Publications of PN 3

Publications

  1. 2025

    1. M. B. M. Spera, S. Darouich, J. Pleiss, and N. Hansen, “Influence of water content on thermophysical properties of aqueous glyceline solutions predicted by molecular dynamics simulations,” Fluid Phase Equilibria, vol. 592, p. 114324, 2025, doi: https://doi.org/10.1016/j.fluid.2024.114324.
    2. M. Fleck, R. Katsuta, T. Esper, N. Hansen, and J. Gross, “Gaussian Process-Supported Optimization of the Transferable Anisotropic Mie Potential Force Field for Primary Alkylamines misc,” Industrial & Engineering Chemistry Research, vol. 64, Art. no. 11, Mar. 2025, doi: 10.1021/acs.iecr.4c04170.
    3. V. Korn and K. Pluhackova, “Vastly different energy landscapes of the membrane insertions of monomeric gasdermin D and A3,” Communications Chemistry, vol. 8, Art. no. 1, Feb. 2025, doi: 10.1038/s42004-024-01400-2.
    4. F. Fritzen, J. Herb, and S. Sharba, “Thermo-plastic Nonuniform Transformation Field Analysis for eigenstress analysis of materials undergoing laser melt injection,” Computer Methods in Applied Mechanics and Engineering, vol. 433, p. 117487, Jan. 2025, doi: 10.1016/j.cma.2024.117487.
  2. 2024

