10.1109/UCC.2014.37.
    3. M. Hahn and D. Karastoyanova, “Configurable and Collaborative Scientific Workflows,” Workshop on Simulation Technology: Systems for Data Intensive Simulations (SimTech(at)GI) in Conjunction with INFORMATIK 2014, pp. 125--136, 2014, [Online]. Available: https://www.gi.de/fileadmin/redaktion/2014_LNI/lni-p-232.pdf
    4. N. Hansen, F. Heller, N. Schmid, and W. F. van Gunsteren, “Time-averaged order parameter restraints in molecular dynamics simulations,” Journal of Biomolecular NMR, vol. 60, pp. 169--187, 2014, doi: 10.1007/s10858-014-9866-7.
    5. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on $C^k-1,1$-manifolds,” Mathematische Nachrichten, vol. 287, pp. 48--69, 2014, doi: 10.1002/mana.201200053.
    6. F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, and K. Vukojevic-Haupt, “Service Composition for REST,” Proceedings of the 18th IEEE International EDOC Conference (EDOC 2014), 2014, doi: 10.1109/EDOC.2014.24.
    7. M. Heene, C. Kowitz, and D. Pflüger, “Load Balancing for Massively Parallel Computations with the Sparse Grid Combination Technique,” Advances in Parallel Computing, vol. 25, pp. 574--583, 2014, doi: 10.3233/978-1-61499-381-0-574.
    8. Y. Heider, O. Avci, B. Markert, and W. Ehlers, “The dynamic response of fluid-saturated porous materials with application to seismically induced soil liquefaction,” Soil Dynamics and Earthquake Engineering, vol. 63, pp. 120--137, 2014, doi: 10.1016/j.soildyn.2014.03.017.
    9. T. Heidlauf and O. Röhrle, “A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements,” Frontiers in Physiology, vol. 5, no. 498, Art. no. 498, 2014, doi: 10.3389/fphys.2014.00498.
    10. R. Helmig, B. Flemisch, M. Wolff, and B. Faigle, “Efficient modelling of flow and transport in porous media using multi-physics and multi-scale approaches,” in Handbook of Geomathematics, 2nd ed., W. Freeden, Z. Nashed, and T. Sonar, Eds., in Handbook of Geomathematics. , Berlin, Heidelberg: Springer, 2014, pp. 1–43. doi: 10.1007/978-3-642-27793-1_15-3.
    11. O. A. Hickey, C. Holm, and J. Smiatek, “Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: The importance of hydrodynamic interactions,” The Journal of Chemical Physics, vol. 140, no. 16, Art. no. 16, 2014, doi: 10.1063/1.4872366.
    12. F. Hindenlang, G. Gassner, and C.-D. Munz, “Improving the accuracy of discontinuous Galerkin schemes at boundary layers,” International Journal of Numerical Methods in Fluids, vol. 75, pp. 385--402, 2014, doi: 10.1002/fld.3898.
    13. M. Hlawatsch, M. Burch, and D. Weiskopf, “Visual Adjacency Lists for Dynamic Graphs,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 11, Art. no. 11, 2014, doi: 10.1109/TVCG.2014.2322594.
    14. M. Hlawatsch, F. Sadlo, H. Jang, and D. Weiskopf, “Pathline Glyphs,” Computer Graphics Forum, vol. 33, no. 2, Art. no. 2, 2014, doi: 10.1111/cgf.12335.
    15. P. Hupp, R. Jacob, M. Heene, D. Pflüger, and M. Hegland, “Global Communication Schemes for the Sparse Grid Combination Technique,” Advances in Parallel Computing, vol. 25, pp. 564--573, 2014, doi: 10.3233/978-1-61499-381-0-564.
    16. K. Häberle and W. Ehlers, “Constitutive relation for the mass transfer during a gas-liquid phase transition in porous media,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 445--446, 2014, doi: 10.1002/pamm.201410210.
    17. D. Häufle, M. Günther, A. Bayer, and S. Schmitt, Hill-type muscle model with serial damping and eccentric force-velocity relation. 2014. doi: 10.1016/j.jbiomech.2014.02.009.
    18. D. Häufle, M. Günther, G. Wunner, and S. Schmitt, Quantifying control effort of biological and technical movements: an information entropy based approach. 2014. doi: 10.1103/PhysRevE.89.012716.
  9. I

