Publications of EXC 2075
Preprint: arXiv:2211.05639, 2022
- Martin, T., Schön, T. B., & Allgöwer, F. (n.d.). Gaussian inference for data-driven state-feedback design of nonlinear systems. 22nd IFAC World Congress (Submitted), Preprint: ArXiv:2211.05639.
2023
- Zaverkin, V., Holzmüller, D., Bonfirraro, L., & Kästner, J. (2023). Transfer learning for chemically accurate interatomic neural network potentials. Phys. Chem. Chem. Phys., 25(7), 5383–5396. https://doi.org/10.1039/D₂CP05793J
- Schlottke, A., Ibach, M., Steigerwald, J., & Weigand, B. (2023). Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’21 (pp. 239--257). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_14
- Morato, M. M., Holicki, T., & Scherer, C. W. (2023). Stabilizing Model Predictive Control Synthesis using Integral Quadratic Constraints and Full-Block Multipliers. https://doi.org/10.48550/ARXIV.2210.03712
- Monninger, T., Schmidt, J., Rupprecht, J., Raba, D., Jordan, J., Frank, D., Staab, S., & Dietmayer, K. (2023). SCENE: Reasoning about Traffic Scenes using Heterogeneous Graph Neural Networks. IEEE Robotics and Automation Letters, 1–8. https://doi.org/10.1109/LRA.2023.3234771
- Kurz, M., Offenhäuser, P., & Beck, A. (2023). Deep reinforcement learning for turbulence modeling in large eddy simulations. International Journal of Heat and Fluid Flow, 99, 109094. https://doi.org/10.1016/j.ijheatfluidflow.2022.109094
- Kneifl, J., Rosin, D., Röhrle, O., & Fehr, J. (2023). Low-dimensional Data-based Surrogate Model of a Continuum-mechanical Musculoskeletal System Based on Non-intrusive Model Order Reduction. arXiv. https://doi.org/10.48550/ARXIV.2302.06528
- Kharitenko, A., & Scherer, C. (2023). Time-varying Zames–Falb multipliers for LTI Systems are superfluous. Automatica, 147, 110577. https://doi.org/10.1016/j.automatica.2022.110577
- Kempf, D., Gao, M., Beck, A., Blind, M., Kopper, P., Kuhn, T., Kurz, M., Schwarz, A., & Munz, C.-D. (2023). Development of turbulent inflow methods for the high order HPC framework FLEXI. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’21 (pp. 289--304). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_17
- Ibach, M., Steigerwald, J., & Weigand, B. (2023). Thixotropic effects in oscillating droplets. 11th International Conference on Multiphase Flow (ICMF), April 2–7, 2023, Kobe, Japan.
- Hornischer, N. (2023). Model Order Reduction with Dynamically Transformed Modes for Electrophysiological Simulations. GAMM Archive for Students.
- Holzmüller, D., & Bach, F. (2023). Convergence rates for non-log-concave sampling and log-partition estimation. ArXiv:2303.03237.
- Holicki, T., & Scherer, C. W. (2023). Input-Output-Data-Enhanced Robust Analysis via Lifting. https://doi.org/10.48550/arXiv.2211.02149
- Holicki, T., & Scherer, C. W. (2023). IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties. https://doi.org/10.48550/arXiv.2212.08837
- Herkert, R., Buchfink, P., Haasdonk, B., Rettberg, J., & Fehr, J. (2023). Randomized Symplectic Model Order Reduction for Hamiltonian Systems.
- Grioui, F., & Blascheck, T. (2023). Heart Rate Visualizations on a Virtual Smartwatch to Monitor Physical Activity Intensity. Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. https://doi.org/10.5220/0011665500003417
- Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM J. Sci. Comput., 45(1), A49–A73. https://doi.org/10.1137/21M1415005
sdsds 2022
- Martin, T., Schön, T. B., & Allgöwer, F. (n.d.). Gaussian inference for data-driven state-feedback design of nonlinear systems. 22nd IFAC World Congress (Submitted), Preprint: ArXiv:2211.05639.
2022 (submitted)
- Horuz, C. C., Karlbauer, M., Praditia, T., Butz, M. V., Oladyshkin, S., Nowak, W., & Otte, S. (n.d.). Inferring Boundary Conditions in Finite Volume Neural Networks. International Conference on Artificial Neural Networks 2022.
2022
- Zimmermann, N. E. R., Guevara-Carrion, G., Vrabec, J., & Hansen, N. (2022). Predicting and Rationalizing the Soret Coefficient of Binary Lennard-Jones Mixtures in the Liquid State. Advanced Theory and Simulations, 5(11), 2200311. https://doi.org/10.1002/adts.202200311
- Zhou, Q., Fehr, J., Bestle, D., & Rui, X. (2022). Simulation of generally shaped 3D elastic body dynamics with large motion using transfer matrix method incorporating model order reduction. Multibody System Dynamics. https://doi.org/10.1007/s11044-022-09869-2
- Zhang, X., Divinski, S. V., & Grabowski, B. (2022). Ab initio prediction of vacancy energetics in HCP Al-Hf-Sc-Ti-Zr high entropy alloys and the subsystems. Acta Materialia, 227, 117677. https://doi.org/10.1016/j.actamat.2022.117677
- Zaverkin, V., Holzmüller, D., Schuldt, R., & Kästner, J. (2022). Predicting properties of periodic systems from cluster data: A case study of liquid water. The Journal of Chemical Physics, 156(11), 114103. https://doi.org/10.1063/5.0078983
- Zaverkin, V., Netz, J., Zills, F., Köhn, A., & Kästner, J. (2022). Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments. J. Chem. Theory Comput., 18, 1–12. https://doi.org/10.1021/acs.jctc.1c00853
- Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2022). Exploring chemical and conformational spaces by batch mode deep active learning. Digital Discovery, 1, 605–620. https://doi.org/10.1039/D₂DD00034B
- Zaverkin, V., Molpeceres, G., & Kästner, J. (2022). Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – II. Diffusion. Mon. Not. R. Astron. Soc., 510(2), 3063–3070. https://doi.org/10.1093/mnras/stab3631
- Yi, T., Chu, X., Wang, B., Wu, J., & Yang, G. (2022). Numerical simulation of single bubble evolution in low gravity with fluctuation. International Communications in Heat and Mass Transfer, 130, 105828. https://doi.org/10.1016/j.icheatmasstransfer.2021.105828
- Xiao, S., & Nowak, W. (2022). Reliability sensitivity analysis based on a two-stage Markov chain Monte Carlo simulation. Aerospace Science and Technology, 130, 107938. https://doi.org/10.1016/j.ast.2022.107938
- Wenzel, T., Santin, G., & Haasdonk, B. (2022). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains. arXiv. https://doi.org/10.48550/ARXIV.2203.12532
- Wenzel, T., Kurz, M., Beck, A., Santin, G., & Haasdonk, B. (2022). Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 410--418). Springer International Publishing.
- Wenzel, T., Santin, G., & Haasdonk, B. (2022). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, \$\$f \backslashcdot P\$\$- and f/P-Greedy. Constructive Approximation. https://doi.org/10.1007/s00365-022-09592-3
- Weder, B., Barzen, J., Beisel, M., & Leymann, F. (2022). Analysis and Rewrite of Quantum Workflows: Improving the Execution of Hybrid Quantum Algorithms. Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), 38--50. https://doi.org/10.5220/0011035100003200
- Weder, B., Barzen, J., Leymann, F., & Vietz, D. (2022). Quantum Software Development Lifecycle. In M. A. Serrano, R. Pérez-Castillo, & M. Piattini (Eds.), Quantum Software Engineering (pp. 61--83). Springer International Publishing. https://doi.org/10.1007/978-3-031-05324-5_4
- Wagner, V., Höpfl, S., Klingel, V., Pop, M. C., & Radde, N. E. (2022). An inverse transformation algorithm to infer parameter distributions from population snapshot data. IFAC-PapersOnLine, 55(23), 86–91. https://doi.org/10.1016/j.ifacol.2023.01.020
- Wagner, V., Castellaz, B., Oesting, M., & Radde, N. (2022). Quasi-Entropy Closure : a fast and reliable approach to close the moment equations of the Chemical Master Equation. Bioinformatics, 38(18), 4352–4359. https://doi.org/10.1093/bioinformatics/btac501
- Vera, J., Lai, X., Baur, A., Erdmann, M., Gupta, S., Guttà, C., Heinzerling, L., Heppt, M. V., Kazmierczak, P. M., Kunz, M., Lischer, C., Pützer, B. M., Rehm, M., Ostalecki, C., Retzlaff, J., Witt, S., Wolkenhauer, O., & Berking, C. (2022). Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Briefings in Bioinformatics. https://doi.org/10.1093/BIB/BBAC433
- van Gunsteren, W. F., Pechlaner, M., Smith, L. J., Stankiewicz, B., & Hansen, N. (2022). A Method to Derive Structural Information on Molecules from Residual Dipolar Coupling NMR Data. The Journal of Physical Chemistry B, 126(21), 3867--3888. https://doi.org/10.1021/acs.jpcb.2c02410
- Vaikuntanathan, V., Ibach, M., Arad, A., Chu, X., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2022). An Analytical Study on the Mechanism of Grouping of Droplets. Fluids, 7(5), Article 5. https://doi.org/10.3390/fluids7050172
- Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D., & Niepert, M. (2022). PDEBench: An Extensive Benchmark for Scientific Machine Learning. 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.
- Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2022). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 402--409). Springer International Publishing.
- Seetha, N., & Hassanizadeh, S. M. (2022). A two-way coupled model for the co-transport of two different colloids in porous media. Journal of Contaminant Hydrology, 244, 103922. https://doi.org/10.1016/j.jconhyd.2021.103922
- Schäfer Rodrigues Silva, A., Weber, T. K., Gayler, S., Guthke, A., Höge, M., Streck, T., & Nowak, W. (2022). Diagnosing Similarities in Probabilistic Multi-Model Ensembles - an Application to Soil-Plant-Growth-Modeling. Modeling Earth Systems and Environment, 8, 5143–5175. https://doi.org/10.1007/s40808-022-01427-1
- Schwarz, A., Kopper, P., Keim, J., Sommerfeld, H., Koch, C., & Beck, A. (2022). A neural network based framework to model particle rebound and fracture. Wear, 508–509, 204476. https://doi.org/10.1016/j.wear.2022.204476
- Schmid, P., Ebel, H., & Eberhard, P. (2022). Dependable Data-based Design of Embedded Model Predictive Control. 2022 European Control Conference (ECC), 859–866. https://doi.org/10.23919/ECC55457.2022.9838194
- Scherer, C. W. (2022). Dissipativity, Convexity and Tight O\textquotesingleShea-Zames-Falb Multipliers for Safety Guarantees. IFAC-PapersOnLine, 55(30), 150--155. https://doi.org/10.1016/j.ifacol.2022.11.044
- Scherer, C. (2022). Dissipativity and Integral Quadratic Constraints, Tailored computational robustness tests for complex interconnections. IEEE Control Systems Magazine (to Appear). https://arxiv.org/abs/2105.07401
- Rösinger, C. A., & Scherer, C. W. (2022). Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings.
- Rosin, D., Kässinger, J., Yu, X., Avci, O., Sedlmair, M., Rothermel, K., & Röhrle, O. (2022). Neural Network-based Real-time Visualization on Mobile Devices for Pervasive Continuum-Mechanical Simulations in Biomechanics. Medical Image Analysis.