    1. S. Tovey, C. Holm, and M. Spannowsky, “Generating Reservoir State Descriptions with Random Matrices.” Apr. 2024. doi: arXiv:2404.07278.
    2. S. Tovey, C. Lohrmann, and C. Holm, “Emergence of Chemotactic Strategies with Multi-Agent Reinforcement Learning.” 2024. doi: https://doi.org/10.48550/arXiv.2404.01999.
    3. M. Nottoli, M. F. Herbst, A. Mikhalev, A. Jha, F. Lipparini, and B. Stamm, “Replication Data for: “ddX: Polarizable Continuum Solvation from Small Molecules to Proteins,”” 2024, doi: 10.18419/DARUS-4030.
    4. C. Lohrmann, C. Holm, and S. S. Datta, “Influence of bacterial swimming and hydrodynamics on infection by phages,” bioRxiv, Jan. 2024, doi: 10.1101/2024.01.15.575727.
    5. M. Fleck, S. Darouich, N. Hansen, and J. Gross, “Transferable Anisotropic Mie Potential Force Field for Alkanediols,” The Journal of Physical Chemistry B, vol. 128, Art. no. 19, May 2024, doi: 10.1021/acs.jpcb.4c00962.
    6. M. Pechlaner, W. F. van Gunsteren, L. J. Smith, B. Stankiewicz, L. N. Wirz, and N. Hansen, “Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach,” Journal of Chemical Information and Modeling, vol. 64, Art. no. 12, Jun. 2024, doi: 10.1021/acs.jcim.4c00416.
    7. A. Schneider, T. B. Lystbæk, D. Markthaler, N. Hansen, and B. Hauer, “Biocatalytic stereocontrolled head-to-tail cyclizations of unbiased terpenes as a tool in chemoenzymatic synthesis,” Nature Communications, vol. 15, Art. no. 1, Jun. 2024, doi: 10.1038/s41467-024-48993-9.
    8. A. Schlaich, J. O. Daldrop, B. Kowalik, M. Kanduč, E. Schneck, and R. R. Netz, “Water Structuring Induces Nonuniversal Hydration Repulsion between Polar Surfaces: Quantitative Comparison between Molecular Simulations, Theory, and Experiments,” Langmuir, vol. 40, Art. no. 15, Apr. 2024, doi: 10.1021/acs.langmuir.3c03656.
    9. L.-F. Zhu et al., “Melting properties of the refractory metals V and W and the binary VW alloy fully from first principles,” Physical Review B, vol. 109, Art. no. 9, Mar. 2024, doi: 10.1103/physrevb.109.094110.
    10. Y. Ou, Y. Ikeda, L. Scholz, S. Divinski, F. Fritzen, and B. Grabowski, “Atomistic modeling of bulk and grain boundary diffusion in solid electrolyte Li6PS5Cl using machine-learning interatomic potentials,” Physical Review Materials, vol. 8, Art. no. 11, Nov. 2024, doi: 10.1103/physrevmaterials.8.115407.
    11. T. B. Beigl et al., “BCL-2 and BOK regulate apoptosis by interaction of their C-terminal transmembrane domains,” EMBO Reports, vol. 25, Art. no. 9, 2024, doi: 10.1038/s44319-024-00206-6.
    12. A. Krischok, B. Yaraguntappa, and M.-A. Keip, “Fast implicit update schemes for Cahn–Hilliard-type gradient flow in the context of Fourier-spectral methods,” Computer Methods in Applied Mechanics and Engineering, vol. 431, p. 117220, 2024, doi: https://doi.org/10.1016/j.cma.2024.117220.
    13. J. Berberich, D. Fink, and C. Holm, “Robustness of quantum algorithms against coherent control errors,” Physical Review A, vol. 109, Art. no. 1, Jan. 2024, doi: 10.1103/PhysRevA.109.012417.
    14. X. Xu, X. Zhang, A. Ruban, S. Schmauder, and B. T. Grabowski, “Accurate complex-stacking-fault Gibbs energy in Ni3Al at high temperatures,” Scripta materialia, vol. 242, p. 115934, 2024, doi: 10.1016/j.scriptamat.2023.115934.
    15. B. Bursik, R. Stierle, A. Schlaich, P. Rehner, and J. Gross, “Viscosities of inhomogeneous systems from generalized entropy scaling,” Physics of Fluids, vol. 36, Art. no. 4, Apr. 2024, doi: 10.1063/5.0189902.
    16. H. F. Carvalho, L. Mestrom, U. Hanefeld, and J. Pleiss, “Beyond the Chemical Step: The Role of Substrate Access in Acyltransferase from Mycobacterium smegmatis,” ACS Catal., vol. 14, pp. 10077–10088, Jun. 2024, doi: 10.1021/acscatal.4c00812.
    17. S. V. Klostermann, J. Kappler, A. Waigum, M. R. Buchmeiser, A. Köhn, and J. Kästner, “The reduction behavior of sulfurized polyacrylonitrile (SPAN) in lithium–sulfur batteries using a carbonate electrolyte: a computational study,” Phys. Chem. Chem. Phys., vol. 26, pp. 9998–10007, 2024, doi: 10.1039/D3CP06248A.
    18. M. Pechlaner, W. F. van Gunsteren, L. J. Smith, and N. Hansen, “Molecular structure refinement based on residual dipolar couplings using magnetic-field rotational sampling,” The Journal of Chemical Physics, vol. 161, Art. no. 4, Jul. 2024, doi: 10.1063/5.0203153.
    19. G. M. Muralikrishna et al., “Microstructure stability and self-diffusion in the equiatomic HfScTiZr HCP multi-principal element alloy,” Journal of Alloys and Compounds, vol. 976, p. 173196, Mar. 2024, doi: 10.1016/j.jallcom.2023.173196.
    20. N. Zotov, K. Gubaev, J. Wörner, and B. Grabowski, “Moment tensor potential for static and dynamic investigations of screw dislocations in bcc Nb,” Modelling and Simulation in Materials Science and Engineering, vol. 32, Art. no. 3, Mar. 2024, doi: 10.1088/1361-651x/ad2d68.
    21. P. Srinivasan, D. Demuriya, B. Grabowski, and A. Shapeev, “Electronic Moment Tensor Potentials include both electronic and vibrational degrees of freedom,” npj Computational Materials, vol. 10, Art. no. 1, Feb. 2024, doi: 10.1038/s41524-024-01222-9.
    22. A. Reinauer, S. Kondrat, and C. Holm, “Electrolytes in conducting nanopores: Revisiting constant charge and constant potential simulations,” The Journal of chemical physics, vol. 161, Art. no. 10, Sep. 2024, doi: 10.1063/5.0226959.
    23. J. C. del Valle, P. Redondo, J. Kästner, and G. Molpeceres, “Formation of the Interstellar Sugar Precursor, (Z)-1,2-Ethenediol, through Radical Reactions on Dust Grains,” Astrophys. J., vol. 974, p. 129, 2024, doi: 10.3847/1538-4357/ad6f9a.
    24. P. M. Becker, K. Heinze, B. Sarkar, and J. Kästner, “Redox−Acid/Base Phase Diagrams as an Entry to Computational Redox Chemistry,” ChemElectroChem, vol. 11, Art. no. 20, 2024, doi: https://doi.org/10.1002/celc.202400301.
    25. S. Sriram, E. Polukhov, and M.-A. Keip, “Data-driven analysis of structural instabilities in electroactive polymer bilayers based on a variational saddle-point principle,” International Journal of Solids and Structures, vol. 291, p. 112663, Apr. 2024, doi: 10.1016/j.ijsolstr.2024.112663.
    26. M. Fleck, W. A. Kopp, N. Viswanathan, N. Hansen, J. Gross, and K. Leonhard, “Efficient Generation of Torsional Energy Profiles by Multifidelity Gaussian Processes for Hindered Rotor Corrections,” Journal of Chemical Theory and Computation, vol. 20, Art. no. 17, Aug. 2024, doi: 10.1021/acs.jctc.4c00475.
    27. J. Lißner and F. Fritzen, “Microstructure homogenization: human vs machine,” Advanced Modeling and Simulation in Engineering Sciences, vol. 11, Art. no. 1, Nov. 2024, doi: 10.1186/s40323-024-00275-1.
    28. L. Grunenberg et al., “Probing Self-Diffusion of Guest Molecules in a Covalent Organic Framework: Simulation and Experiment,” ACS Nano, vol. 18, Art. no. 25, Jun. 2024, doi: 10.1021/acsnano.3c12167.
    29. R. Stierle, G. Bauer, N. Thiele, B. Bursik, P. Rehner, and J. Gross, “Classical density functional theory in three dimensions with GPU-accelerated automatic differentiation: Computational performance analysis using the example of adsorption in covalent-organic frameworks,” Chemical Engineering Science, vol. 298, p. 120380, Oct. 2024, doi: 10.1016/j.ces.2024.120380.
    30. M. Fleck, J. Gross, and N. Hansen, “Multifidelity Gaussian Processes for Predicting Shear Viscosity over Wide Ranges of Liquid State Points Based on Molecular Dynamics Simulations,” Industrial & Engineering Chemistry Research, vol. 63, Art. no. 8, 2024, doi: 10.1021/acs.iecr.3c03931.
    31. F. Zills, M. R. Schäfer, S. Tovey, J. Kästner, and C. Holm, “Machine Learning-Driven Investigation of the Structure and Dynamics of the BMIM-BF₄ Room Temperature Ionic Liquid,” Faraday Discussions, 2024, doi: 10.1039/D4FD00025K.
    32. F. Zills, M. R. Schäfer, N. Segreto, J. Kästner, C. Holm, and S. Tovey, “Collaboration on Machine-Learned Potentials with IPSuite: A Modular Framework for Learning-on-the-Fly,” The Journal of Physical Chemistry B, Apr. 2024, doi: 10.1021/acs.jpcb.3c07187.
    33. S. Sen et al., “Sc diffusion in HCP high entropy alloys,” Scripta Materialia, vol. 242, p. 115917, Mar. 2024, doi: 10.1016/j.scriptamat.2023.115917.
    34. M. Nottoli, M. F. Herbst, A. Mikhalev, A. Jha, F. Lipparini, and B. Stamm, “ddX: Polarizable continuum solvation from small molecules to proteins,” WIREs Computational Molecular Science, Jul. 2024, doi: 10.1002/wcms.1726.
    35. L. Werneck, M. Han, E. Yildiz, M.-A. Keip, M. Sitti, and M. Ortiz, “A simple quantitative model of neuromodulation, Part I : Ion flow neural ion channels,” Journal of the mechanics and physics of solids, vol. 182, Art. no. January, 2024, doi: 10.1016/j.jmps.2023.105457.
    36. F. Mayer et al., “Computer-aided molecular refrigerant design for adsorption chillers based on classical density functional theory and PC-SAFT,” Computers & Chemical Engineering, vol. 184, p. 108629, May 2024, doi: 10.1016/j.compchemeng.2024.108629.
    37. J. Rettberg, D. Wittwar, P. Buchfink, R. Herkert, J. Fehr, and B. Haasdonk, “Improved a posteriori error bounds for reduced port-Hamiltonian systems,” Advances in Computational Mathematics, vol. 50, Art. no. 5, Sep. 2024, doi: 10.1007/s10444-024-10195-8.
    38. A. Strauß, J. Kneifl, A. Tkachuk, J. Fehr, and M. Bischoff, “Accelerated Non‐linear Stability Analysis Based on Predictions From Data‐Based Surrogate Models,” International Journal for Numerical Methods in Engineering, vol. 126, Art. no. 1, Dec. 2024, doi: 10.1002/nme.7649.
    39. X. Xu, X. Zhang, E. Bitzek, S. Schmauder, and B. Grabowski, “Origin of the yield stress anomaly in L12 intermetallics unveiled with physically informed machine-learning potentials,” Acta Materialia, vol. 281, p. 120423, Dec. 2024, doi: 10.1016/j.actamat.2024.120423.
  3. 2023