    1. G. Inci, A. Arnold, A. Kronenburg, and R. Weeber, “Modeling Nanoparticle Agglomeration using Local Interactions,” Aerosol Science and Technology, vol. 48, p. 842, 2014, doi: 10.1080/02786826.2014.932942.
  10. K

    1. N. Karajan, D. Otto, S. Oladyshkin, and W. Ehlers, “Application of the Polynomial Chaos Expansion to Approximate the Homogenised Response of the Intervertebral Disc,” Biomechanics and Modeling in Mechanobiology, vol. 13, pp. 1065--1080, 2014, doi: 10.1007/s10237-014-0555-y.
    2. G. K. Karch, F. Sadlo, D. Weiskopf, and T. Ertl, “Streamline-Based Concepts for Space-Time Analysis of 2D Time-Dependent Flow,” Proceedings of International Symposium on Flow Visualization (ISFV16), 2014, [Online]. Available: http://www.isfv.org/
    3. M.-A. Keip and K. Bhattacharya, “A phase-field approach for the modeling of nematic liquid crystal elastomers,” PAMM, vol. 14, no. 1, Art. no. 1, 2014, doi: 10.1002/pamm.201410276.
    4. M.-A. Keip, P. Steinmann, and J. Schröder, “Computer Methods in Applied Mechanics and Engineering,” Computer Methods in Applied Mechanics and Engineering, vol. 278, pp. 62--79, 2014, doi: 10.1016/j.cma.2014.04.020.
    5. J. A. Kieser, M. G. Farland, H. Jack, M. Farella, Y. Wang, and O. Röhrle, “The role of oral soft tissues in swallowing function: what can tongue pressure tell us?,” Australian Dental Journal, vol. 59, pp. 155--161, 2014, doi: 10.1111/adj.12103.
    6. A. Kissinger, V. Noack, S. Knopf, D. Scheer, W. Konrad, and H. Class, “Characterization of reservoir conditions for CO2 storage using a dimensionless Gravitational Number applied to the North German Basin,” Sustainable Energy Technologies and Assessments, vol. 7, pp. 209--220, 2014, doi: 10.1016/j.seta.2014.06.003.
    7. D. Koch and W. Ehlers, “Modelling and simulation of heat exchange and transport in a geothermal plant,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 447--448, 2014, doi: 10.1002/pamm.201410211.
    8. J. Koch and W. Nowak, “A method for implementing Dirichlet and third-type boundary conditions in PTRW simulations,” Water Resources Research, vol. 50, no. 2, Art. no. 2, 2014, doi: 10.1002/2013WR013796.
    9. H. Kosow and C. Leon, “Die Szenariotechnik als Methode der Experten- und Stakeholdereinbindung.,” In: Niederberger M, Wassermann S (Hrsg.): Methoden der Experten- und Stakeholdereinbindung in der sozialwissenschaftlichen Forschung., 2014, doi: 10.1007/978-3-658-01687-6_11.
    10. A. Kramer, B. Calderhead, and N. Radde, “Hamiltonian Monte Carlo Methods for Efficient Parameter Estimation in Steady State Dynamical Systems,” BMC Bioinformatics, vol. 15, no. 1, Art. no. 1, 2014, doi: 10.1186/1471-2105-15-253.
    11. A. Kramer, V. Stathopoulus, M. Girolami, and N. Radde, “MCMC_CLIB: An advanced MCMC sampling package for ode models with highly correlated parameters,” Bioinformatics, 2014, doi: 10.1093/bioinformatics/btu429.
    12. K. Kratzer, J. T. Berryman, A. Taudt, J. Zeman, and A. Arnold, “The Flexible Rare Event Sampling Harness System (FRESHS),” Computer Physics Communications, vol. 185, no. 7, Art. no. 7, 2014, doi: 10.1016/j.cpc.2014.03.013.
    13. A. N. Krishnamoorthy, C. Holm, and J. Smiatek, “Local Water Dynamics around Antifreeze Protein Residues in the Presence of Osmolytes: The Importance of Hydroxyl and Disaccharide Groups,” The Journal of Physical Chemistry B, vol. 118, no. 40, Art. no. 40, 2014, doi: 10.1021/jp507062r.
    14. J. Kästner, “Theory and Simulation of Atom Tunneling in Chemical Reactions,” WIREs Comput. Mol. Sci., vol. 4, p. 158, 2014, doi: 10.1002/wcms.1165.
    15. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” Finite Volumes for Complex Applications VII Methods and Theoretical Aspects, vol. 77, pp. 353--361, 2014, doi: 10.1007/978-3-319-05684-5_34.
  11. L