- Rosin, D., Kässinger, J., Yu, X., Avci, O., & Röhrle, O. (2022). Neural Network-based Real-time Visualization on Mobile Devices for Pervasive Continuum-Mechanical Simulations in Biomechanics. To Be Submitted to: Medical Image Analysis.
- Rosenfelder, M., Ebel, H., Krauspenhaar, J., & Eberhard, P. (2022). Model Predictive Control of Non-Holonomic Vehicles: Beyond Differential-Drive. https://arxiv.org/abs/2205.11400
- Rosenfelder, M., Ebel, H., & Eberhard, P. (2022). A Force-Based Control Approach for the Non-Prehensile Cooperative Transportation of Objects Using Omnidirectional Mobile Robots. 2022 IEEE Conference on Control Technology and Applications (CCTA), 349–356. https://doi.org/10.1109/CCTA49430.2022.9966052
- Rosenfelder, M., Ebel, H., & Eberhard, P. (2022). Cooperative distributed nonlinear model predictive control of a formation of differentially-driven mobile robots. Robotics and Autonomous Systems, 150(April), 103993. https://doi.org/10.1016/j.robot.2021.103993
- Rodriguez-Pretelin, A., Morales-Casique, E., & Nowak, W. (2022). Optimization-based clustering of random fields for computationally efficient and goal-oriented uncertainty quantification: concept and demonstration for delineation of wellhead protection areas in transient aquifers. Advances in Water Resources, 162, 104146. https://doi.org/10.1016/j.advwatres.2022.104146
- Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., & Haasdonk, B. (2022). Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. https://doi.org/10.48550/arXiv.2203.10061
- Praditia, T., Karlbauer, M., Otte, S., Oladyshkin, S., Butz, M. V., & Nowak, W. (2022). Learning Groundwater Contaminant Diffusion-Sorption Processes with a Finite Volume Neural Network. Water Resources Research, 58(12), Article 12. https://doi.org/10.1029/2022WR033149
- Potyka, J., Stober, J., Wurst, J., Ibach, M., Steigerwald, J., Weigand, B., & Schulte, K. (2022). Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’22. Springer International Publishing. https://arxiv.org/abs/2212.09727
- Pluhackova, K., Schittny, V., Bürkner, P.-C., Siligan, C., & Horner, A. (2022). Multiple pore lining residues modulate water permeability of GlpF. Protein Science, 31(10), e4431. https://doi.org/10.1002/pro.4431
- Pechlaner, M., van Gunsteren, W. F., Hansen, N., & Smith, L. J. (2022). Molecular dynamics simulation or structure refinement of proteins: are solvent molecules required? A case study using hen lysozyme. European Biophysics Journal, 51(3), 265--282. https://doi.org/10.1007/s00249-022-01593-1
- Oppold, S., & Herschel, M. (2022). Provenance-based explanations: are they useful? International Workshop on the Theory and Practice of Provenance (TAPP), 2:1--2:4. https://doi.org/10.1145/3530800.3534529
- Oladyshkin, S., Praditia, T., Kröker, I., Mohammadi, F., Nowak, W., & Otte, S. (2022). The Deep Arbitrary Polynomial Chaos Neural Network or how Deep Artificial Neural Networks could benefit from Data-Driven Homogeneous Chaos Theory. Neural Networks.
- Oesting, M., & Strokorb, K. (2022). A comparative tour through the simulation algorithms for max-stable processes. Statistical Science.
- Novikov, I., Grabowski, B., Körmann, F., & Shapeev, A. (2022). Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. Npj Computational Materials, 8(1), 13. https://doi.org/10.1038/s41524-022-00696-9
- Nicodemus, J., Kneifl, J., Fehr, J., & Unger, B. (2022). Physics-informed Neural Networks-based Model Predictive Control for Multi-link Manipulators. IFAC-PapersOnLine, 55(20), 331--336. https://doi.org/10.1016/j.ifacol.2022.09.117
- Müller, D., Feilhauer, J., Wickert, J., Berberich, J., Allgöwer, F., & Sawodny, O. (2022). Data-driven predictive disturbance observer for quasi continuum manipulators. Proc. 61st IEEE Conf. Decision and Control (CDC), 1816–1822. https://doi.org/10.1109/CDC51059.2022.9992740
- Munz, T., Väth, D., Kuznecov, P., Vu, N. T., & Weiskopf, D. (2022). Visualization-based improvement of neural machine translation. Computers & Graphics, 103, 45–60. https://doi.org/10.1016/j.cag.2021.12.003
- Mossier, P., Beck, A., & Munz, C.-D. (2022). A p-adaptive discontinuous Galerkin method with hp-shock capturing. Joural of Scientific Computing, 91(4), Article 4. https://doi.org/10.1007/s10915-022-01770-6
- Morales Oreamuno, M. F., Oladyshkin, S., & Nowak, W. (2022). Information-Theoretic Scores for Bayesian Model Selection and Similarity Analysis: Concept and Application to a Groundwater Problem. Water Resources Research. https://doi.org/10.1002/essoar.10512501.1
- Molpeceres, G., Kästner, J., Herrero, V. J., Peláez, R. J., & Maté, B. (2022). Desorption of organic molecules from interstellar ices, combining experiments and computer simulations: Acetaldehyde as a case study. Astron. Astrophys., 664, A169. https://doi.org/10.1051/0004-6361/202243489
- Molpeceres, G., Jiménez-Serra, I., Oba, Y., Nguyen, T., Watanabe, N., de la Concepción, J. Garc\’ıa, Maté, B., Oliveira, R., & Kästner, J. (2022). Hydrogen abstraction reactions in formic and thioformic acid isomers by hydrogen and deuterium atoms. Astron. Astrophys., 663, A41. https://doi.org/10.1051/0004-6361/202243366
- Meister, D., Aurzada, F., Lifshits, M. A., & Allgöwer, F. (2022). Analysis of Time- versus Event-Triggered Consensus for a Single-Integrator Multi-Agent System. Proc. 61st IEEE Conf. on Decision and Control (CDC), 441–446. https://doi.org/10.1109/CDC51059.2022.9993301
- Martin, T., & Allgöwer, F. (2022). Determining dissipativity for nonlinear systems from noisy data using Taylor polynomial approximation. Proc. American Control Conf. (ACC), 1432–1437.
- Martin, T., & Allgöwer, F. (2022). Data-driven system analysis of nonlinear systems using polynomial approximation. In Proc. American Control Conf. (ACC) (Accepted), Preprint: ArXiv:2108.11298.
- Markthaler, D., Kraus, H., & Hansen, N. (2022). Binding free energies for the SAMPL8 CB8 ``Drugs of Abuse’’ challenge from umbrella sampling combined with Hamiltonian replica exchange. Journal of Computer-Aided Molecular Design, 36(1), 1--9. https://doi.org/10.1007/s10822-021-00439-w
- Markthaler, D., Fleck, M., Stankiewicz, B., & Hansen, N. (2022). Exploring the Effect of Enhanced Sampling on Protein Stability Prediction. Journal of Chemical Theory and Computation, 18(4), 2569--2583. https://doi.org/10.1021/acs.jctc.1c01012
- Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2022). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System.
- Maier, B., & Schulte, M. (2022). Mesh generation and multi-scale simulation of a contracting muscle–tendon complex. Journal of Computational Science, 59, 101559. https://doi.org/10.1016/j.jocs.2022.101559
- Luo, W., Chen, J., Ebel, H., & Eberhard, P. (2022). Time-Optimal Handover Trajectory Planning for Aerial Manipulators based on Discrete Mechanics and Complementarity Constraints. https://doi.org/10.48550/arXiv.2209.00533
- Luo, W., Eschmann, H., & Eberhard, P. (2022). Gaussian Process Regression-augmented Nonlinear Model Predictive Control for Quadrotor Object Grasping. International Conference on Unmanned Aircraft Systems (ICUAS22), Vol. 16, 11–19. https://doi.org/10.1109/ICUAS54217.2022.9836200
- Luo, W., Ebel, H., & Eberhard, P. (2022). An LSTM-based Approach to Precise Landing of a UAV on a Moving Platform. International Journal of Mechanical System Dynamics, 00, 1–12.
- Ludwig-Słomczyńska, A. H., & Rehm, M. (2022). Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases. Obesity. https://doi.org/10.1002/OBY.23424
- Lieb, D. (2022). Advanced neural network architectures for continuum biomechanical simulation surrogates (D. Rosin, Ed.).
- Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2022). Surrogate-data-enriched Physics-Aware Neural Networks. Proceedings of the Northern Lights Deep Learning Workshop 2022, 3. https://doi.org/10.7557/18.6268
- Legrand, J., Naveau, P., & Oesting, M. (2022). Evaluation of binary classifiers for asymptotically dependent and independent extremes.
- Lee, J. S., Ko, W.-S., & Grabowski, B. (2022). Atomistic simulations of the deformation behavior of an Nb nanowire embedded in a NiTi shape memory alloy. Acta Materialia, 228, 117764. https://doi.org/10.1016/j.actamat.2022.117764
- Köhler, M., Berberich, J., Müller, M. A., & Allgöwer, F. (2022). Data-driven distributed MPC of dynamically coupled linear systems. Proc. 25th Int. Symp. Mathematical Theory of Networks and Systems, 906–911.
- Kurz, M., Offenhäuser, P., Viola, D., Shcherbakov, O., Resch, M., & Beck, A. (2022). Deep reinforcement learning for computational fluid dynamics on HPC systems. Journal of Computational Science, 65, 101884. https://doi.org/10.1016/j.jocs.2022.101884
- Kurz, M., Offenhäuser, P., Viola, D., Resch, M., & Beck, A. (2022). Relexi — A scalable open source reinforcement learning framework for high-performance computing. Software Impacts, 14, 100422. https://doi.org/10.1016/j.simpa.2022.100422
- Kröker, I., Oladyshkin, S., & Rybak, I. (2022). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems. https://doi.org/10.21203/rs.3.rs-1742793/v1
- Kröker, I., & Oladyshkin, S. (2022). Arbitrary Multi-Resolution Multi-Wavelet-based Polynomial Chaos Expansion for Data-Driven Uncertainty Quantification. Reliability Engineering & System Safety, 222, 108376. https://doi.org/10.1016/j.ress.2022.108376
- Korn, V., & Pluhackova, K. (2022). Not sorcery after all: Roles of multiple charged residues in membrane insertion of gasdermin-A3. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.958957
- Klink, M. (2022). Time Error Estimators and Adaptive Time-stepping Schemes [Bathesis].
- Klingel, V., Graf, D., Weirich, S., Jeltsch, A., & Radde, N. E. (2022). Model-Based Design of a Synthetic Oscillator Based on an Epigenetic Methylation Memory System. ACS Synthetic Biology, 11(7), 2445--2455. https://doi.org/10.1021/acssynbio.2c00118
- Kharitenko, A., & Scherer, C. W. (2022). On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities.
- Kessler, C., Schuldt, R., Emmerling, S., Lotsch, B. V., Kästner, J., Gross, J., & Hansen, N. (2022). Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Microporous and Mesoporous Materials, 336, 111796. https://doi.org/10.1016/j.micromeso.2022.111796
- Kempf, D., Gao, M., Beck, A., Blind, M., Kopper, P., Kuhn, T., Kurz, M., Schwarz, A., & Munz, C.-D. (2022). Development of Turbulent Inflow Methods for the High Order HPC Framework FLEXI. High Performance Computing in Science and Engineering ’21.