    1. R. Weeber et al., “ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems,” in Comprehensive Computational Chemistry, Elsevier, 2023. doi: https://doi.org/10.1016/B978-0-12-821978-2.00103-3.
    2. H. Jäger, A. Schlaich, J. Yang, C. Lian, S. Kondrat, and C. Holm, “A screening of results on the decay length in concentrated electrolytes,” Faraday Discussions, vol. 246, Art. no. 0, Aug. 2023, doi: 10.1039/D3FD00043E.
    3. S. Keshav, F. Fritzen, and M. Kabel, “FFT-based homogenization at finite strains using composite boxels (ComBo),” Computational Mechanics, vol. 71, pp. 191–212, Oct. 2023, doi: 10.1007/s00466-022-02232-4.
    4. J. Rettberg et al., “Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar,” Mathematical and Computer Modelling of Dynamical Systems, vol. 29, Art. no. 1, 2023, doi: 10.1080/13873954.2023.2173238.
    5. A. Reimer, T. v. Westen, and J. Groß, “Physically based equation of state for Mie ν-6 fluids,” The journal of chemical physics, vol. 158, Art. no. 16, 2023, doi: 10.1063/5.0141856.
    6. T. Braun, R. Stierle, M. Fischer, and J. Gross, “Investigating Learning and Improving Teaching in Engineering Thermodynamics Guided by Constructive Alignment and Competency Modeling: Part II. Assessment and Exam Design,” Chemical Engineering Education, vol. 57, Art. no. 3, 2023, doi: 10.18260/2-1-370.660-133030.
    7. S. Gravelle, S. Haber-Pohlmeier, C. Mattea, S. Stapf, C. Holm, and A. Schlaich, “NMR Investigation of Water in Salt Crusts: Insights from Experiments and Molecular Simulations,” Langmuir, vol. 39, Art. no. 22, May 2023, doi: 10.1021/acs.langmuir.3c00036.
    8. S. Sen, X. Zhang, L. Rogal, G. Wilde, B. Grabowski, and S. V. Divinski, “Does Zn mimic diffusion of Al in the HCP Al-Sc-Hf-Ti-Zr high entropy alloys?,” Scripta Materialia, vol. 229, p. 115376, May 2023, doi: 10.1016/j.scriptamat.2023.115376.
    9. S. Perween et al., “Topochemical Fluorination of LaBaInO4 to LaBaInO3F2, Their Optical Characterization, and Photocatalytic Activities for Hydrogen Evolution,” Inorganic Chemistry, vol. 62, Art. no. 40, Sep. 2023, doi: 10.1021/acs.inorgchem.3c01682.
    10. L. Neumaier, D. Roskosch, J. Schilling, G. Bauer, J. Gross, and A. Bardow, “Refrigerant Selection for Heat Pumps: The Compressor Makes the Difference,” Energy Technology, Feb. 2023, doi: 10.1002/ente.202201403.
    11. P. Rehner, A. Bardow, and J. Gross, “Modeling Mixtures with PCP-SAFT: Insights from Large-Scale Parametrization and Group-Contribution Method for Binary Interaction Parameters,” International Journal of Thermophysics, vol. 44, Art. no. 12, 2023.
    12. Molpeceres, G., Zaverkin, V., Furuya, K., Aikawa, Y., and Kästner, J., “Reaction dynamics on amorphous solid water surfaces using interatomic machine-learned potentials - Microscopic energy partition revealed from the P + H → PH reaction,” Astronomy & Astrophysics, vol. 673, p. A51, 2023, doi: 10.1051/0004-6361/202346073.
    13. C. Lohrmann and C. Holm, “Optimal motility strategies for self-propelled agents to explore porous media,” Physical Review B, vol. 108, Art. no. 5, Nov. 2023, doi: 10.1103/PhysRevE.108.054401.
    14. J. Wachlmayr, G. Fläschner, K. Pluhackova, W. Sandtner, C. Siligan, and A. Horner, “Entropic barrier of water permeation through single-file channels,” Communications Chemistry, vol. 6, Art. no. 1, Jun. 2023, doi: 10.1038/s42004-023-00919-0.
    15. V. Artemov et al., “The Three-Phase Contact Potential Difference Modulates the Water Surface Charge,” The Journal of Physical Chemistry Letters, vol. 14, Art. no. 20, May 2023, doi: 10.1021/acs.jpclett.3c00479.
    16. V. Zaverkin, D. Holzmüller, L. Bonfirraro, and J. Kästner, “Transfer learning for chemically accurate interatomic neural network potentials,” Physical Chemistry Chemical Physics, vol. 25, Art. no. 7, 2023, doi: 10.1039/D2CP05793J.
    17. P. Kreissl, C. Holm, and R. Weeber, “Interplay between steric and hydrodynamic interactions for ellipsoidal magnetic nanoparticles in a polymer suspension,” Soft Matter, vol. 19, Art. no. 6, 2023, doi: 10.1039/D2SM01428A.
    18. S. Sharba, J. Herb, and F. Fritzen, “Reduced order homogenization of thermoelastic materials with strong temperature dependence and comparison to a machine-learned model,” Archive of Applied Mechanics, vol. 93, Art. no. 7, Jul. 2023, doi: 10.1007/s00419-023-02411-6.
    19. J. Yang, S. Kondrat, C. Lian, H. Liu, A. Schlaich, and C. Holm, “Solvent Effects on Structure and Screening in Confined Electrolytes,” Physical Review Letters, vol. 131, Art. no. 11, Sep. 2023, doi: 10.1103/PhysRevLett.131.118201.
    20. X. Xu, X. Zhang, A. Ruban, S. Schmauder, and B. Grabowski, “Strong impact of spin fluctuations on the antiphase boundaries of weak itinerant ferromagnetic Ni3Al,” Acta Materialia, vol. 255, p. 118986, Aug. 2023, doi: 10.1016/j.actamat.2023.118986.
    21. I. Nitzke, R. Stierle, S. Stephan, M. Pfitzner, J. Gross, and J. Vrabec, “Phase equilibria and interface properties of hydrocarbon propellant-oxygen mixtures in the transcritical regime,” Physics of Fluids, vol. 35, Art. no. 3, 2023, doi: 10.1063/5.0138973.
    22. S. Sen, X. Zhang, L. Rogal, G. Wilde, B. Grabowski, and S. V. Divinski, “‘Anti-sluggish’ Ti diffusion in HCP high-entropy alloys: Chemical complexity vs. lattice distortions,” Scripta Materialia, vol. 224, p. 115117, Feb. 2023, doi: 10.1016/j.scriptamat.2022.115117.
    23. M. Hammer, G. Bauer, R. Stierle, J. Groß, and Ø. Wilhelmsen, “Classical density functional theory for interfacial properties of hydrogen, helium, deuterium, neon, and their mixtures,” The Journal of Chemical Physics, vol. 158, Art. no. 10, 2023, doi: 10.1063/5.0137226.
    24. I. Tischler, A. Schlaich, and C. Holm, “Disentanglement of Surface and Confinement Effects for Diene Metathesis in Mesoporous Confinement,” ACS Omega, vol. 9, Art. no. 1, Dec. 2023, doi: 10.1021/acsomega.3c06195.
    25. L. Pfitzer, J. Heitkämper, J. Kästner, and R. Peters, “Use of the N–O Bonds in N-Mesyloxyamides and N-Mesyloxyimides To Gain Access to 5-Alkoxy-3,4-dialkyloxazol-2-ones and 3-Hetero-Substituted Succinimides: A Combined Experimental and Theoretical Study,” Synthesis, vol. 55, Art. no. 26, 2023, doi: 10.1055/s-0042-1751447.
    26. R. Stierle, M. Fischer, T. Braun, and J. Gross, “Investigating Learning and Improving Teaching in Engineering Thermodynamics Guided by Constructive Alignment and Competency Modeling: Part I. Improving Our Learning Environment - How We Support Student Learning,” Chemical Engineering Education, vol. 57, Art. no. 2, 2023, doi: 10.18260/2-1-370.660-126287.
    27. J. H. Jung, A. Forslund, P. Srinivasan, and B. Grabowski, “Dynamically stabilized phases with full ab initio accuracy: Thermodynamics of Ti, Zr, Hf with a focus on the hcp-bcc transition,” Physical Review B, vol. 108, Art. no. 18, Nov. 2023, doi: 10.1103/physrevb.108.184107.
    28. I. Baker, B. Grabowski, S. V. Divinski, X. Zhang, and Y. Ikeda, “Interstitials in compositionally complex alloys,” MRS Bulletin, vol. 48, Art. no. 7, Jul. 2023, doi: 10.1557/s43577-023-00558-9.
    29. A. Forslund, J. H. Jung, P. Srinivasan, and B. Grabowski, “Thermodynamic properties on the homologous temperature scale from direct upsampling: Understanding electron-vibration coupling and thermal vacancies in bcc refractory metals,” Physical Review B, vol. 107, Art. no. 17, May 2023, doi: 10.1103/physrevb.107.174309.
    30. K. Gubaev, V. Zaverkin, P. Srinivasan, A. I. Duff, J. Kästner, and B. Grabowski, “Performance of two complementary machine-learned potentials in modelling chemically complex systems,” npj Computational Materials, vol. 9, Art. no. 1, Jul. 2023, doi: 10.1038/s41524-023-01073-w.
    31. F. Pes, É. Polack, P. Mazzeo, G. Dusson, B. Stamm, and F. Lipparini, “A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics,” The Journal of Physical Chemistry Letters, pp. 9720–9726, Oct. 2023, doi: 10.1021/acs.jpclett.3c02098.
    32. E. Polukhov, L. Pytel, and M.-A. Keip, “Swelling-induced pattern transformations of periodic hydrogels : from the wrinkling of internal surfaces to the buckling of thin films,” Journal of the mechanics and physics of solids, vol. 175, Art. no. June, 2023, doi: 10.1016/j.jmps.2023.105250.
    33. A. Müller, M. Bischoff, and M.-A. Keip, “Thin cylindrical magnetic nanodots revisited : Variational formulation, accurate solution and phase diagram,” Journal of magnetism and magnetic materials, vol. 586, p. 171095, 2023, doi: 10.1016/j.jmmm.2023.171095.
    34. R. Weeber, P. Kreissl, and C. Holm, “Magnetic field controlled behavior of magnetic gels studied using particle-based simulations,” Physical Sciences Reviews, vol. 8, Art. no. 8, 2023, doi: doi:10.1515/psr-2019-0106.
    35. S. Gravelle, D. Beyer, M. Brito, A. Schlaich, and C. Holm, “Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures,” The Journal of Physical Chemistry B, vol. 127, Art. no. 25, Jun. 2023, doi: 10.1021/acs.jpcb.3c01646.
    36. S. Bolik et al., “Lipid bilayer properties potentially contributed to the evolutionary disappearance of betaine lipids in seed plants,” BMC biology, vol. 21, p. 275, 2023, doi: 10.1186/s12915-023-01775-z.
    37. K. Wissel et al., “Dissolution and Recrystallization Behavior of Li3PS4 in Different Organic Solvents with a Focus on N-Methylformamide,” ACS Applied Energy Materials, vol. 6, Art. no. 15, Jul. 2023, doi: 10.1021/acsaem.2c03278.
    38. C. Lohrmann and C. Holm, “A novel model for biofilm initiation in porous media flow,” Soft Matter, vol. 19, Art. no. 36, 2023, doi: 10.1039/D3SM00575E.
    39. M. Degen et al., “Structural basis of NINJ1-mediated plasma membrane rupture in cell death,” Nature, vol. 618, Art. no. 7967, Jun. 2023, doi: 10.1038/s41586-023-05991-z.
    40. C. Lienstromberg, S. Schiffer, and R. Schubert, “A data-driven approach to viscous fluid mechanics: The stationary case,” Arch. Rational Mech. Anal., vol. 247, Art. no. 2, 2023, doi: 10.1007/s00205-023-01849-w.
    41. Á. D. Carral, X. Xu, S. Gravelle, A. YazdanYar, S. Schmauder, and M. Fyta, “Stability of binary precipitates in Cu-Ni-Si-Cr alloys investigated through active learning,” Materials Chemistry and Physics, vol. 306, p. 128053, Sep. 2023, doi: 10.1016/j.matchemphys.2023.128053.
    42. C. Steinhausen et al., “Characterisation of the transient mixing behaviour of evaporating near-critical droplets,” Frontiers in Physics, vol. 11, 2023, doi: 10.3389/fphy.2023.1192416.
    43. A. Schlaich, S. Tyagi, S. Kesselheim, M. Sega, and C. Holm, “Renormalized charge and dielectric effects in colloidal interactions: a numerical solution of the nonlinear Poisson--Boltzmann equation for unknown boundary conditions,” The European Physical Journal E, vol. 46, Art. no. 9, Sep. 2023, doi: 10.1140/epje/s10189-023-00334-2.
    44. J. H. Jung, P. Srinivasan, A. Forslund, and B. Grabowski, “High-accuracy thermodynamic properties to the melting point from ab initio calculations aided by machine-learning potentials,” npj Computational Materials, vol. 9, Art. no. 1, Jan. 2023, doi: 10.1038/s41524-022-00956-8.
    45. P. Srinivasan, A. Shapeev, J. Neugebauer, F. Körmann, and B. Grabowski, “Anharmonicity in bcc refractory elements: A detailed ab initio analysis,” Physical Review B, vol. 107, Art. no. 1, Jan. 2023, doi: 10.1103/physrevb.107.014301.
  4. 2022