    1. C. Linder and A. Raina, “A homogenization approach for nonwoven materials based on fiber undulations and reorientation,” Journal of the Mechanics and Physics of Solids, vol. 65, pp. 12--34, 2014, doi: 10.1016/j.jmps.2013.12.011.
    2. M. Löhning, M. Reble, J. Hasenauer, S. Yu, and F. Allgöwer, “Model predictive control using reduced order models: Guaranteed stability for constrained linear systems,” Journal of Process Control, vol. 24, no. 11, Art. no. 11, 2014, doi: 10.1016/j.jprocont.2014.07.006.
  12. M

    1. I. Maier and B. Haasdonk, “A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems,” Applied Numerical Mathematics, vol. 78, pp. 31--48, 2014, doi: 10.1016/j.apnum.2013.12.001.
    2. S. Micciulla et al., “Layer-by-layer formation of oligoelectrolyte multilayers: a combined experimental and computational study,” Soft Materials, vol. 12, p. 1, 2014, doi: 10.1080/1539445X.2014.930046.
    3. C. Miehe, “Variational gradient plasticity at finite strains. Part I: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 677--703, 2014, doi: 10.1016/j.cma.2013.03.014.
    4. C. Miehe, F. E. Hildebrand, and L. Böger, “Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 470, 2014, doi: 10.1098/rspa.2013.0641.
    5. C. Miehe, S. Mauthe, and F. E. Hildebrand, “Variational gradient plasticity at finite strains. Part III: Local-global updates and regularization techniques in multiplicative plasticity for single crystals,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 735--762, 2014, doi: 10.1016/j.cma.2013.08.022.
    6. C. Miehe, S. Mauthe, and H. Ulmer, “Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids,” International Journal for Numerical Methods in Engineering, vol. 99, pp. 737--762, 2014, doi: 10.1002/nme.4700.
    7. C. Miehe and L. Schänzel, “Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure,” Journal of the Mechanics and Physics of Solids, vol. 65, pp. 93--113, 2014, doi: 10.1016/j.jmps.2013.06.007.
    8. C. Miehe, F. Welschinger, and F. Aldakheel, “Variational gradient plasticity at finite strains. Part II: Local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space,” Computer Methods in Applied Mechanics and Engineering, vol. 268, pp. 704--734, 2014, doi: 10.1016/j.cma.2013.07.015.
    9. E. Minina and A. Arnold, “Induction of entropic segregation: the first step is the hardest,” Soft Matter, vol. 10, no. 31, Art. no. 31, 2014, doi: 10.1039/C4SM00286E.
    10. D. Molnar, P. Binkele, A. Mora, R. Mukherjee, B. Nestler, and S. Schmauder, “Molecular Dynamics virtual testing of thermally aged Fe-Cu microstructures obtained from multiscale simulations,” Computational Materials Science, vol. 81, pp. 466--470, 2014, doi: 10.1016/j.commatsci.2013.08.057.
    11. J. M. Montenbruck and F. Allgöwer, “Pinning Capital Stock and Gross Investment Rate in Competing Rationally Managed Firms,” Proc. 19th IFAC World Congress, pp. 10719--10724, 2014, doi: 10.3182/20140824-6-ZA-1003.01449.
    12. J. M. Montenbruck, H.-B. Dürr, C. Ebenbauer, and F. Allgöwer, “Extremum Seeking and Obstacle Avoidance on the Special Orthogonal Group,” Proc. 19th IFAC World Congress, pp. 8229--8234, 2014, doi: 10.3182/20140824-6-ZA-1003.01446.
    13. K. Mosthaf, R. Helmig, and D. Or, “Modeling and analysis of evaporation processes from porous media on the REV scale,” Water Resources Research, vol. 50, pp. 1059--1079, 2014, doi: 10.1002/2013WR014442.
    14. F. Mwalongo, M. Krone, G. K. Karch, M. Becher, G. Reina, and T. Ertl, “Visualization of Molecular Structures using State-of-the-Art Techniques in WebGL,” International Conference on 3D Web Technology (Web3D 14), pp. 133--141, 2014, doi: 10.1145/2628588.2628597.
    15. M. A. Müller and F. Allgöwer, “Distributed economic MPC: a framework for cooperative control problems,” Proc. of the 19th IFAC World Congress, pp. 1029--1034, 2014, doi: 10.3182/20140824-6-ZA-1003.01177.
    16. M. A. Müller and F. Allgöwer, “Distributed MPC for consensus and synchronization,” J. M. Maestre, R. Negenborn, editors, Distributed MPC Made Easy, pp. 89--100, 2014, doi: 10.1007/978-94-007-7006-5.
    17. M. A. Müller, D. Angeli, and F. Allgöwer, “Performance analysis of economic MPC with self-tuning terminal cost,” Proc. of the American Control Conference (ACC), pp. 2845--2850, 2014, doi: 10.1109/ACC.2014.6858962.
    18. M. A. Müller, D. Angeli, and F. Allgöwer, “On necessity and robustness of dissipativity in economic model predictive control,” IEEE Transactions on Automatic Control, vol. 60, no. 6, Art. no. 6, 2014, doi: 10.1109/TAC.2014.2361193.
    19. M. A. Müller, D. Angeli, and F. Allgöwer, “On the performance of economic model predictive control with self-tuning terminal cost,” Journal of Process Control, vol. 24, no. 8, Art. no. 8, 2014, doi: 10.1016/j.jprocont.2014.05.009.
    20. M. A. Müller, D. Angeli, and F. Allgöwer, “Transient average constraints in economic model predictive control,” Automatica, vol. 50, no. 11, Art. no. 11, 2014, doi: 10.1016/j.automatica.2014.10.024.
    21. M. A. Müller, D. Angeli, F. Allgöwer, R. Amrit, and J. B. Rawlings, “Convergence in economic model predictive control with average constraints,” Automatica, vol. 50, no. 12, Art. no. 12, 2014, doi: 10.1016/j.automatica.2014.10.059.
  13. N