- Karlbauer, M., Praditia, T., Otte, S., Oladyshkin, S., Nowak, W., & Butz, M. V. (2022). Composing Partial Differential Equations with Physics-Aware Neural Networks. Proceedings of the 39th International Conference on Machine Learning.
- Ibach, M., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., Schulte, K., & Weigand, B. (2022). Numerical Investigation of Multiple Droplet Streams and the Effect on Grouping Behavior. ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Tel-Aviv (Virtual).
- Ibach, M., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2022). Investigation of droplet grouping in monodisperse streams by direct numerical simulations. Physics of Fluids, 34(8), 083314. https://doi.org/10.1063/5.0097551
- Hsueh, H., Guthke, A., Wöhling, T., & Nowak, W. (2022). Diagnosis of model-structural errors with a sliding time-window Bayesian analysis. Water Resources Research, 58, e2021WR030590. https://doi.org/doi:10.1029/2021WR030590
- Hornischer, N. (2022). Model Order Reduction with Transformed Modes for Electrophysiological Simulations [Bathesis].
- Holzmüller, D., Zaverkin, V., Kästner, J., & Steinwart, I. (2022). A Framework and Benchmark for Deep Batch Active Learning for Regression. ArXiv:1112.5745.
- Holicki, T., & Scherer, C. W. (2022). Input-Output-Data-Enhanced Robust Analysis via Lifting.
- Holicki, T., & Scherer, C. W. (2022). IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties.
- Holicki, T., & Scherer, C. W. (2022). A Dynamic S-Procedure for Dynamic Uncertainties. IFAC-PapersOnline, 55(25), 103–108. https://doi.org/10.1016/j.ifacol.2022.09.331
- Hillebrecht, B., & Unger, B. (2022). Certified machine learning: Rigorous a posteriori error bounds for PDE defined PINNs.
- Hillebrecht, B., & Unger, B. (2022). Certified machine learning: A posteriori error estimation for physics-informed neural networks. ArXiv E-Print 2203.17055. http://arxiv.org/abs/2203.17055
- Hertneck, M., & Allgöwer, F. (2022). Dynamic self-triggered control for nonlinear systems with delays. Proc. 9th IFAC Conf. on Networked Systems (NECSYS), 312–317. https://doi.org/10.1016/j.ifacol.2022.07.278
- Hermann, S., & Fehr, J. (2022). Documenting research software in engineering science. Scientific Reports, 12(1), 6567. https://doi.org/10.1038/s41598-022-10376-9
- Hagenlocher, C., Siebert, R., Taschke, B., Wieske, S., Hausser, A., & Rehm, M. (2022). ER stress-induced cell death proceeds independently of the TRAIL-R2 signaling axis in pancreatic β cells. Cell Death Discovery, 8(1), 34. https://doi.org/10.1038/s41420-022-00830-y
- Gössweiner-Mohr, N., Siligan, C., Pluhackova, K., Umlandt, L., Koefler, S., Trajkovska, N., & Horner, A. (2022). The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. Small, 18(31), 2202056. https://doi.org/10.1002/smll.202202056
- Guttà, C., Morhard, C., & Rehm, M. (2022). Applying GAN-based data augmentation to improve transcriptome-based prognostication in breast cancer. In medRxiv. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/2022.10.07.22280776
- Guttà, C., Morhard, C., & Rehm, M. (2022). T-GAN-D: a GAN-based classifier for breast cancer prognostication. Zenodo. https://doi.org/10.5281/zenodo.7151831
- Gramlich, D., Scherer, C. W., & Ebenbauer, C. (2022). Robust Differential Dynamic Programming. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9992569
- Gramlich, D., Ebenbauer, C., & Scherer, C. W. (2022). Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions. Syst. Control Lett., 165. https://arxiv.org/abs/2006.09946
- Graf, D., Laistner, L., Klingel, V., Radde, N. E., Weirich, S., & Jeltsch, A. (2022). Reversible switching and stability of the epigenetic memory system in bacteria. The FEBS Journal. https://doi.org/10.1111/febs.16690
- Gebhardt, P., Yu, X., Köhn, A., & Sedlmair, M. (2022). MolecuSense: Using Force-Feedback Gloves for Creating and Interacting with Ball-and-Stick Molecules in VR. http://arxiv.org/abs/2203.09577
- Gavrilenko, P., Haasdonk, B., Iliev, O., Ohlberger, M., Schindler, F., Toktaliev, P., Wenzel, T., & Youssef, M. (2022). A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 378--386). Springer International Publishing.
- Frank, D., Latif, D. A., Muehlebach, M., Unger, B., & Staab, S. (2022). Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees [Publication]. https://doi.org/10.48550/arXiv.2212.05781
- Frank, D., Latif, D. A., Muehlebach, M., & Staab, S. (2022). Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees -- Technical Report. https://doi.org/10.48550/arXiv.2212.05781
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2022, December). Learning Functions and Uncertainty Sets Using Geometrically Constrained Kernel Regression. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9993144
- Fernández, M., Fritzen, F., & Weeger, O. (2022). Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. International Journal for Numerical Methods in Engineering, 123(2), 577–609. https://doi.org/10.1002/nme.6869
- Fellmeth, T. P. (2022). - Live or let die - Bcl-2 protein transmembrane domain interactions in apoptosis signaling. University of Stuttgart.
- Eschmann, H., Ebel, H., & Eberhard, P. (2022). Exploration-Exploitation-Based Trajectory Tracking of Mobile Robots Using Gaussian Processes and Model Predictive Control.
- Eschmann, H., Ebel, H., & Eberhard, P. (2022). High Accuracy Data-Based Trajectory Tracking of a Mobile Robot. Advances in Service and Industrial Robotics, 31, 420–427. https://doi.org/10.1007/978-3-031-04870-8_49
- Eirich, L., Münch, M., Jäckle, D., Sedlmair, M., Bonart, J., & Schreck, T. (2022). RfX: A Design Study for the Interactive Exploration of a Random Forest to Enhance Testing Procedures for Electrical Engines. Computer Graphics Forum (CGF), 14. https://doi.org/10.1111/cgf.14452
- Ebel, H., Fahse, D. N., Rosenfelder, M., & Eberhard, P. (2022). Finding Formations for the Non-prehensile Object Transportation with Differentially-Driven Mobile Robots. CISM International Centre for Mechanical Sciences Book Series, 606, 163–170. https://doi.org/10.1007/978-3-031-06409-8_17
- Ebel, H., & Eberhard, P. (2022). Cooperative transportation: realizing the promises of robotic networks using a tailored software/hardware architecture. At - Automatisierungstechnik, 70(4), 378–388. https://doi.org/doi:10.1515/auto-2021-0105
- de Botton, E., Greenberg, J. B., Arad, A., Katoshevski, D., Vaikuntanathan, V., Ibach, M., & Weigand, B. (2022). An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method. Applied Mathematical Modelling, 104, 486–498. https://doi.org/10.1016/j.apm.2021.12.001
- Cheng, K., Lu, Z., Xiao, S., Oladyshkin, S., & Nowak, W. (2022). Mixed covariance function Kriging model for uncertainty quantification. International Journal for Uncertainty Quantification, 12(3), 17--30. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021035851
- Bürkner, P.-C., Kröker, I., Oladyshkin, S., & Nowak, W. (2022). The sparse Polynomial Chaos expansion: a fully Bayesian approach with joint priors on the coefficients and global selection of terms. https://doi.org/10.48550/arXiv.2204.06043
- Buchfink, P., Glas, S., & Haasdonk, B. (2022). Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems. IFAC-PapersOnLine, 55(20), 463--468. https://doi.org/10.1016/j.ifacol.2022.09.138
- Breiten, T., Hinsen, D., & Unger, B. (2022). Towards a modeling class for port-Hamiltonian systems with time-delay. https://doi.org/10.48550/arXiv.2211.10687
- Breiten, T., & Unger, B. (2022). Passivity preserving model reduction via spectral factorization. Automatica, 142, 110368. https://doi.org/10.1016/j.automatica.2022.110368
- Boumaiza, L., Chesnaux, R., Walter, J., Lenhard, R. J., Hassanizadeh, S. M., Dokou, Z., & Alazaiza, M. Y. (2022). Predicting vertical LNAPL distribution in the subsurface under the fluctuating water table effect. Groundwater Monitoring & Remediation. https://doi.org/10.1111/gwmr.12497
- Boccellato, C., & Rehm, M. (2022). Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cellular Oncology. https://doi.org/10.1007/s13402-022-00684-7
- Berberich, J., Scherer, C. W., & Allgower, F. (2022). Combining Prior Knowledge and Data for Robust Controller Design. IEEE Transactions on Automatic Control, 1--16. https://doi.org/10.1109/tac.2022.3209342
- Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022). Stability in data-driven MPC: an inherent robustness perspective. Proc. 61st IEEE Conf. Decision and Control (CDC), 1105–1110. https://doi.org/10.1109/CDC51059.2022.9993361
- Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022). Linear tracking MPC for nonlinear systems part II: the data-driven case. IEEE Trans. Automat. Control, 67(9), 4406–4421. https://doi.org/10.1109/TAC.2022.3166851
- Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022). Linear tracking MPC for nonlinear systems part I: the model-based case. IEEE Trans. Automat. Control, 67(9), 4390–4405. https://doi.org/10.1109/TAC.2022.3166872
- Banerjee, I., Walter, P., Guthke, A., Mumford, K. G., & Nowak, W. (2022). The Method of Forced Probabilities: A Computation Trick for Bayesian Model Evidence. Computational Geosciences. https://doi.org/10.1007/s10596-022-10179-x
- Baier, A., & Staab, S. (2022). A Simulated 4-DOF Ship Motion Dataset for System Identification under Environmental Disturbances. https://doi.org/10.18419/darus-2905
- Aseyednezhad, S., Yan, L., Hassanizadeh, M., Raoof, A., & others. (2022). An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film. Advances in Water Resources, 159, 1--9. https://doi.org/10.1016/j.advwatres.2021.104058
- Aseyednezhad, S., Yan, L., Hassanizadeh, S. M., & Raoof, A. (2022). An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film. Advances in Water Resources, 159, 104058. https://doi.org/10.1016/j.advwatres.2021.104058
- Arad, A., Vaikuntanathan, V., Ibach, M., Greenberg, J. B., Weigand, B., & Katoshevski, D. (2022). CFD Simulations of Droplet Grouping in Acoustic Standing Waves. ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Tel-Aviv (Virtual).
- Adam, S., Bräcker, J., Klingel, V., Osteresch, B., Radde, N. E., Brockmeyer, J., Bashtrykov, P., & Jeltsch, A. (2022). Flanking sequences influence the activity of TET1 and TET2 methylcytosine dioxygenases and affect genomic 5hmC patterns. Communications Biology, 5(1), 92. https://doi.org/10.1038/s42003-022-03033-4
2021+
- Oesting, M., & Strokorb, K. (n.d.). A comparative tour through the simulation algorithms for max-stable processes. Statistical Science.