    1. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, vol. 21, Art. no. 2, Feb. 2022, doi: 10.1038/s41563-021-01121-0.
    2. A. Dash et al., “Recent Advances in Understanding Diffusion in Multiprincipal Element Systems,” Annual Review of Materials Research, vol. 52, Art. no. 1, 2022, doi: 10.1146/annurev-matsci-081720-092213.
    3. K. Pluhackova, V. Schittny, P.-C. Bürkner, C. Siligan, and A. Horner, “Multiple pore lining residues modulate water permeability of GlpF,” Protein Science, vol. 31, Art. no. 10, 2022, doi: https://doi.org/10.1002/pro.4431.
    4. M. Pechlaner, W. F. van Gunsteren, N. Hansen, and L. J. Smith, “Molecular dynamics simulation or structure refinement of proteins: are solvent molecules required? A case study using hen lysozyme,” European Biophysics Journal, vol. 51, Art. no. 3, Apr. 2022, doi: 10.1007/s00249-022-01593-1.
    5. W. F. van Gunsteren, M. Pechlaner, L. J. Smith, B. Stankiewicz, and N. Hansen, “A Method to Derive Structural Information on Molecules from Residual Dipolar Coupling NMR Data,” The Journal of Physical Chemistry B, vol. 126, Art. no. 21, May 2022, doi: 10.1021/acs.jpcb.2c02410.
    6. S. Liese, A. Schlaich, and R. R. Netz, “Dielectric Constant of Aqueous Solutions of Proteins and Organic Polymers from Molecular Dynamics Simulations,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0089397.
    7. J. Eller, T. Sauerborn, B. Becker, I. Buntic, J. Gross, and R. Helmig, “Modeling Subsurface Hydrogen Storage With Transport Properties From Entropy Scaling Using the PC‐SAFT Equation of State,” Water Resources Research, vol. 58, Art. no. 4, 2022, doi: 10.1029/2021wr030885.
    8. Y. Ikeda, D. P. Estes, and B. Grabowski, “Comprehensive Understanding of H Adsorption on MoO3 from Systematic Ab Initio Simulations,” The Journal of Physical Chemistry C, vol. 126, Art. no. 17, Apr. 2022, doi: 10.1021/acs.jpcc.2c01085.
    9. I. Novikov, B. Grabowski, F. Körmann, and A. Shapeev, “Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe,” npj Computational Materials, vol. 8, Art. no. 1, Jan. 2022, doi: 10.1038/s41524-022-00696-9.
    10. I. Tischler, F. Weik, R. Kaufmann, M. Kuron, R. Weeber, and C. Holm, “A thermalized electrokinetics model including stochastic reactions suitable for multiscale simulations of reaction-advection-diffusion systems,” Journal of Computational Science, vol. 63, p. 101770, 2022, doi: 10.1016/j.jocs.2022.101770.
    11. V. Korn and K. Pluhackova, “Not sorcery after all: Roles of multiple charged residues in membrane insertion of gasdermin-A3,” Frontiers in Cell and Developmental Biology, vol. 10, 2022, doi: 10.3389/fcell.2022.958957.
    12. N. E. R. Zimmermann, G. Guevara-Carrion, J. Vrabec, and N. Hansen, “Predicting and Rationalizing the Soret Coefficient of Binary Lennard-Jones Mixtures in the Liquid State,” Advanced Theory and Simulations, vol. 5, Art. no. 11, Jul. 2022, doi: 10.1002/adts.202200311.
    13. N. Zotov and B. Grabowski, “Entropy of kink pair formation on screw dislocations: an accelerated molecular dynamics study,” Modelling and Simulation in Materials Science and Engineering, vol. 30, Art. no. 6, Jun. 2022, doi: 10.1088/1361-651x/ac7ac9.
    14. Y. Zhou et al., “Thermodynamics up to the melting point in a TaVCrW high entropy alloy: Systematic ab initio study aided by machine learning potentials,” Physical Review B, vol. 105, Art. no. 21, Jun. 2022, doi: 10.1103/physrevb.105.214302.
    15. A. Kanan, E. Polukhov, M.-A. Keip, L. Dorfmann, and M. Kaliske, “Computational material stability analysis in finite thermo-electro-mechanics,” Mechanics research communications, vol. 121, Art. no. April, 2022, doi: 10.1016/j.mechrescom.2022.103867.
    16. L. Neumaier, J. Schilling, A. Bardow, and J. Gross, “Dielectric constant of mixed solvents based on perturbation theory,” Fluid Phase Equilibria, vol. 555, p. 113346, Apr. 2022, doi: 10.1016/j.fluid.2021.113346.
    17. T. van Westen, M. Hammer, B. Hafskjold, A. Aasen, J. Gross, and Ø. Wilhelmsen, “Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid,” The Journal of Chemical Physics, vol. 156, Art. no. 10, Mar. 2022, doi: 10.1063/5.0082690.
    18. M. Fernández, F. Fritzen, and O. Weeger, “Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials,” International Journal for Numerical Methods in Engineering, vol. 123, Art. no. 2, 2022, doi: 10.1002/nme.6869.
    19. S. Gravelle, C. Holm, and A. Schlaich, “Transport of thin water films: from thermally activated random walks to hydrodynamics,” The Journal of Chemical Physics, 2022, doi: 10.1063/5.0099646.
    20. D. Markthaler, H. Kraus, and N. Hansen, “Binding free energies for the SAMPL8 CB8 “Drugs of Abuse” challenge from umbrella sampling combined with Hamiltonian replica exchange,” Journal of Computer-Aided Molecular Design, vol. 36, pp. 1–9, 2022, doi: 10.1007/s10822-021-00439-w.
    21. M. Gültig, J. P. Range, B. Schmitz, and J. Pleiss, “Integration of Simulated and Experimentally Determined Thermophysical Properties of Aqueous Mixtures by ThermoML,” Journal of Chemical & Engineering Data, vol. 67, Art. no. 11, 2022, doi: 10.1021/acs.jced.2c00391.
    22. D. Markthaler, M. Fleck, B. Stankiewicz, and N. Hansen, “Exploring the Effect of Enhanced Sampling on Protein Stability Prediction,” Journal of Chemical Theory and Computation, vol. 18, Art. no. 4, Mar. 2022, doi: 10.1021/acs.jctc.1c01012.
    23. N. Gössweiner-Mohr et al., “The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold,” Small, vol. 18, Art. no. 31, 2022, doi: https://doi.org/10.1002/smll.202202056.
    24. P. Rehner, T. van Westen, and J. Gross, “Equation of state and Helmholtz energy functional for fused heterosegmented hard chains,” Physical Review E, Mar. 2022, doi: 10.1103/PhysRevE.105.034110.
    25. X. Zhang, S. V. Divinski, and B. Grabowski, “Ab initio prediction of vacancy energetics in HCP Al-Hf-Sc-Ti-Zr high entropy alloys and the subsystems,” Acta Materialia, vol. 227, p. 117677, Apr. 2022, doi: 10.1016/j.actamat.2022.117677.
    26. Y. Ou, Y. Ikeda, O. Clemens, and B. Grabowski, “Dynamic stabilization of perovskites at elevated temperatures: A comparison between cubic BaFeO3 and vacancy-ordered monoclinic BaFeO2.67,” Physical Review B, vol. 106, Art. no. 6, Aug. 2022, doi: 10.1103/physrevb.106.064308.
    27. R. U. Stelzer, Y. Ikeda, P. Srinivasan, T. S. Lehmann, B. Grabowski, and R. Niewa, “Li5Sn, the Most Lithium-Rich Binary Stannide: A Combined Experimental and Computational Study,” Journal of the American Chemical Society, vol. 144, Art. no. 16, Apr. 2022, doi: 10.1021/jacs.1c10640.
    28. V. Zaverkin, J. Netz, F. Zills, A. Köhn, and J. Kästner, “Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments,” Journal of Chemical Theory and Computation, vol. 18, pp. 1–12, 2022, doi: 10.1021/acs.jctc.1c00853.
    29. C. Kessler et al., “Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study,” Microporous and Mesoporous Materials, vol. 336, p. 111796, May 2022, doi: 10.1016/j.micromeso.2022.111796.
    30. V. Zaverkin, D. Holzmüller, R. Schuldt, and J. Kästner, “Predicting properties of periodic systems from cluster data: A case study of liquid water,” The Journal of Chemical Physics, vol. 156, Art. no. 11, 2022, doi: 10.1063/5.0078983.
    31. J. S. Lee, W.-S. Ko, and B. Grabowski, “Atomistic simulations of the deformation behavior of an Nb nanowire embedded in a NiTi shape memory alloy,” Acta Materialia, vol. 228, p. 117764, Apr. 2022, doi: 10.1016/j.actamat.2022.117764.
  5. 2021