    1. S. Neumann, J. Hasenauer, N. Pollak, and P. Scheurich, “Dominant negative effects of TNF-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes,” JBC, vol. 289, no. 23, Art. no. 23, 2014, doi: 10.1074/jbc.M114.559468.
    2. W. Nowak, F. Bode, and M. Loschko, “A multi-objective optimization concept for risk-based early-warning monitoring networks in well catchments,” Procedia Environmental Sciences, vol. 25, pp. 191--198, 2014, doi: 10.1016/j.proenv.2015.04.026.
  14. O

    1. B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, and U. Ramachandran, “RECEP: Selection-based Reuse for Distributed Complex Event Processing,” Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems (DEBS 2014), 2014, doi: 10.1145/2611286.2611297.
    2. D. Otto and W. Ehlers, “Model reduction of porous-media problems using proper orthogonal decomposition,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 451--452, 2014, doi: 10.1002/pamm.201410213.
  15. P

    1. D. Philipp et al., “MapGENIE: Grammar-enhanced Indoor Map Construction from Crowd-sourced Data,” Proceedings of the 12th IEEE International Conference on Pervasive Computing and Communications (PerCom 2014), 2014, doi: 10.1109/PerCom.2014.6813954.
    2. B. Poppinga, A. Sahami Shirazi, N. Henze, W. Heuten, and S. Boll, “Understanding shortcut gestures on mobile touch devices,” Proceedings of the 16th international conference on Human-computer interaction with mobile devices & services, 2014, doi: 10.1145/2628363.2628378.
  16. R