2021
- Zhuang, L., Hassanizadeh, S. M., Bhatt, D., & van Duijn, C. (2021). Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling. Transport in Porous Media, 139(2), 381--396. https://doi.org/10.1007/s11242-021-01670-7
- Zeman, J., Kondrat, S., & Holm, C. (2021). Ionic screening in bulk and under confinement. The Journal of Chemical Physics, 155(20), 204501. https://doi.org/10.1063/5.0069340
- Zeifang, J., & Beck, A. (2021). A data-driven high order sub-cell artificial viscosity for the discontinuous Galerkin spectral element method. Journal of Computational Physics, 441, 110475. https://doi.org/10.1016/j.jcp.2021.110475
- Zaverkin, V., & Kästner, J. (2021). Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design. Machine Learning: Science and Technology, 2(3), 035009.
- Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2021). Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. J. Chem. Theory Comput., 17(10), 6658–6670. https://doi.org/10.1021/acs.jctc.1c00527
- Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2021). Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. Journal of Chemical Theory and Computation, 17(10), 6658–6670. https://doi.org/10.1021/acs.jctc.1c00527
- Zaverkin, V., Molpeceres, G., & Kästner, J. (2021). Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – II. Diffusion. Mon. Not. R. Astron. Soc., 510(2), 3063–3070. https://doi.org/10.1093/mnras/stab3631
- Zaverkin, V., & Kästner, J. (2021). Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design. Mach. Learn.: Sci. Technol., 2, 035009. https://doi.org/10.1088/2632-2153/abe294
- Yu, S., Hirche, M., Huang, Y., Chen, H., & Allgöwer, F. (2021). Model predictive control for autonomous ground vehicles: a review. Auton. Intell. Syst., 1, 4. https://doi.org/10.1007/s43684-021-00005-z
- Yiotis, A., Karadimitriou, N., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), 1--16 (3891). https://doi.org/10.1038/s41598-021-83065-8
- Yang, G., Liu, J., Cheng, X., Wang, Y., Chu, X., Mukherjee, S., Terzis, A., Schneemann, A., Li, W., Wu, J., & others. (2021). A superhydrophilic metal--organic framework thin film for enhancing capillary-driven boiling heat transfer. Journal of Materials Chemistry A, 9(45), 25480--25487. https://doi.org/10.1039/D1TA06826A
- Xu, X., Binkele, P., Verestek, W., & Schmauder, S. (2021). Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars. Molecules, 26(9), 2606. https://doi.org/10.3390/molecules26092606
- Xiao, S., Praditia, T., Oladyshkin, S., & Nowak, W. (2021). Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis. Applied Energy, 285, 116456.
- Xiao, S., Xu, T., Reuschen, S., Nowak, W., & Franssen, H.-J. H. (2021). Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: an extension of preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering. Water Resources Research, 57, e2021WR030313. https://doi.org/10.1029/2021WR030313
- Xiao, S., Praditia, T., Oladyshkin, S., & Nowak, W. (2021). Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis. Applied Energy, 285, 116456. https://doi.org/10.1016/j.apenergy.2021.116456
- Wieler, N., Berberich, J., Koch, A., & Allgöwer, F. (2021). Data-driven controller design via finite-horizon dissipativity. Proc. 3rd Learning for Dynamics and Control Conf. (L4DC), 144, 287–298.
- Wenzel, T., Kurz, M., Beck, A., Santin, G., & Haasdonk, B. (2021). Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. https://arxiv.org/pdf/2103.13655.pdf
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). Analysis of target data-dependent greedy kernel algorithms: Convergence rates for $f$-, $f P$- and $f/P$-greedy. arXiv. https://doi.org/10.48550/ARXIV.2105.07411
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution. ELSEVIER, 262, 105508. https://doi.org/10.1016/j.jat.2020.105508
- Weinhardt, F., Class, H., Vahid Dastjerdi, S., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57(3), e2020WR029361. https://doi.org/10.1029/2020WR029361
- Weder, B., Barzen, J., Leymann, F., & Salm, M. (2021). Automated Quantum Hardware Selection for Quantum Workflows. Electronics, 10(8), Article 8. https://doi.org/10.3390/electronics10080984
- Weder, B., Barzen, J., Leymann, F., Salm, M., & Wild, K. (2021). QProv: A provenance system for quantum computing. IET Quantum Communication, 2(4), 171--181. https://doi.org/10.1049/qtc2.12012
- Wang, W., Yang, G., Evrim, C., Terzis, A., Helmig, R., & Chu, X. (2021). An assessment of turbulence transportation near regular and random permeable interfaces. Physics of Fluids, 33, 115103. https://doi.org/10.1063/5.0069311
- Wang, W., Chu, X., Lozano-Durán, A., Helmig, R., & Weigand, B. (2021). Information transfer between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 920, A21--. https://doi.org/DOI: 10.1017/jfm.2021.445
- Wagner, V., Castellaz, B., Oesting, M., & Radde, N. (2021). Quasi-Entropy Closure: A Fast and Reliable Approach to Close the Moment Equations of the Chemical Master Equation.
- Wagner, V., & Radde, N. (2021). SiCaSMA: An Alternative Stochastic Description via Concatenation of Markov Processes for a Class of Catalytic Systems. Mathematics, 9, 1074. https://doi.org/10.3390/math9101074
- Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., & others. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138(1), 1--23. https://doi.org/10.1007/s11242-021-01586-2
- Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01586-2
- Veenman, J., Scherer, C. W., Ardura, C., Bennani, S., Preda, V., & Girouart, B. (2021). IQClab: A new IQC based toolbox for robustness analysis and control design. IFAC-PapersOnLine, 54(8), 69--74. https://doi.org/10.1016/j.ifacol.2021.08.583
- Tomalka, A., Weidner, S., Hahn, D., Seiberl, W., & Siebert, T. (2021). Power Amplification Increases With Contraction Velocity During Stretch-Shortening Cycles of Skinned Muscle Fibers. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.644981
- Tkachev, G., Frey, S., & Ertl, T. (2021). S4: Self-Supervised learning of Spatiotemporal Similarity. IEEE Transactions on Visualization and Computer Graphics.
- Tkachev, G., Frey, S., & Ertl, T. (2021). Local Prediction Models for Spatiotemporal Volume Visualization. IEEE Transactions on Visualization and Computer Graphics, 27(7), 3091–3108. https://doi.org/10.1109/TVCG.2019.2961893
- Titze, M., Heitkämper, J., Junge, T., Kästner, J., & Peters, R. (2021). Highly Active Cooperative Lewis Acid—Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones. Angew. Chem. Int. Ed., 60(10), 5544–5553. https://doi.org/10.1002/anie.202012796
- Szuttor, K., Weik, F., Grad, J.-N., & Holm, C. (2021). Modeling the current modulation of bundled DNA structures in nanopores. The Journal of Chemical Physics, 154(5), 054901. https://doi.org/10.1063/5.0038530
- Szuttor, K., Kreissl, P., & Holm, C. (2021). A numerical investigation of analyte size effects in nanopore sensing systems. The Journal of Chemical Physics, 155(13), 134902. https://doi.org/10.1063/5.0065085
- Suditsch, M., Schröder, P., Lambers, L., Ricken, T., Ehlers, W., & Wagner, A. (2021). Modelling basal-cell carcinoma behaviour in avascular skin. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000283
- Suditsch, M., Lambers, L., Ricken, T., & Wagner, A. (2021). Application of a continuum-mechanical tumour model to brain tissue. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100204
- Strässer, R., Berberich, J., & Allgöwer, F. (2021). Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics. Proc. 60th IEEE Conf. Decision and Control (CDC), 4344–4351. https://doi.org/10.1109/CDC45484.2021.9683211
- Steigerwald, J., Ibach, M., Reutzsch, J., & Weigand, B. (2021). Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20 (pp. 261–279). Springer International Publishing. https://doi.org/10.1007/978-3-030-80602-6_17
- Smith, L. J., Gunsteren, W. F., & Hansen, N. (2021). On the Use of Side-Chain NMR Relaxation Data to Derive Structural and Dynamical Information on Proteins: A Case Study Using Hen Lysozyme. ChemBioChem, 22(6), 1049--1064. https://doi.org/10.1002/cbic.202000674
- Smith, L. J., van Gunsteren, W. F., Stankiewicz, B., & Hansen, N. (2021). On the use of 3J-coupling NMR data to derive structural information on proteins. Journal of Biomolecular NMR, 75(1), 39--70. https://doi.org/10.1007/s10858-020-00355-5
- Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2021). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue.
- Seyedpour, S. M., Nabati, M., Lambers, L., Nafisi, S., Tautenhahn, H.-M., Sack, I., Reichenbach, J. R., & Ricken, T. (2021). Application of Magnetic Resonance Imaging in Liver Biomechanics: A Systematic Review. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.733393
- Seyedpour, S. M., Valizadeh, I., Kirmizakis, P., Doherty, R., & Ricken, T. (2021). Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water, 13(3), 383. https://doi.org/10.3390/w13030383
- Scholz, M., & Torkar, R. (2021). An empirical study of Linespots: A novel past-fault algorithm. Software Testing, Verification and Reliability, n/a(n/a), e1787. https://doi.org/10.1002/stvr.1787
- Schmalfuss, J., Riethmüller, C., Altenbernd, M., Weishaupt, K., & Göddeke, D. (2021). Partitioned coupling vs. monolithic block-preconditioning approaches for solving Stokes-Darcy systems. Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS). https://doi.org/10.23967/coupled.2021.043
- Schlor, S., Hertneck, M., Wildhagen, S., & Allgöwer, F. (2021). Multi-party computation enables secure polynomial control based solely on secret-sharing. Proc. 60th IEEE Conf. Decision and Control (CDC), 4882–4887. https://doi.org/10.1109/CDC45484.2021.9683026
- Schlaich, A., Jin, D., Bocquet, L., & Coasne, B. (2021). Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. Nature Materials, 1--9. https://doi.org/10.1038/s41563-021-01121-0
- Scheurer, S., Schäfer Rodrigues Silva, A., Mohammadi, F., Hommel, J., Oladyshkin, S., Flemisch, B., & Nowak, W. (2021). Surrogate-based Bayesian Comparison of Computationally Expensive Models: Application to Microbially Induced Calcite Precipitation. Computational Geosciences, 25, 1899–1917.
- Scherer, C., & Ebenbauer, C. (2021). Convex Synthesis of Accelerated Gradient Algorithms. SIAM Journal on Control and Optimization, 59(6), 4615–4645. https://doi.org/10.1137/21M1398598
- Salm, M., Barzen, J., Leymann, F., Weder, B., & Wild, K. (2021). Automating the Comparison of Quantum Compilers for Quantum Circuits. Proceedings of the 15th Symposium and Summer School on Service-Oriented Computing (SummerSOC 2021), 64–80. https://doi.org/10.1007/978-3-030-87568-8_4
- Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), 055003. https://doi.org/10.1088/1361-6420/abd85a
- Rosenfelder, M., Ebel, H., & Eberhard, P. (2021). Cooperative Distributed Model Predictive Formation Control of Non-Holonomic Robotic Agents. Proceedings of the 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), 11–19. https://doi.org/10.1109/MRS50823.2021.9620683
- Rohde, C., & Tang, H. (2021). On the stochastic Dullin--Gottwald--Holm equation: global existence and wave-breaking phenomena. Nonlinear Differential Equations and Applications NoDEA, 28(5), 1--34. https://doi.org/10.1007/s00030-020-00661-9
- Riede, J. M., Holm, C., Schmitt, S., & Haeufle, D. F. B. (2021). The control effort to steer self-propelled microswimmers depends on their morphology: comparing symmetric spherical versus asymmetric L -shaped particles. Royal Society Open Science, 8(9), Article 9. https://doi.org/10.1098/rsos.201839
- Reuschen, S., Guthke, A., & Nowak, W. (2021). The Four Ways to Consider Measurement Noise in Bayesian Model Selection - And Which One to Choose. Water Resources Research, 57(11), Article 11.