    1. S. Nirupama Sriram, E. Polukhov, and M.-A. Keip, “Transient stability analysis of composite hydrogel structures based on a minimization-type variational formulation,” International Journal of Solids and Structures, vol. 230-231, p. 111080, 2021, doi: https://doi.org/10.1016/j.ijsolstr.2021.111080.
    2. A. Forslund, X. Zhang, B. Grabowski, A. V. Shapeev, and A. V. Ruban, “Ab initio simulations of the surface free energy of TiN(001),” Physical Review B, vol. 103, Art. no. 19, 2021, doi: 10.1103/PhysRevB.103.195428.
    3. J. Schilling, M. Hopp, J. Gross, and A. Bardow, “Tailor-made solvents by integrated design of molecules and CO<sub>2</sub> absorption processes,” Computer Aided Chemical Engineering, vol. 50, pp. 197–202, 2021.
    4. L. J. Smith, W. F. van Gunsteren, B. Stankiewicz, and N. Hansen, “On the use of 3J-coupling NMR data to derive structural information on proteins,” Journal of Biomolecular NMR, vol. 75, Art. no. 1, Jan. 2021, doi: 10.1007/s10858-020-00355-5.
    5. J. Zeman, S. Kondrat, and C. Holm, “Ionic screening in bulk and under confinement,” The Journal of Chemical Physics, vol. 155, Art. no. 20, 2021, doi: 10.1063/5.0069340.
    6. J. Schilling, M. Entrup, M. Hopp, J. Gross, and A. Bardow, “Towards optimal mixtures of working fluids:Integrated design of processes and mixtures for Organic Rankine Cycles,” Renewable and Sustainable Energy Reviews, vol. 135, 2021.
    7. L. Oberer, A. D. Carral, and M. Fyta, “Simple Classification of RNA Sequences of Respiratory-Related Coronaviruses,” ACS Omega, Jul. 2021, doi: 10.1021/acsomega.1c01625.
    8. H. Carvalho, V. Ferrario, and J. Pleiss, “The molecular mechanism of methanol inhibition in CALB-catalyzed alcoholysis: analyzing molecular dynamics simulations by a Markov state model,” J Chem Theory Comput, vol. 17, pp. 6570–6582, 2021, doi: https://doi.org/10.1021/acs.jctc.1c00559.
    9. E. Polukhov and M.-A. Keip, “Multiscale stability analysis of periodic magnetorheological elastomers,” Mechanics of Materials, vol. 159, p. 103699, 2021, doi: https://doi.org/10.1016/j.mechmat.2020.103699.
    10. A. Wagner et al., “Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods,” Transport in Porous Media, vol. 138, Art. no. 1, 2021, doi: 10.1007/s11242-021-01586-2.
    11. A. Schlaich, D. Jin, L. Bocquet, and B. Coasne, “Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces,” Nature Materials, Nov. 2021, doi: 10.1038/s41563-021-01121-0.
    12. J. Eller and J. Gross, “Free-Energy-Averaged Potentials for Adsorption in Heterogeneous Slit Pores Using PC-SAFT Classical Density Functional Theory,” Langmuir, vol. 37, Art. no. 12, Mar. 2021, doi: 10.1021/acs.langmuir.0c03287.
    13. R. Stierle and J. Gross, “Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence,” The Journal of Chemical Physics, Oct. 2021, doi: 10.1063/5.0060088.
    14. K. Szuttor, P. Kreissl, and C. Holm, “A numerical investigation of analyte size effects in nanopore sensing systems,” The Journal of Chemical Physics, vol. 155, Art. no. 13, 2021, doi: 10.1063/5.0065085.
    15. D. Markthaler and N. Hansen, “Umbrella sampling and double decoupling data for methanol binding to Candida antarctica lipase B,” Data in Brief, vol. 39, p. 107618, Dec. 2021, doi: 10.1016/j.dib.2021.107618.
    16. D. Born and J. Kästner, “Geometry Optimization in Internal Coordinates Based on Gaussian Process Regression: Comparison of Two Approaches,” Journal of Chemical Theory and Computation, vol. 17, Art. no. 9, 2021, doi: 10.1021/acs.jctc.1c00517.
    17. G. Molpeceres, V. Zaverkin, N. Watanabe, and J. Kästner, “Binding energies and sticking coefficients of H₂ on crystalline and amorphous CO ice,” Astronomy & Astrophysics, vol. 648, p. A84, 2021, doi: 10.1051/0004-6361/202040023.
    18. T. van Westen and J. Gross, “Accurate first-order perturbation theory for fluids: uf-theory,” The Journal of Chemical Physics, Jan. 2021, doi: 10.1063/5.0031545.
    19. T. van Westen and J. Gross, “Accurate thermodynamics of simple fluids and chain fluids based on first-order perturbation theory and second virial coefficients: uv-theory,” The Journal of Chemical Physics, Dec. 2021, doi: 10.1063/5.0073572.
    20. C. Keßler, J. Eller, J. Groß, and N. Hansen, “Adsorption of light gases in covalent organic frameworks : comparison of classical density functional theory and grand canonical Monte Carlo simulations,” Microporous and mesoporous materials, vol. 324, Art. no. September, 2021, doi: 10.1016/j.micromeso.2021.111263.
    21. M. Kuron, C. Stewart, J. de Graaf, and C. Holm, “An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids,” The European Physical Journal E, vol. 44, Art. no. 1, 2021, doi: 10.1140/epje/s10189-020-00005-6.
    22. K. Szuttor, F. Weik, J.-N. Grad, and C. Holm, “Modeling the current modulation of bundled DNA structures in nanopores,” The Journal of Chemical Physics, vol. 154, Art. no. 5, 2021, doi: 10.1063/5.0038530.
    23. J. M. Riede, C. Holm, S. Schmitt, and D. F. B. Haeufle, “The control effort to steer self-propelled microswimmers depends on their morphology: comparing symmetric spherical versus asymmetric L -shaped particles,” Royal Society Open Science, vol. 8, Art. no. 9, Sep. 2021, doi: 10.1098/rsos.201839.
    24. L. J. Smith, W. F. Gunsteren, and N. Hansen, “On the Use of Side-Chain NMR Relaxation Data to Derive Structural and Dynamical Information on Proteins: A Case Study Using Hen Lysozyme,” ChemBioChem, vol. 22, Art. no. 6, Dec. 2021, doi: 10.1002/cbic.202000674.
    25. X. Xu, P. Binkele, W. Verestek, and S. Schmauder, “Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars,” Molecules, vol. 26, Art. no. 9, Apr. 2021, doi: 10.3390/molecules26092606.
    26. P. Rehner, B. Bursik, and J. Gross, “Surfactant Modeling Using Classical Density Functional Theory and a Group Contribution PC-SAFT Approach,” Industrial & Engineering Chemistry Research, vol. 60, Art. no. 19, Apr. 2021, doi: 10.1021/acs.iecr.1c00169.
    27. J. Eller, T. Matzerath, T. van Westen, and J. Gross, “Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state,” The Journal of Chemical Physics, Jun. 2021, doi: 10.1063/5.0051201.
    28. Á. D. Carral, M. Ostertag, and M. Fyta, “Deep learning for nanopore ionic current blockades,” The Journal of Chemical Physics, vol. 154, Art. no. 4, Jan. 2021, doi: 10.1063/5.0037938.
    29. K. Gubaev et al., “Finite-temperature interplay of structural stability, chemical complexity, and elastic properties of bcc multicomponent alloys from ab initio trained machine-learning potentials,” Physical Review Materials, vol. 5, Art. no. 7, 2021, doi: 10.1103/PhysRevMaterials.5.073801.
  6. 2020

