Enhanced proprioceptor dynamics to predict sensorimotor interaction of a biophysical hand-arm-model


Project Description

This project aims at experimentally determining, and then modelling, the influence of individual somatosensory systems on the activation of human muscles. The experimental results will be used to integrate excitatory and inhibitory contributions in a motor unit pool recruitment model, to better understand the relationship between afferent input and motor output. The individual sensory channels are experimentally targeted by means of specific perturbation paradigms to evaluate how each of them (and their combinations) contribute in tuning the descending drive to the muscle (PN2-3A). Experiments will start from fully controlled contractions (i.e., isometric, on individual muscles) to complex movements (multi-muscle coordination). Sensor dynamics will be predicted on the basis of an enhanced muscle spindle model and included into a biophysical system model of a human limb (PN2-3B). This model will sharpen our understanding of how the muscular activity is modulated by the somatosensory feedback and in response to external stimuli. Ultimately, the project strives for answering the question as to whether it becomes possible in the future to decode motion such that sensory feedback can be predicted without having the actual sensor data at hand.

Project Information

Project Number PN 2-3B
Project Name Enhanced proprioceptor dynamics to predict sensorimoto interaction of a biophysical hand-arm-model
Project Duration October 2019 - March 2023
Project Leader Syn Schmitt
Project Members Maria Hammer, PhD Researcher
Project Partners Leonardo Gizzi
To the top of the page