- Praditia, T., Karlbauer, M., Otte, S., Oladyshkin, S., Butz, M., & Nowak, W. (2021). Finite Volume Neural Network: Modeling Subsurface Contaminant Transport. Deep Learning for Simulation ICLR Workshop 2021. https://simdl.github.io/files/33.pdf
- Pleiss, J. (2021). Standardized data, scalable documentation, sustainable storage – EnzymeML as a basis for FAIR data management in biocatalysis. ChemCatChem, 13, 3909–3913. https://doi.org/10.1002/cctc.202100822
- Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267(108059), Article 108059. https://doi.org/10.1016/j.cpc.2021.108059
- Orlando, M., Buchholz, P., Lotti, M., & Pleiss, J. (2021). The GH19 Engineering Database: sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19. PLoS One, 16, e0256817. https://doi.org/10.1371/journal.pone.0256817
- Oberer, L., Carral, A. D., & Fyta, M. (2021). Simple Classification of RNA Sequences of Respiratory-Related Coronaviruses. ACS Omega. https://doi.org/10.1021/acsomega.1c01625
- Murugan, S., Klostermann, S. V., Frey, W., Kästner, J., & Buchmeiser, M. R. (2021). A sodium bis(perfluoropinacol) borate-based electrolyte for stable, high-performance room temperature sodium-sulfur batteries based on sulfurized poly(acrylonitrile). Electrochem. Commun., 132, 107137. https://doi.org/10.1016/j.elecom.2021.107137
- Munz, T., Väth, D., Kuznecov, P., Vu, N. T., & Weiskopf, D. (2021). NMTVis - Trained Models for our Visual Analytics System. DaRUS. https://doi.org/10.18419/DARUS-1850
- Munz, T., Väth, D., Kuznecov, P., Vu, T., & Weiskopf, D. (2021). Visual-Interactive Neural Machine Translation. Graphics Interface 2021. https://openreview.net/forum?id=DQHaCvN9xd
- Molpeceres, G., Zaverkin, V., Watanabe, N., & Kästner, J. (2021). Binding energies and sticking coefficients of H2 on crystalline and amorphous CO ice. A&A, 648, A84. https://doi.org/10.1051/0004-6361/202040023
- Molpeceres, G., Zaverkin, V., Watanabe, N., & Kästner, J. (2021). Binding energies and sticking coefficients of H₂ on crystalline and amorphous CO ice. Astron. Astrophys., 648, A84. https://doi.org/10.1051/0004-6361/202040023
- Molpeceres, G., & Kästner, J. (2021). Computational Study of the Hydrogenation Sequence of the Phosphorous Atom on Interstellar Dust Grains. Astrophys. J., 910, 55. https://doi.org/10.3847/1538-4357/abe38c
- Molpeceres, G., Kästner, J., Fedoseev, G., Qasim, D., Schömig, R., Linnartz, H., & Lamberts, T. (2021). Carbon Atom Reactivity with Amorphous Solid Water: H₂O-Catalyzed Formation of H₂CO. J. Phys. Chem. Lett., 12(44), 10854–10860. https://doi.org/10.1021/acs.jpclett.1c02760
- Miksch, A. M., Riffelt, A., Oliveira, R., Kästner, J., & Molpeceres, G. (2021). Hydrogenation of small aromatic heterocycles at low temperatures. Mon. Not. R. Astron. Soc., 505(3), 3157–3164. https://doi.org/10.1093/mnras/stab1514
- Miksch, A. M., Morawietz, T., Kästner, J., Urban, A., & Artrith, N. (2021). Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations. Mach. Learn.: Sci. Technol., 2, 031001. https://doi.org/10.1088/2632-2153/abfd96
- Michalowsky, S., Scherer, C., & Ebenbauer, C. (2021). Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach. International Journal of Control, 94(11), 2956–2979. https://doi.org/10.1080/00207179.2020.1745286
- Martin, T., & Allgöwer, F. (2021). Data-driven system analysis of nonlinear systems using polynomial approximation. Preprint: ArXiv:2108.11298,.
- Martin, T., & Allgöwer, F. (2021). Data-driven inference on optimal input-output properties of polynomial systems with focus on nonlinearity measures. IEEE Trans. Automat. Control (Early Access). https://doi.org/10.1109/TAC.2022.3226652
- Martin, T., & Allgöwer, F. (2021). Dissipativity Verification With Guarantees for Polynomial Systems From Noisy Input-State Data. IEEE Control Systems Letters, 5(4), 1399–1404. https://doi.org/10.1109/LCSYS.2020.3037842
- Markthaler, D., & Hansen, N. (2021). Umbrella sampling and double decoupling data for methanol binding to Candida antarctica lipase B. Data in Brief, 39, 107618. https://doi.org/10.1016/j.dib.2021.107618
- Luo, W., Ebel, H., & Eberhard, P. (2021). An LSTM-based Approach to Precise Landing of a UAV on a Moving Platform. International Journal of Mechanical System Dynamics, 00, 1–12.
- Liu, Y., Geppert, A., Chu, X., Heine, B., & Weigand, B. (2021). Simulation of an annular liquid jet with a coaxial supersonic gas jet in a medical inhaler. Atomization and Sprays, 31(9), 95–116. https://doi.org/10.1615/AtomizSpr.2021037223
- Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2021). Surrogate-data-enriched Physics-Aware Neural Networks.
- Leiteritz, R., Hurler, M., & Pflüger, D. (2021). Learning Free-Surface Flow with Physics-Informed Neural Networks. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 1664–1669. https://doi.org/10.1109/ICMLA52953.2021.00266
- Lambers, L., Suditsch, M., Wagner, A., & Ricken, T. (2021). A Multiscale and Multiphase Model of Function-Perfusion Growth Processes in the Human Liver. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000290
- Lambers, L., Mielke, A., & Ricken, T. (2021). Semi-automated Data-driven FE Mesh Generation and Inverse Parameter Identification for a Multiscale and Multiphase Model of Function-Perfusion Processes in the Liver. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100190
- Kühnert, J., Göddeke, D., & Herschel, M. (2021). Provenance-integrated parameter selection and optimization in numerical simulations. International Workshop on the Theory and Practice of Provenance (TAPP).
- Képes, K., Leymann, F., Weder, B., & Wild, K. (2021). SiDD: The Situation-Aware Distributed Deployment System. In H. Hacid, F. Outay, H. Paik, A. Alloum, M. Petrocchi, M. R. Bouadjenek, A. Beheshti, X. Liu, & A. Maaradji (Eds.), Service-Oriented Computing -- ICSOC 2020 Workshops (pp. 72--76). Springer International Publishing.
- Kuron, M., Stewart, C., de Graaf, J., & Holm, C. (2021). An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids. https://doi.org/10.1140/epje/s10189-020-00005-6
- Krishna Moorthy, N., Seifert, O., Eisler, S., Weirich, S., Kontermann, R. E., Rehm, M., & Fullstone, G. (2021). Low-Level Endothelial TRAIL-Receptor Expression Obstructs the CNS-Delivery of Angiopep-2 Functionalised TRAIL-Receptor Agonists for the Treatment of Glioblastoma. Molecules 2021, Vol. 26, Page 7582, 26(24), 7582. https://doi.org/10.3390/MOLECULES26247582
- Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (2021). Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions. Advances in Water Resources, 147, 103792. https://doi.org/10.1016/j.advwatres.2020.103792
- Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., & others. (2021). DuMux 3--an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications, 81, 423--443. https://doi.org/10.1016/j.camwa.2020.02.012
- Kneifl, J., & Fehr, J. (2021). Machine Learning Algorithms for Learning Nonlinear Terms of Reduced Mechanical Models in Explicit Structural Dynamics. PAMM, 20(S1), Article S1. https://doi.org/10.1002/pamm.202000353
- Kneifl, J., Grunert, D., & Fehr, J. (2021). A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.6712
- Klingel, V., Kirch, J., Ullrich, T., Weirich, S., Jeltsch, A., & Radde, N. E. (2021). Model-based robustness and bistability analysis for methylation-based, epigenetic memory systems. The FEBS Journal, 288(19), 5692–5707. https://doi.org/10.1111/febs.15838
- Kempter, F., Kleinbach, C., Staudenmeyer, M., & Fehr, J. (2021). An Active Female Human Body Model for Simulation of Rear-End Impact Scenarios. Proceedings in Applied Mathemathics and Mechanics. https://doi.org/10.1002/pamm.202000068
- Karlbauer, M., Praditia, T., Otte, S., Oladyshkin, S., Nowak, W., & Butz, M. V. (2021). Composing Partial Differential Equations with Physics-Aware Neural Networks. Submitted to International Conference on Learning Representations.
- Ibach, M., Schulte, K., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2021). Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions. ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK, 29 Aug.-2 Sept. 2021. https://doi.org/10.2218/iclass.2021.5815
- Ibach, M., Schulte, K., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, B., & Weigand, B. (2021). Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions. International Conference on Liquid Atomization and Spray Systems (ICLASS), 1(1), Article 1. https://doi.org/10.2218/iclass.2021.5815
- Hsueh, H., Guthke, A., Wöhling, T., & Nowak, W. (2021). Diagnosis of model-structural errors with a sliding time-window Bayesian analysis. Submitted to Water Resources Research.
- Holzmüller, D., & Pflüger, D. (2021). Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework. In H.-J. Bungartz, J. Garcke, & D. Pflüger (Eds.), Sparse Grids and Applications - Munich 2018 (pp. 69--100). Springer International Publishing.
- Holzmüller, D. (2021). On the Universality of the Double Descent Peak in Ridgeless Regression. International Conference on Learning Representations. https://openreview.net/forum?id=0IO5VdnSAaH
- Holicki, T., & Scherer, C. W. (2021). Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis. Int. J. Robust Nonlin., 1–33. https://doi.org/10.1002/rnc.5547
- Holicki, T., & Scherer, C. W. (2021). Algorithm Design and Extremum Control:Convex Synthesis due to Plant Multiplier Commutation. 60th IEEE Conf. Decision and Control.
- Holicki, T., Scherer, C. W., & Trimpe, S. (2021). Controller Design via Experimental Exploration with Robustness Guarantees. IEEE Control Syst. Lett., 5(2), 641–646. https://doi.org/10.1109/LCSYS.2020.3004506
- Holicki, T., & Scherer, C. W. (2021). Robust Gain-Scheduled Estimation with Dynamic D-Scalings. IEEE Trans. Autom. Control, 66(11), 5592–5598. https://doi.org/10.1109/TAC.2021.3052751
- Hitz, T., Jöns, S., Heinen, M., Vrabec, J., & Munz, C.-D. (2021). Comparison of macro-and microscopic solutions of the Riemann problem II. Two-phase shock tube. Journal of Computational Physics, 429, 110027. https://doi.org/10.1016/j.jcp.2020.110027
- Hilder, B. (2021). Modulating traveling fronts in a dispersive Swift-Hohenberg equation coupled to an additional conservation law.