    1. G. Lamanna et al., “Laboratory Experiments of High-Pressure Fluid Drops,” in High-Pressure Flows for Propulsion Applications, American Institute of Aeronautics and Astronautics, Inc., 2020, pp. 49–109. doi: 10.2514/5.9781624105814.0049.0110.
    2. X. Xu, J. Range, G. Gygli, and J. Pleiss, “Analysis of Thermophysical Properties of Deep Eutectic Solvents by Data Integration,” Journal of Chemical & Engineering Data, vol. 65, pp. 1172–1179, 2020, doi: https://doi.org/10.1021/acs.jced.9b00555.
    3. S. Tovey et al., “DFT accurate interatomic potential for molten NaCl from machine learning,” The Journal of Physical Chemistry C, vol. 124, Art. no. 47, 2020, doi: 10.1021/acs.jpcc.0c08870.
    4. G. Molpeceres, V. Zaverkin, and J. Kästner, “Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – I. adsorption and desorption,” Mon. Not. R. Astron. Soc., vol. 499, pp. 1373–1384, 2020, doi: 10.1093/mnras/staa2891.
    5. N. Hansen et al., “A Suite of Advanced Tutorials for the GROMOS Biomolecular Simulation Software Article v1.0,” Living Journal of Computational Molecular Science, vol. 2, Art. no. 1, 2020, doi: 10.33011/livecoms.2.1.18552.
    6. M. Fischer, G. Bauer, and J. Gross, “Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths: Comparing Static and Dynamic Fluid Properties,” Journal of Chemical & Engineering Data, vol. 65, Art. no. 4, Feb. 2020, doi: 10.1021/acs.jced.9b01031.
    7. J. Zeman, S. Kondrat, and C. Holm, “Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations,” Chemical Communications, vol. 56, Art. no. 100, 2020, doi: 10.1039/D0CC05023G.
    8. R. Stierle, C. Waibel, J. Gross, C. Steinhausen, B. Weigand, and G. Lamanna, “On the Selection of Boundary Conditions for Droplet Evaporation and Condensation at high Pressure and Temperature Conditions from interfacial Transport Resistivities,” International Journal of Heat and Mass Transfer, vol. 151, p. 119450, Apr. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119450.
    9. R. Stierle and J. Gross, “A fast inverse Hankel Transform of first Order for computing vector-valued weight Functions appearing in Fundamental Measure Theory in cylindrical Coordinates,” Fluid Phase Equilibria, vol. 511, p. 112500, May 2020, doi: 10.1016/j.fluid.2020.112500.
    10. L. T. K. Nguyen, M. Rambausek, and M.-A. Keip, “Variational framework for distance-minimizing method in data-driven computational mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 365, p. 112898, 2020, doi: https://doi.org/10.1016/j.cma.2020.112898.
    11. V. Zaverkin and J. Kästner, “Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials,” Journal of Chemical Theory and Computation, vol. 16, pp. 5410–5421, 2020, doi: 10.1021/acs.jctc.0c00347.
    12. J. Gebhardt, M. Kiesel, S. Riniker, and N. Hansen, “Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients,” Journal of Chemical Information and Modeling, vol. 60, Art. no. 11, Aug. 2020, doi: 10.1021/acs.jcim.0c00479.
    13. G. Sivaraman et al., “Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide,” npj Computational Materials, vol. 6, Art. no. 1, Jul. 2020, doi: 10.1038/s41524-020-00367-7.
    14. M. Theiss and J. Gross, “Nonprimitive Model Electrolyte Solutions: Comprehensive Data from Monte Carlo Simulations,” Journal of Chemical & Engineering Data, vol. 65, Art. no. 2, Jan. 2020, doi: 10.1021/acs.jced.9b00855.
    15. M. Fischer, G. Bauer, and J. Gross, “Transferable Anisotropic United-Atom Mie (TAMie) Force Field: Transport Properties from Equilibrium Molecular Dynamic Simulations,” Industrial & Engineering Chemistry Research, vol. 59, Art. no. 18, 2020.
    16. M. Fernández, S. Rezaei, J. R. Mianroodi, F. Fritzen, and S. Reese, “Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior,” Advanced Modeling and Simulation in Engineering Sciences, vol. 7, Art. no. 1, Jan. 2020, doi: 10.1186/s40323-019-0138-7.
    17. O. Kunc and F. Fritzen, “Many-scale finite strain computational homogenization via Concentric Interpolation,” International Journal for Numerical Methods in Engineering, vol. 121, Art. no. 21, 2020, doi: 10.1002/nme.6454.
    18. G. Gygli, X. Xu, and J. Pleiss, “Meta-analysis of viscosity of aqueous deep eutectic solvents and their components,” Scientific Reports, vol. 10, p. 21395, 2020.
    19. K. Breitsprecher et al., “How to speed up ion transport in nanopores,” Nature Communications, vol. 11, Art. no. 1, Nov. 2020, doi: 10.1038/s41467-020-19903-6.
    20. P. Rehner and J. Gross, “Multiobjective Optimization of PCP-SAFT Parameters for Water and Alcohols Using Surface Tension Data,” Journal of Chemical & Engineering Data, vol. 65, Art. no. 12, Sep. 2020, doi: 10.1021/acs.jced.0c00684.
    21. M. Theiss and J. Gross, “Perturbation approaches for describing dipolar fluids and electrolyte solutions,” The Journal of Chemical Physics, Jul. 2020, doi: 10.1063/5.0011384.
    22. R. Stierle et al., “Guide to efficient solution of PC-SAFT classical Density Functional Theory in various Coordinate Systems using fast Fourier and similar Transforms,” Fluid Phase Equilibria, vol. 504, p. 112306, Jan. 2020, doi: 10.1016/j.fluid.2019.112306.
    23. M. Fernández and F. Fritzen, “Construction of a class of sharp Löwner majorants for a set of symmetric matrices,” Journal of Applied Mathematics, vol. 2020, pp. 1–18, 2020, doi: 10.1155/2020/9091387.
    24. M. Fernández and F. Fritzen, “On the generation of periodic discrete structures with identical two-point correlation,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 476, Art. no. 2242, 2020, doi: 10.1098/rspa.2020.0568.
    25. A. Denzel and J. Kästner, “Hessian Matrix Update Scheme for Transition State Search Based on Gaussian Process Regression,” Journal of Chemical Theory and Computation, vol. 16, Art. no. 8, Jul. 2020, doi: 10.1021/acs.jctc.0c00348.
    26. E. Polukhov and M.-A. Keip, “Computational homogenization of transient chemo-mechanical processes based on a variational minimization principle,” Advanced Modeling and Simulation in Engineering Sciences, vol. 7, Art. no. 1, Jul. 2020, doi: 10.1186/s40323-020-00161-6.
  7. 2019

