Public talk by Dennis Gläser

March 23, 2020, 10:00 a.m. (CET)

Discrete fracture modeling of multi-phase flow and deformation in fractured poroelastic media

Time: March 23, 2020, 10:00 a.m. (CET)
  University of Stuttgart, Campus Vaihingen, Pfaffenwaldring 61,MML.
Download as iCal:

As part of his oral doctoral examination, Dennis Gläser from the Institute for Modelling Hydraulic and Environmental Systems (IWS) will give a public talk on

"Discrete fracture modeling of multi-phase flow and deformation in fractured poroelastic media"

The University of Stuttgart cordially invites you to attend. The subsequent oral doctoral examination is non-public.

Abstract

Geological applications typically involve flow processes through porous rock, which can be a complex material composed of many rock-forming minerals. Moreover, most rocks are broken up by fractures that may substantially alter the hydraulic and mechanical behavior of a rock mass. As a consequence, understanding the complex flow patterns that arise in fractured rock might be crucial for successful project designs.

However, numerical modeling of flow and deformation processes of fractured porous rock is challenging due to the complex geometries involved in arbitrary networks of fractures, and the typically very small fracture apertures in comparison with the spatial scales of interest in most applications. Due to this difference in scales, a widely-used approach in the literature is to describe the fractures as lower-dimensional objects, which circumvents the need to discretize the interior of the fractures.

We adopt such an approach in this work and present hybrid-dimensional models for single- and two-
phase flow in rigid fractured porous media as well as fractured poroelastic media. We present several numerical approaches to discretize the resulting hybrid-dimensional system of equations and compare them regarding accuracy and computational efficiency. A selection of numerical examples is presented, which illustrate the relevance of the modeled physical phenomena.


July 2023

June 2023

May 2023

April 2023

March 2023

February 2023

January 2023

December 2022

November 2022

October 2022

September 2022

July 2022

June 2022

May 2022

April 2022

March 2022

February 2022

January 2022

December 2021

November 2021

October 2021

September 2021

July 2021

June 2021

May 2021

April 2021

March 2021

February 2021

January 2021

December 2020

November 2020

October 2020

August 2020

July 2020

June 2020

May 2020

March 2020

February 2020

January 2020

December 2019

November 2019

October 2019

September 2019

July 2019

June 2019

May 2019

June 2019

November 2019

To the top of the page