    1. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” Advances in Computational Mathematics, 2014, doi: 10.1007/s10444-014-9367-y.
    2. P. Reimann and H. Schwarz, “Simulation Workflow Design Tailor-Made for Scientists,” 26th International Conference on Scientific and Statistical Database Management (SSDBM 2014), 2014, doi: 10.1145/2618243.2618291.
    3. P. Reimann, H. Schwarz, and B. Mitschang, “Data Patterns to Alleviate the Design of Scientific Workflows Exemplified by a Bone Simulation,” 26th International Conference on Scientific and Statistical Database Management (SSDBM 2014), 2014, doi: 10.1145/2618243.2618279.
    4. P. Reimann, H. Schwarz, and B. Mitschang, “A Pattern Approach to Conquer the Data Complexity in Simulation Workflow Design,” On the Move to Meaningful Internet Systems: OTM 2014 Conferences, pp. 21--38, 2014, doi: 10.1007/978-3-662-45563-0_2.
    5. P. Reimann, T. Waizenegger, M. Wieland, and H. Schwarz, “Datenmanagement in der Cloud für den Bereich Simulationen und Wissenschaftliches Rechnen,” 2. Workshop Data Management in the Cloud auf der 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 2014, [Online]. Available: http://subs.emis.de/LNI/Proceedings/Proceedings232/article176.html
    6. M. Reiter, U. Breitenbücher, O. Kopp, and D. Karastoyanova, “Quality of Data Driven Simulation Workflows,” Journal of Systems Integration, vol. 5, no. 1, Art. no. 1, 2014, [Online]. Available: http://www.si-journal.org/index.php/JSI/article/view/189
    7. H. Riedmann, B. Kniesner, M. Frey, and C.-D. Munz, “Modeling of combustion and flow in a single element GH2/GO2 combustor,” CEAS Space Journal, vol. 6, pp. 47--59, 2014, doi: 10.1007/s12567-013-0056-3.
    8. R. Rockenfeller, M. Guenther, S. Schmitt, and T. Goetz, Comparing different muscle activation dynamics using sensitivity analysis. 2014. doi: 10.1155/2015/585409.
    9. D. Roehm, S. Kesselheim, and A. Arnold, “Hydrodynamic interactions slow down crystallization of soft colloids,” Soft Matter, vol. 10, no. 30, Art. no. 30, 2014, doi: 10.1039/C4SM00686K.
    10. D. Rosato and C. Miehe, “Dissipative ferroelectricity at finite strains. Variational principles, constitutive assumptions and algorithms,” International Journal of Engineering Science, vol. 74, pp. 162--189, 2014, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0020722513001262
  17. S