    1. J. Zeman, C. Holm, and J. Smiatek, “The Effect of Small Organic Cosolutes on Water Structure and Dynamics,” Journal of Chemical & Engineering Data, vol. 65, Art. no. 3, Aug. 2019, doi: 10.1021/acs.jced.9b00577.
    2. F. S. Göküzüm, L. T. K. Nguyen, and M.-A. Keip, “An Artificial Neural Network Based Solution Scheme for Periodic Computational Homogenization of Electrostatic Problems,” Mathematical and Computational Applications, vol. 24, Art. no. 2, Apr. 2019, doi: 10.3390/mca24020040.
    3. R. Roddan et al., “The acceptance and kinetic resolution of alpha-methyl substituted aldehydes by norcoclaurine synthases.,” ACS Catalysis, vol. 9, pp. 9640–9649, 2019.
    4. A. Denzel, B. Haasdonk, and J. Kästner, “Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search,” The Journal of Physical Chemistry A, vol. 123, Art. no. 44, 2019, doi: 10.1021/acs.jpca.9b08239.
    5. A. D. Carral, C. S. Sarap, K. Liu, A. Radenovic, and M. Fyta, “2D MoS2 nanopores: ionic current blockade height for clustering DNA events,” 2D Materials, vol. 6, Art. no. 4, 2019.
  8. 2018

