ML Session: Bayesian Statistics (Paul-Christian Bürkner)

June 9, 2021, 2:00 p.m. (CEST)

Time: June 9, 2021, 2:00 p.m. (CEST)
Download as iCal:

With this ML Session series we intend to provide individual and independent lecture sessions on ML related topics.This time Dr. Paul-Christian Bürkner will talk about "Bayesian Statistics".

The Bayesian approach to data analysis provides a powerful way to handle uncertainty in all observations, model parameters, and model structure using probability theory. For a long time, its practical applicability was limited due to the lack of efficient estimation algorithms and general computing power. However, both have changed in the past few decades. Nowadays, Bayesian statistics (also known as probabilistic machine learning) is highly relevant in almost all quantitative sciences. When using Bayesian methods, analysts benefit from the ability to express and fit highly complex models, incorporate prior information when available, naturally obtain uncertainties estimates, and easily propagate those uncertainties to push-forward quantities such as (posterior) predictions. In this talk, I will give a brief introduction to Bayesian statistics, highlight its advantages and disadvantages and provide a look into the future of Bayesian statistics.


July 2023

June 2023

May 2023

April 2023

March 2023

February 2023

January 2023

December 2022

November 2022

October 2022

September 2022

July 2022

June 2022

May 2022

April 2022

March 2022

February 2022

January 2022

December 2021

November 2021

October 2021

September 2021

July 2021

June 2021

May 2021

April 2021

March 2021

February 2021

January 2021

December 2020

November 2020

October 2020

August 2020

July 2020

June 2020

May 2020

March 2020

February 2020

January 2020

December 2019

November 2019

October 2019

September 2019

July 2019

June 2019

May 2019

June 2019

November 2019

To the top of the page