    1. F. Sadlo, G. K. Karch, and T. Ertl, “Topological Features in Time-Dependent Advection-Diffusion Flow,” Topological Methods in Data Analysis and Visualization III (Proceedings of TopoInVis 2013), 2014, doi: 10.1007/978-3-319-04099-8_14.
    2. R. M. Schaich, M. A. Müller, and F. Allgöwer, “A distributed model predictive control scheme for networks with communication failure,” Proc. of the 19th IFAC World Congress, pp. 12004--12009, 2014, doi: 10.3182/20140824-6-ZA-1003.01507.
    3. K. Scharnowski, M. Krone, G. Reina, T. Kulschewski, J. Pleiss, and T. Ertl, “Comparative Visualization of Molecular Surfaces Using Deformable Models,” Computer Graphics Forum, vol. 33, no. 3, Art. no. 3, 2014, doi: 10.1111/cgf.12375.
    4. D. Scheer and W. Konrad, “Partizipative Modellierung im Versuchslabor: Das CO2BRIM-Projekt,” DIALOGIK (Hrsg.): Innovativ und partizipativ: Einblicke in die Arbeit von DIALOGIK, Stuttgart, pp. 67--77, 2014, [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2014/9217/pdf/AB030_DIALOGIK.pdf
    5. D. Scheer and O. Renn, “Public Perception of Geoengineering and Its Consequences for Public Debate,” Climatic Change, vol. 125/3–4, pp. 305--318, 2014, doi: 10.1007/s10584-014-1177-1.
    6. M. Schenke and W. Ehlers, “On the simulation of soils under rapid cyclic loading conditions,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 417--418, 2014, doi: 10.1002/pamm.201410196.
    7. C. W. Scherer, H?- and H2-synthesis for nested interconnections: A direct state-space approach by linear matrix inequalities. MTNS 2014, 2014. [Online]. Available: http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0141.pdf
    8. C. W. Scherer, “$H_ınfty$- and $H_2$-synthesis for nested interconnections: A direct state-space approach by linear matrix inequalities,” in 21st Int. Symp. Math. Theory Netw. and Systems, in 21st Int. Symp. Math. Theory Netw. and Systems. 2014. [Online]. Available: http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0141.pdf
    9. K. S. Schmid, J. Gross, and R. Helmig, “Chemical osmosis in two-phase flow and salinity-dependent capillary pressures in rocks with microporosity,” Water Resources Research, vol. 50, pp. 763--789, 2014, doi: 10.1002/2013WR013848.
    10. A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic regulator,” Proceedings of MATHMOD 2015, vol. 8, pp. 713--718, 2014, doi: 10.1016/j.ifacol.2015.05.016.
    11. G. S. Schmidt, D. Wilson, F. Allgöwer, and J. Moehlis, “Selective averaging with application to phase reduction and neural control,” Nonlinear Theory and Its Applications, IEICE, vol. 5, no. 4, Art. no. 4, 2014, doi: 10.1587/nolta.5.424.
    12. G. S. Schmidt, C. Ebenbauer, and F. Allgöwer, “Output Regulation for Control Systems on SE(n) : A Separation Principle Based Approach,” Automatic Control, vol. 59, no. 11, Art. no. 11, 2014, doi: 10.1109/TAC.2014.2320310.
    13. S. Schneegass, F. Steimle, A. Bulling, F. Alt, and A. Schmidt, “SmudgeSafe: Geometric Image Transformations for Smudge-resistant User Authentication,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014, doi: 10.1145/2632048.2636090.
    14. A. Schöll, C. Braun, M. Daub, G. Schneider, and H.-J. Wunderlich, “Adaptive Parallel Simulation of a Two-Timescale Model for Apoptotic Receptor-Clustering on GPUs,” 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 424--431, 2014, doi: 10.1109/BIBM.2014.6999195.
    15. A. Schöniger, T. Wöhling, L. Samaniego, and W. Nowak, “Model selection on solid ground: rigorous comparison of nine ways to evaluate Bayesian evidence,” Water Resources Research, vol. 50, no. 12, Art. no. 12, 2014, doi: 10.1002/2014WR016062.
    16. M. Sega, S. S. Kantorovich, C. Holm, and A. Arnold, “Communication: Kinetic and pairing contributions in the dielectric spectra of electrolyte solutions,” The Journal of Chemical Physics, vol. 140, no. 21, Art. no. 21, 2014, doi: 10.1063/1.4880237.
    17. G. S. Seyboth and F. Allgöwer, “Synchronized model matching: a novel approach to cooperative control of non-linear multi-agent systems,” Proc. 19th IFAC World Congress, pp. 1985--1990, 2014, doi: 10.3182/20140824-6-ZA-1003.00983.
    18. G. S. Seyboth, J. Wu, J. Qin, C. Yu, and F. Allgöwer, “Collective Circular Motion of Unicycle Type Vehicles with Non-identical Constant Velocities,” IEEE Transactions on Control of Network Systems, vol. 1, no. 2, Art. no. 2, 2014, doi: 10.1109/TCNS.2014.2316995.
    19. A. Shirazi, Y. Abdelrahman, N. Henze, S. Schneegass, M. Khalilbeigiy, and A. Schmidt, “Exploiting Thermal Reflection for Interactive Systems,” CHI 14 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3483--3492, 2014, doi: 10.1145/2556288.2557208.
    20. J. Smiatek, A. Wohlfarth, and C. Holm, “The solvation and ion condensation properties for sulfonated polyelectrolytes in different solvents-a computational study,” New Journal of Physics, vol. 16, no. 2, Art. no. 2, 2014, doi: 10.1088/1367-2630/16/2/025001.
    21. A. Sorg and M. Bischoff, “Adaptive discrete-continuous modeling of evolving discontinuities,” Engineering Computations, vol. 31, no. 7, Art. no. 7, 2014, doi: 10.1108/EC-03-2013-0072.
    22. Z. Sun, A. Dadalau, and A. Verl, “Generation of rotation matrix for assembly models with arbitrary angle constraints,” International Journal of Advanced Manufacturing Technology, vol. 74, pp. 563--568, 2014, doi: 10.1007/s00170-014-5907-3.
  18. T

    1. Q. Tang and P. Eberhard, “Relative observation for multi-robot collaborative localisation based on multi-source signals,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 26, no. 4, Art. no. 4, 2014, doi: 10.1080/0952813X.2014.930597.
  19. V