- Hertneck, M., & Allgöwer, F. (2021). Dynamic self-triggered control for nonlinear systems based on hybrid Lyapunov functions. Proc. 60th IEEE Conf. Decision and Control (CDC), 533–539. https://doi.org/10.1109/CDC45484.2021.9682784
- Hertneck, M., Linsenmayer, S., & Allgöwer, F. (2021). Efficient stability analysis approaches for nonlinear weakly-hard real-time control systems. Automatica, 133, 109868. https://doi.org/10.1016/j.automatica.2021.109868
- Herkert, R. (2021). Model Order Reduction and Geometry Parametrization for Linear Elasticity.
- Heinemann, M., Frey, S., Tkachev, G., Straub, A., Sadlo, F., & Ertl, T. (2021). Visual analysis of droplet dynamics in large-scale multiphase spray simulations. Journal of Visualization, 24(5), 943--961. https://doi.org/10.1007/s12650-021-00750-6
- Haasdonk, B., Ohlberger, M., & Schindler, F. (2021). An adaptive model hierarchy for data-augmented training of kernel models for reactive flow.
- Haasdonk, B., Wenzel, T., Santin, G., & Schmitt, S. (2021). Biomechanical surrogate modelling using stabilized vectorial greedy kernel methods. In Numerical Mathematics and Advanced Applications ENUMATH 2019 (pp. 499--508). Springer. https://doi.org/10.1007/978-3-030-55874-1_49
- Göhring, M. (2021). Model Order Reduction with Kernel Autoencoders.
- Grioui, F., & Blascheck, T. (2021). Study of Heart Rate Visualizations on a Virtual Smartwatch. https://doi.org/10.1145/3489849.3489913
- Gramlich, D., Ebenbauer, C., & Scherer, C. W. (2021). Convex Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions. Accepted for Syst. Control Lett. https://arxiv.org/abs/2006.09946
- Gosea, I. V., Gugercin, S., & Unger, B. (2021). Parametric model reduction via rational interpolation along parameters. ArXiv E-Print 2104.01016. https://arxiv.org/abs/2104.01016
- Garcia, R., Munz, T., & Weiskopf, D. (2021). Visual analytics tool for the interpretation of hidden states in recurrent neural networks. Visual Computing for Industry, Biomedicine, and Art, 4(24), Article 24. https://doi.org/10.1186/s42492-021-00090-0
- Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer. Water Resources Research, 57(6), e2020WR028572. https://doi.org/10.1029/2020WR028572
- Gao, H., Tatomir, A., Karadimitriou, N., Steeb, H., & Sauter, M. (2021). Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes. Advances in Water Resources, 157, 104044. https://doi.org/10.1016/j.advwatres.2021.104044
- Gao, B., Coltman, E., Farnsworth, J., Helmig, R., & Smits, K. M. (2021). Determination of Vapor and Momentum Roughness Lengths Above an Undulating Soil Surface Based on PIV-Measured Velocity Profiles. Water Resources Research, 57(7), e2021WR029578. https://doi.org/10.1029/2021WR029578
- Flaig, S., Praditia, T., Kissinger, A., Lang, U., Oladyshkin, S., & Nowak, W. (2021). Prognosis of water levels in a moor groundwater system influenced by hydrology and water extraction using an artificial neural network. EGU General Assembly 2021.
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees. 60th IEEE Conf. Decision and Control.
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 7439–7447.
- Fernández, M., Fritzen, F., & Weeger, O. (2021). Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. International Journal for Numerical Methods in Engineering, n/a(n/a), 33. https://doi.org/10.1002/nme.6869
- Fehr, J., Himpe, C., Rave, S., & Saak, J. (2021). Sustainable Research Software Hand-Over. Journal of Open Research Software, 9(5), Article 5. https://doi.org/10.5334/jors.307
- Evrim, C., Chu, X., Silber, F. E., Isaev, A., Weihe, S., & Laurien, E. (2021). Flow features and thermal stress evaluation in turbulent mixing flows. 178, 121605. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121605
- Eschmann, H. (2021). A Data Set for Research on Data-based Methods for an Omnidirectional Mobile Robot. DaRUS. https://doi.org/10.18419/DARUS-1845
- Eschmann, H., Ebel, H., & Eberhard, P. (2021). Data-Based Model of an Omnidirectional Mobile Robot Using Gaussian Processes. IFAC Symposium on System Identification (SYSID) - Learning Models for Decision and Control, 13–18. https://doi.org/10.1016/j.ifacol.2021.08.327
- Eschmann, H., & Eberhard, P. (2021). Learning-Based Model Predictive Control for Multi-Agent Systems using Gaussian Processes. PAMM, 20(1), e202000009. https://doi.org/10.1002/pamm.202000009
- Eschmann, H., Ebel, H., & Eberhard, P. (2021). Trajectory tracking of an omnidirectional mobile robot using Gaussian process regression. At - Automatisierungstechnik, 69(8), 656--666. https://doi.org/doi:10.1515/auto-2021-0019
- Emmerling, S. T., Schuldt, R., Bette, S., Yao, L., Dinnebier, R. E., Kästner, J., & Lotsch, B. V. (2021). Interlayer Interactions as Design Tool for Large-Pore COFs. J. Am. Chem. Soc., 143(38), 15711–15722. https://doi.org/10.1021/jacs.1c06518
- Ehring, T. (2021). Feedback control for dynamic soft tissue systems by a surrogate of the value function.
- Ebel, H., & Eberhard, P. (2021). Non-Prehensile Cooperative Object Transportation with Omnidirectional Mobile Robots: Organization, Control, Simulation, and Experimentation. 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), 1–10. https://doi.org/10.1109/MRS50823.2021.9620541
- Dürrwächter, J., Kurz, M., Kopper, P., Kempf, D., Munz, C.-D., & Beck, A. (2021). An efficient sliding mesh interface method for high-order discontinuous Galerkin schemes. Computers & Fluids, 217, 104825. https://doi.org/10.1016/j.compfluid.2020.104825
- Dingler, C., Müller, H., Wieland, M., Fauser, D., Steeb, H., & Ludwigs, S. (2021). Actuators: From Understanding Mechanical Behavior to Curvature Prediction of Humidity-Triggered Bilayer Actuators (Adv. Mater. 9/2021). Advanced Materials, 33(9), 2170067. https://doi.org/10.1002/adma.202170067
- Diestelkämper, R., Lee, S., Herschel, M., & Glavic, B. (2021). To not miss the forest for the trees - A holistic approach for explaining missing answers over nested data. In Proceedins of the ACM SIG Conference on the Management of Data (SIGMOD).
- de Winter, D., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, S., & Helmig, R. (2021). The complexity of porous media flow characterized in a microfluidic model based on confocal laser scanning microscopy and micro-piv. Transport in Porous Media, 136(1), 343--367. https://doi.org/10.1007/s11242-020-01515-9
- Chu, X., Wang, W., Müller, J., Schöning, H. V., Liu, Y., & Weigand, B. (2021). Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media. In High Performance Computing in Science and Engineering’20 (pp. 373--386). Springer. https://doi.org/10.1007/978-3-030-80602-6_24
- Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (2021). Transport of turbulence across permeable interface in a turbulent channel flow: interface-resolved direct numerical simulation. Transport in Porous Media, 136(1), 165--189. https://doi.org/10.1007/s11242-020-01506-w
- Christ, B., Collatz, M., Dahmen, U., Herrmann, K.-H., Höpfl, S., König, M., Lambers, L., Marz, M., Meyer, D., Radde, N., Reichenbach, J. R., Ricken, T., & Tautenhahn, H.-M. (2021). Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.733868
- Cheng, K., Lu, Z., Xiao, S., Oladyshkin, S., & Nowak, W. (2021). Unified Bayesian inference framework for surrogate modelling: connection between existing techniques and their common fundamentals. Submitted to Reliability Engineering and System Safety.
- Cheng, K., Z, L., Xiao, S., Oladyshkin, S., & Nowak, W. (2021). Mixed covariance function Kriging model for uncertainty quantification. Submitted to International Journal for Uncertainty Quantification.
- Cheng, K., Xiao, S., Zhang, X., Oladyshkin, S., & Nowak, W. (2021). Resampling method for reliability-based design optimization based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 156, 107630. https://doi.org/10.1016/j.ymssp.2021.107630
- Chen, Y., Steeb, H., Erfani, H., Karadimitriou, N. K., Walczak, M. S., Ruf, M., Lee, D., An, S., Hasan, S., Connolley, T., & others. (2021). Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging. Science Advances, 7(52), eabj0960. https://doi.org/10.1126/sciadv.abj0960
- Chalapco, A. (2021). Markov Chain Monte Carlo for Artificial Neural Networks. BSc Thesis, University of Stuttgart.
- Chalapco, A. (2021). Uncertainty Quantification in Neural Networks. Project Work Report, University of Stuttgart.
- Carvalho, H., Ferrario, V., & Pleiss, J. (2021). The molecular mechanism of methanol inhibition in CALB-catalyzed alcoholysis: analyzing molecular dynamics simulations by a Markov state model. J Chem Theory Comput, 17, 6570–6582. https://doi.org/10.1021/acs.jctc.1c00559
- Carral, Á. D., Ostertag, M., & Fyta, M. (2021). Deep learning for nanopore ionic current blockades. The Journal of Chemical Physics, 154(4), 044111. https://doi.org/10.1063/5.0037938
- Buchfink, P., Glas, S., & Haasdonk, B. (2021). Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds. https://doi.org/10.48550/arXiv.2112.10815
- Buchfink, P., & Haasdonk, B. (2021). Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem. In F. J. Vermolen & C. Vuik (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019 (Vol. 139). Springer International Publishing. https://doi.org/10.1007/978-3-030-55874-1
- Brunn, M., Himthani, N., Biros, G., Mehl, M., & Mang, A. (2021). Fast GPU 3D diffeomorphic image registration. Journal of Parallel and Distributed Computing, 149, 149--162. https://doi.org/10.1016/j.jpdc.2020.11.006
- Breiten, T., & Unger, B. (2021). Passivity preserving model reduction via spectral factorization. ArXiv E-Print 2103.13194. https://arxiv.org/abs/2103.13194
- Born, D., & Kästner, J. (2021). Geometry Optimization in Internal Coordinates Based on Gaussian Process Regression: Comparison of Two Approaches. J. Chem. Theory Comput., 17(9), 5955–5967. https://doi.org/10.1021/acs.jctc.1c00517
- Boccellato, C., Kolbe, E., Peters, N., Juric, V., Fullstone, G., Verreault, M., Idbaih, A., Lamfers, M. L. M., Murphy, B. M., & Rehm, M. (2021). Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist. Cell Death & Disease, 12(7), 647. https://doi.org/10.1038/s41419-021-03927-x
- Bertrand, F., Lambers, L., & Ricken, T. (2021). Least Squares Finite Element Method for Hepatic Sinusoidal Blood Flow. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000306
- Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2021). On the design of terminal ingredients for data-driven MPC. Proc. 7th IFAC Conf. Nonlinear Model Predictive Control (NMPC), 257–263. https://doi.org/10.1016/j.ifacol.2021.08.554
- Berberich, J., Wildhagen, S., Hertneck, M., & Allgöwer, F. (2021). Data-driven analysis and control of continuous-time systems under aperiodic sampling. Proc. 19th IFAC Symp. System Identification (SYSID), 210–215. https://doi.org/10.1016/j.ifacol.2021.08.360
- Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2021). Data-driven model predictive control: closed-loop guarantees and experimental results. At-Automatisierungstechnik, 69(7), 608–618. https://doi.org/10.1515/auto-2021-0024
- Benacchio, T., Bonaventura, L., Altenbernd, M., Cantwell, C. D., Düben, P. D., Gillard, M., Giraud, L., Göddeke, D., Raffin, E., Teranishi, K., & Wedi, N. (2021). Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. The International Journal of High Performance Computing Applications, 35(4), 285–311. https://doi.org/10.1177/1094342021990433
- Beck, A., Gao, M., Kempf, D., Kopper, P., Krais, N., Kurz, M., Zeifang, J., & Munz, C.-D. (2021). Increasing the flexibility of the high order discontinuous Galerkin framework FLEXI towards large scale industrial applications. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20. Springer International Publishing.