    1. A. Denzel and J. Kästner, “Gaussian Process Regression for Transition State Search,” Journal of Chemical Theory and Computation, vol. 14, Art. no. 11, 2018, doi: 10.1021/acs.jctc.8b00708.
    2. A. Denzel and J. Kästner, “Gaussian process regression for geometry optimization,” Journal of Chemical Physics, vol. 148, Art. no. 9, 2018, doi: 10.1063/1.5017103.

Published software

  1. 2023

    1. L. Werneck, E. Yildiz, M. Han, M.-A. Keip, M. Sitti, and M. Ortiz, “Ion Flow Through Neural Ion Membrane: scripts and data.” 2023. doi: 10.18419/darus-3575.
  2. 2021

    1. D. Holzmüller, “Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression.” 2021. doi: 10.18419/darus-1771.

Published data

  1. 2023

    1. J. Rettberg et al., “Replication Data for: Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar.” 2023. doi: 10.18419/darus-3248.
    2. M. Degen et al., “Supplementary material for ‘Structural basis for ninjurin-1 mediated plasma membrane rupture in lytic cell death.’” 2023. doi: 10.18419/darus-3373.
    3. J. Wachlmayr, G. Fläschner, K. Pluhackova, W. Sandtner, C. Siligan, and A. Horner, “Supplementary Material for ‘Entropic barrier of water permeation through single-file channels.’” 2023. doi: 10.18419/darus-3390.
    4. X. Xu, “Replication Data for: Strong impact of spin fluctuations on the antiphase boundaries of weak itinerant ferromagnetic Ni3Al.” 2023. doi: 10.18419/darus-3579.

Project Network Coordinators

This image shows Felix Fritzen

Felix Fritzen

Prof. Dr.-Ing. Dipl.-Math. techn.

Data Analytics in Engineering

This image shows Blazej Grabowski

Blazej Grabowski

Prof. Dr. rer. nat.

Computational Materials Science

[Image: (c) SimTech/Max Kovalenko]

To the top of the page