    1. J. Veenman and C. W. Scherer, “A synthesis framework for robust gain-scheduling controllers,” Automatica, 2014, doi: 10.1016/j.automatica.2014.10.002.
    2. J. Veenman and C. W. Scherer, “IQC-synthesis with general dynamic multipliers,” Int. J. Robust Nonlin., vol. 24, no. 17, Art. no. 17, 2014, doi: 10.1002/rnc.3042.
    3. K. Vukojevic-Haupt, F. Haupt, D. Karastoyanova, and F. Leymann, “Service Selection for On-demand Provisioned Services,” Proceedings of the 18th IEEE International EDOC Conference (EDOC 2014), 2014, doi: 10.1109/EDOC.2014.25.
    4. K. Vukojevic-Haupt, F. Haupt, D. Karastoyanova, and F. Leymann, “Replicability of Dynamically Provisioned Scientific Experiments,” Proceedings of the 7th IEEE International Conference on Service Oriented Computing & Applications (SOCA 2014), 2014, doi: 10.1109/SOCA.2014.54.
  20. W

    1. A. Wagner and W. Ehlers, “On the multi-component modelling of human brain tissue to survey clinical interventions,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 125--126, 2014, doi: 10.1002/pamm.201410050.
    2. R. Weeber, Simulation of novel magnetic materials in the field of soft matter. 2014. [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2015/9801/
    3. A. Weiß and D. Karastoyanova, “A Life Cycle for Coupled Multi-Scale, Multi-Field Experiments Realized through Choreographies,” Proceedings of the 18th IEEE International EDOC Conference, pp. 234--241, 2014, doi: 10.1109/EDOC.2014.39.
    4. A. Weiß and D. Karastoyanova, “Enabling coupled multi-scale, multi-field experiments through choreographies of data-driven scientific simulations,” Computing, pp. 1--29, 2014, doi: 10.1007/s00607-014-0432-7.
    5. A. Weiß, D. Karastoyanova, D. Molnar, and S. Schmauder, “Coupling of Existing Simulations using Bottom-up Modeling of Choreographies,” Workshop on Simulation Technology: Systems for Data Intensive Simulations (SimTech@GI) in Conjunction with INFORMATIK 2014, vol. 101, p. 112, 2014, [Online]. Available: https://www.gi.de/fileadmin/redaktion/2014_LNI/lni-p-232.pdf
    6. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,” International Journal for Numerical Methods in Engineering, vol. 101, pp. 1--28, 2014, doi: 10.1002/nme.4767.
    7. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A-posteriori error estimation for DEIM reduced nonlinear dynamical systems,” SIAM Journal on Scientific Computing, vol. 36, pp. A311–A338, 2014, doi: 10.1137/120899042.
    8. P. Wo?niak, L. Lischke, B. Schmidt, S. Zhao, and M. Fjeld, Thaddeus: a dual device interaction space for exploring information visualisation. 2014. doi: 10.1145/2639189.2639237.
    9. K. Worthmann, M. Reble, L. Grüne, and F. Allgöwer, “The Role of Sampling for Stability and Performance in Unconstrained Nonlinear Model Predictive Control,” SIAM Journal on Control and Optimization, vol. 52, no. 1, Art. no. 1, 2014, doi: 10.1137/12086652X.
    10. J. Wu, V. Ugrinovskii, and F. Allgöwer, “Cooperative estimation for synchronization of heterogeneous multi-agent systems using relative information,” Proc. IFAC World Congress, pp. 4662--4667, 2014, doi: 10.3182/20140824-6-ZA-1003.01938.
  21. Y

    1. S. Yu, M. Reble, H. Chen, and F. Allgöwer, “Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control,” Automatica, vol. 50, no. 9, Art. no. 9, 2014, doi: 10.1016/j.automatica.2014.07.014.
  22. Z

    1. S. Zeng, S. Waldherr, and F. Allgöwer, “An inverse problem of tomographic type in population dynamics,” Decision and Control, pp. 1643--1648, 2014, doi: 10.1109/CDC.2014.7039635.
    2. S. Zinatbakhsh and W. Ehlers, “Staggered solution of fluid-porous-media interaction using the method of local Lagrange multipliers,” Proceedings in Applied Mathematics and Mechanics, vol. 14, pp. 473--474, 2014, doi: 10.1002/pamm.201410224.
To the top of the page