- Beck, A., & Kurz, M. (2021). A perspective on machine learning methods in turbulence modeling. GAMM-Mitteilungen, 44(1), Article 1. https://doi.org/10.1002/gamm.202100002
- Banerjee, I., Guthke, A., Van de Ven, C. J. C., Mumford, K. G., & Nowak, W. (2021). Overcoming the model-data-fit problem in porous media: A quantitative method to compare invasion-percolation models to high-resolution data. Water Resources Research, 57(7), e2021WR029986. https://doi.org/10.1029/2021WR029986
- Baier, A., Boukhers, Z., & Staab, S. (2021). Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction. http://arxiv.org/abs/2103.06727
- Aslannejad, H., Loginov, S., van der Hoek, B., Schoonderwoerd, E., Gerritsen, H., & Hassanizadeh, S. (2021). Liquid droplet imbibition into a thin coating layer: direct pore-scale modeling and experimental observations. Progress in Organic Coatings, 151, 106054. https://doi.org/10.1016/j.porgcoat.2020.106054
- Armiti-Juber, A., & Ricken, T. (2021). Model order reduction for deformable porous materials in thin domains via asymptotic analysis. Archive of Applied Mechanics. https://doi.org/10.1007/s00419-021-01907-3
- Arad, A., Katoshevski, D., Vaikuntanathan, V., Ibach, M., Greenberg, J. B., & Weigand, B. (2021, December). Longitudinal and Lateral Grouping in Droplet Streams using the Eulerian-Lagrangian Approach.
- Alsalti, M., Berberich, J., Lopez, V. G., Allgöwer, F., & Müller, M. A. (2021). Data-Based System Analysis and Control of Flat Nonlinear Systems. Proc. 60th IEEE Conf. Decision and Control (CDC), 1484–1489. https://doi.org/10.1109/CDC45484.2021.9683327
- Alonso-Orán, D., Rohde, C., & Tang, H. (2021). A Local-in-Time Theory for Singular SDEs with Applications to Fluid Models with Transport Noise. Journal of Nonlinear Science. https://doi.org/10.1007/s00332-021-09755-9
2020
- Zimmermann, M., Breitenbücher, U., Képes, K., Leymann, F., & Weder, B. (2020). Data Flow Dependent Component Placement of Data Processing Cloud Applications. 2020 IEEE International Conference on Cloud Engineering (IC2E), 83–94. https://doi.org/10.1109/IC2E48712.2020.00016
- Zeman, J., Kondrat, S., & Holm, C. (2020). Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations. Chem. Commun., 56(100), 15635–15638. https://doi.org/10.1039/D0CC05023G
- Zaverkin, V., & Kästner, J. (2020). Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials. Journal of Chemical Theory and Computation, 16(8), 5410--5421. https://doi.org/10.1021/acs.jctc.0c00347
- Zaverkin, V., & Kästner, J. (2020). Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials. J. Chem. Theory Comput., 16, 5410–5421. https://doi.org/10.1021/acs.jctc.0c00347
- Yu, X., Angerbauer, K., Mohr, P., Kalkofen, D., & Sedlmair, M. (2020). Perspective Matters: Design Implications for Motion Guidance in Mixed Reality. Proceedings of the IEEE 19th International Symposium on Mixed and Augmented Reality.
- Yang, G. (杨光), Chu, X. (初旭), Vaikuntanathan, V., Wang, S. (王珊珊), Wu, J. (吴静怡), Weigand, B., & Terzis, A. (2020). Droplet mobilization at the walls of a microfluidic channel. Physics of Fluids, 32(1), 012004. https://doi.org/10.1063/1.5139308
- Xu, X., Range, J., Gygli, G., & Pleiss, J. (2020). Analysis of thermophysical properties of deep eutectic solvents by data integration. J Chem Eng Data, 65, 1172–1179. https://doi.org/10.1021/acs.jced.9b00555
- Xu, T., Reuschen, S., Nowak, W., & Franssen, H.-J. H. (2020). Preconditioned Crank-Nicolson Markov chain Monte Carlo coupled with parallel tempering: An efficient method for Bayesian inversion of multi-Gaussian log-hydraulic conductivity fields. Water Resources Research, 56(8), e2020WR027110. https://doi.org/10.1029/2020WR027110
- Xiao, S., Oladyshkin, S., & Nowak, W. (2020). Reliability analysis with stratified importance sampling based on adaptive Kriging. Reliability Engineering & System Safety, 197, 106852. https://doi.org/10.1016/j.ress.2020.106852
- Xiao, S., Oladyshkin, S., & Nowak, W. (2020). Reliability analysis with conditional importance sampling based on adaptive Kriging. Reliability Engineering & System Safety, 197, 106852. https://doi.org/10.1016/j.ress.2020.106852
- Xiao, S., Oladyshkin, S., & Nowak, W. (2020). Forward-reverse switch between density-based and regional sensitivity analysis. Applied Mathematical Modelling, 84, 377–392.
- Wochner, I., Driess, D., Zimmermann, H., Haeufle, D. F., Toussaint, M., & Schmitt, S. (2020). Optimality principles in human point-to-manifold reaching accounting for muscle dynamics. Frontiers in Computational Neuroscience, 14, 38.
- Wild, K., Breitenbücher, U., Képes, K., Leymann, F., & Weder, B. (2020). Decentralized Cross-Organizational Application Deployment Automation: An Approach for Generating Deployment Choreographies Based on Declarative Deployment Models. Proceedings of the 32nd Conference on Advanced Information Systems Engineering (CAiSE 2020), 12127, 20--35. https://doi.org/10.1007/978-3-030-49435-3_2
- Weder, B., Breitenbücher, U., Képes, K., Leymann, F., & Zimmermann, M. (2020). Deployable Self-Contained Workflow Models. Proceedings of the 8th European Conference on Service-Oriented and Cloud Computing (ESOCC 2020), 85--96. https://doi.org/10.1007/978-3-030-44769-4_7
- Weder, B., Barzen, J., Leymann, F., Salm, M., & Vietz, D. (2020). The Quantum Software Lifecycle. Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software (APEQS 2020), 2--9. https://doi.org/10.1145/3412451.3428497
- Weder, B., Breitenbücher, U., Leymann, F., & Wild, K. (2020). Integrating Quantum Computing into Workflow Modeling and Execution. 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), 279–291. https://doi.org/10.1109/UCC48980.2020.00046
- Vetma, V., Guttà, C., Peters, N., Praetorius, C., Hutt, M., Seifert, O., Meier, F., Kontermann, R., Kulms, D., & Rehm, M. (2020). Convergence of pathway analysis and pattern recognition predicts sensitization to latest generation TRAIL therapeutics by IAP antagonism. Cell Death & Differentiation, 27(8), 2417--2432. https://doi.org/10.1038/s41418-020-0512-5
- Tovey, S., Krishnamoorthy, A. N., Sivaraman, G., Guo, J., Benmore, C., Heuer, A., & Holm, C. (2020). DFT Accurate Interatomic Potential for Molten NaCl from Machine Learning. The Journal of Physical Chemistry C, 124(47), 25760--25768. https://doi.org/10.1021/acs.jpcc.0c08870
- Tomalka, A., Weidner, S., Hahn, D., Seiberl, W., & Siebert, T. (2020). Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00921
- Stöhr, D., Schmid, J. O., Beigl, T. B., Mack, A., Maichl, D. S., Cao, K., Budai, B., Fullstone, G., Kontermann, R. E., Mürdter, T. E., Tait, S. W. G., Hagenlocher, C., Pollak, N., Scheurich, P., & Rehm, M. (2020). Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids. Cell Death & Differentiation, 27, 3037–3052. https://doi.org/10.1038/s41418-020-0559-3
- Stöhr, D., Jeltsch, A., & Rehm, M. (2020). TRAIL receptor signaling: From the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response. Cell Death Regulation in Health and Disease-Part A, 57.
- Stöhr, D., & Rehm, M. (2020). Linking hyperosmotic stress and apoptotic sensitivity. The FEBS Journal, febs.15520. https://doi.org/10.1111/febs.15520
- Stockinger, P., Roth, S., Müller, M., & Pleiss, J. (2020). Systematic evaluation of imine-reducing enzymes: Common principles in imine reductases, β-hydroxyacid dehydrogenases, and short-chain dehydrogenases/reductases. ChemBioChem, 21, 2689–2695.
- Steigerwald, J., Ibach, M., Reutzsch, J., & Weigand, B. (2020). Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions. In High Performance Computing in Science and Engineering ’20. Springer.
- Sood, E., Tannert, S., Frassinelli, D., Bulling, A., & Vu, N. T. (2020). Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension. Proceedings of the 24th Conference on Computational Natural Language Learning, 12--25. https://doi.org/10.18653/v1/2020.conll-1.2
- Sood, E., Tannert, S., Mueller, P., & Bulling, A. (2020). Improving Natural Language Processing Tasks with Human Gaze-Guided Neural Attention. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in Neural Information Processing Systems (Vol. 33, pp. 6327--6341). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
- Sivaraman, G., Krishnamoorthy, A. N., Baur, M., Holm, C., Stan, M., Csányi, G., Benmore, C., & Vázquez-Mayagoitia, Á. (2020). Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide. Npj Computational Materials, 6(1), Article 1. https://doi.org/10.1038/s41524-020-00367-7
- Schäfer Rodrigues Silva, A., Guthke, A., Höge, M., Cirpka, O. A., & Nowak, W. (2020). Strategies for simplifying reactive transport models - a Bayesian model comparison. Water Resources Research, 56, e2020WR028100. https://doi.org/10.1029/2020WR028100
- Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401, 109012. https://doi.org/10.1016/j.jcp.2019.109012
- Schlottke, K., Reutzsch, J., Kieffer-Roth, C., & Weigand, B. (2020). Direct Numerical Simulations of Evaporating Droplets at Higher Temperatures: Application of a Consistent Numerical Approach. Droplet Interactions and Spray Processes, 287–299.
- Schepp, L. L., Ahrens, B., Balcewicz, M., Duda, M., Nehler, M., Osorno, M., Uribe, D., Steeb, H., Nigon, B., Stöckhert, F., Swanson, D. A., Siegert, M., Gurris, M., Saenger, E. H., & Ruf, M. (2020). Digital rock physics and laboratory considerations on a high-porosity volcanic rock: micro-XRCT data sets. In DaRUS. https://doi.org/10.18419/DARUS-680
- Schepp, L. L., Ahrens, B., Balcewicz, M., Duda, M., Nehler, M., Osorno, M., Uribe, D., Steeb, H., Nigon, B., Stöckhert, F., & others. (2020). Digital rock physics and laboratory considerations on a high-porosity volcanic rock. Scientific Reports, 10(1), 1--16.
- Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., & Wild, K. (2020). The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms. Proceedings of the 14th Symposium and Summer School on Service-Oriented Computing (SummerSOC 2020), 66--85. https://doi.org/10.1007/978-3-030-64846-6_5
- Salm, M., Barzen, J., Leymann, F., & Weder, B. (2020, November). About a Criterion of Successfully Executing a Circuit in the NISQ Era: What $wd 1/\epsilon_eff$ Really Means. Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software. https://doi.org/10.1145/3412451.3428498
- Rösinger, C. A., & Scherer, C. W. (2020). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), 6–18. https://doi.org/10.1109/TCNS.2019.2914411
- Rösinger, C. A., & Scherer, C. W. (2020). Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings. IFAC-PapersOnLine, 53(2), 7292–7298. https://doi.org/10.1016/j.ifacol.2020.12.570
- Reutzsch, J., Kieffer-Roth, C., & Weigand, B. (2020). A consistent method for direct numerical simulation of droplet evaporation. Journal of Computational Physics, 109455. https://doi.org/10.1016/j.jcp.2020.109455
- Praditia, T., Walser, T., Oladyshkin, S., & Nowak, W. (2020). Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture. Energies, 13(15), 3873. https://doi.org/10.3390/en13153873
- Oladyshkin, S., Mohammadi, F., Kröker, I., & Nowak, W. (2020). Bayesian3 active learning for Gaussian process emulator using information theory. Entropy, 22(0890), 1–27. https://doi.org/10.3390/e22080890
- Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy, 22(8), 890. https://doi.org/10.3390/e22080890
- Nguyen, L. T. K., Rambausek, M., & Keip, M.-A. (2020). Variational framework for distance-minimizing method in data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 365, 112898. https://doi.org/10.1016/j.cma.2020.112898
- Müller, S. (2020). Symplectic Neural Networks.
- Müller, P., Sood, E., & Bulling, A. (2020). Anticipating Averted Gaze in Dyadic Interactions. ACM Symposium on Eye Tracking Research and Applications, 1–10. https://doi.org/10.1145/3379155.3391332
- Munz, T., Schäfer, N., Blascheck, T., Kurzhals, K., Zhang, E., & Weiskopf, D. (2020). Supplemental Material for Comparative Visual Gaze Analysis for Virtual Board Games. DaRUS. https://doi.org/10.18419/DARUS-1130
- Munz, T., Schaefer, N., Blascheck, T., Kurzhals, K., Zhang, E., & Weiskopf, D. (2020). Demo of a Visual Gaze Analysis System for Virtual Board Games. ACM Symposium on Eye Tracking Research and Applications. https://doi.org/10.1145/3379157.3391985
- Munz, T., Schäfer, N., Blascheck, T., Kurzhals, K., Zhang, E., & Weiskopf, D. (2020). Comparative Visual Gaze Analysis for Virtual Board Games. The 13th International Symposium on Visual Information Communication and Interaction (VINCI 2020). https://doi.org/10.1145/3430036.3430038
- Molpeceres, G., Zaverkin, V., & Kästner, J. (2020). Neural-network assisted study of nitrogen atom dynamics on amorphous solid water--I. adsorption and desorption. Monthly Notices of the Royal Astronomical Society, 499(1), 1373--1384.
- Molpeceres, G., Zaverkin, V., & Kästner, J. (2020). Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – I. adsorption and desorption. Mon. Not. R. Astron. Soc., 499, 1373–1384. https://doi.org/10.1093/mnras/staa2891
- Michalowsky, S., Scherer, C., & Ebenbauer, C. (2020). Robust and structure exploiting optimisation algorithms : an integral quadratic constraint approach. International Journal of Control, 2020, 1–24. https://doi.org/10.1080/00207179.2020.1745286
- Michalowsky, S., Scherer, C. W., & Ebenbauer, C. (2020). Robust and structure exploiting optimization algorithms: An integral quadratic constraint approach. Int. J. Control, 1–24. https://doi.org/10.1080/00207179.2020.1745286
- Martin, T., Koch, A., & Allgöwer, F. (2020). Data-driven surrogate models for LTI systems via saddle-point dynamics. Proc. 21st IFAC World Congress, 971–976. https://doi.org/10.1016/j.ifacol.2020.12.1261
- Martin, T., & Allgöwer, F. (2020). Iterative data-driven inference of nonlinearity measures via successive graph approximation. Proc. 59th IEEE Conf. Decision and Control (CDC), 4760–4765. https://doi.org/10.1109/CDC42340.2020.9304285
- Mangiagalli, M., Carvalho, H., Natalello, A., Ferrario, V., Pennati, M., Barbiroli, A., Lotti, M., Pleiss, J., & Brocca, S. (2020). Diverse effects of aqueous polar co-solvents on Candida antarctica lipase B. Int J Biol Macromol, 150, 930–940.
- Kurz, M., & Beck, A. (2020). A machine learning framework for LES closure terms. ETNA - Electronic Transactions on Numerical Analysis, 117–137. https://doi.org/10.1553/etna_vol56s117
- Kuritz, K., Stöhr, D., Maichl, D. S., Pollak, N., Rehm, M., & Allgöwer, F. (2020). Reconstructing temporal and spatial dynamics from single-cell pseudotime using prior knowledge of real scale cell densities. Scientific Reports, 10(1), 3619. https://doi.org/10.1038/s41598-020-60400-z
- Kunc, O., & Fritzen, F. (2020). Many-scale finite strain computational homogenization via Concentric Interpolation. International Journal for Numerical Methods in Engineering, 121(21), 4689--4716. https://doi.org/10.1002/nme.6454
- Kneifl, J., Grunert, D., & Fehr, J. (2020). A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning. Universität Stuttgart. https://doi.org/10.18419/OPUS-11181
- Kempter, F., Bechler, F., & Fehr, J. (2020). Calibration Approach for Muscle Activated Human Models in Pre-Crash Maneuvers with a Driver-in-the-Loop Simulator. Proceedings in 6th Digital Human Modeling Symposium. https://doi.org/10.3233/ATDE200029
- Imig, D., Pollak, N., Allgöwer, F., & Rehm, M. (2020). Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis. PLOS Computational Biology, 16(6), 1–17. https://doi.org/10.1371/journal.pcbi.1007812
- Häufle, D. F. B., Wochner, I., Holzmüller, D., Driess, D., Günther, M., & Schmitt, S. (2020). Muscles Reduce Neuronal Information Load : Quantification of Control Effort in Biological vs. Robotic Pointing and Walking. Frontiers In Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
- Häufle, D. F. B., Wochner, I., Holzmüller, D., Drieß, D., Günther, M., & Schmitt, S. (2020). Muscles reduce neuronal information load : quantification of control effort in biological vs. robotic pointing and walking. Frontiers in Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
- Holzmüller, D., & Steinwart, I. (2020). Training two-layer ReLU networks with gradient descent is inconsistent. ArXiv:2002.04861. https://arxiv.org/abs/2002.04861
- Holzmüller, D. (2020). On the Universality of the Double Descent Peak in Ridgeless Regression. ArXiv Preprint ArXiv:2010.01851. https://openreview.net/pdf?id=0IO5VdnSAaH
- Holicki, T., & Scherer, C. W. (2020). Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems. IFAC-PapersOnline, 53(2), 7299–7304. https://doi.org/10.1016/j.ifacol.2020.12.981
- Hirche, M., Köhler, P. N., Müller, M. A., & Allgöwer, F. (2020). Distributed Model Predictive Control for Consensus of Constrained Heterogeneous Linear Systems. Proc. 59th IEEE Conf. on Decision and Control (CDC), 1248–1253. https://doi.org/10.1109/CDC42340.2020.9303838
- Heyen, F., Munz, T., Neumann, M., Ortega, D., Vu, N. T., Weiskopf, D., & Sedlmair, M. (2020). ClaVis: An Interactive Visual Comparison System for Classifiers. Proceedings of the International Conference on Advanced Visual Interfaces, 9, 1--9. https://doi.org/10.1145/3399715.3399814
- Hertneck, M., Linsenmayer, S., & Allgöwer, F. (2020). Stability Analysis for Nonlinear Weakly Hard Real-Time Control Systems. Proc. 21st IFAC World Congress, 2632–2637. https://doi.org/10.1016/j.ifacol.2020.12.307
- Hertneck, M., & Allgöwer, F. (2020). Exploiting Information for Decentralized Periodic Event-Triggered Control. Proc. 59th IEEE Conf. Decision and Control (CDC), 4999–5004. https://doi.org/10.1109/CDC42340.2020.9304456
- Hertneck, M., Linsenmayer, S., & Allgöwer, F. (2020). Model-Based Nonlinear Periodic Event-Triggered Control for Continuous-Time Systems with Sampled-Data Prediction. Proc. European Control Conf. (ECC), 1814–1819.
- Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56(10), Article 10. https://doi.org/10.1029/2020wr027332
- Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences, 117(38), 23443--23449. https://doi.org/10.1073/pnas.2011716117
- Hansen, N., Öehlknecht, C., de Ruiter, A., Lier, B., van Gunsteren, W. F., Oostenbrink, C., & Gebhardt, J. (2020). A Suite of Advanced Tutorials for the GROMOS Biomolecular Simulation Software Article v1.0. Living Journal of Computational Molecular Science, 2(1), Article 1. https://doi.org/10.33011/livecoms.2.1.18552
- Gygli, G., & Pleiss, J. (2020). Simulation foundry: Automated and FAIR molecular modeling. Journal of Chemical Information and Modeling, 60(4), 1922--1927.
- Gygli, G., Xu, X., & Pleiss, J. (2020). Meta-analysis of viscosity of aqueous deep eutectic solvents and their components. Sci Rep, 10, 21395–21395.
- Guttà, C., Rahman, A., Aura, C., Dynoodt, P., Charles, E. M., Hirschenhahn, E., Joseph, J., Wouters, J., de Chaumont, C., Rafferty, M., Warren, M., van den Oord, J. J., Gallagher, W. M., & Rehm, M. (2020). Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death & Disease, 11(2), Article 2. https://doi.org/10.1038/s41419-020-2309-3
- Gebhardt, J., Kiesel, M., Riniker, S., & Hansen, N. (2020). Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients. Journal of Chemical Information and Modeling, 60(11), 5319--5330. https://doi.org/10.1021/acs.jcim.0c00479
- Fullstone, G., Guttà, C., Beyer, A., & Rehm, M. (2020). The FLAME-accelerated signalling tool (FaST) for facile parallelisation of flexible agent-based models of cell signalling. Npj Systems Biology and Applications, 6(1), 10--. https://doi.org/10.1038/s41540-020-0128-x
- Fullstone, G., Bauer, T. L., Guttà, C., Salvucci, M., Prehn, J. H. M., & Rehm, M. (2020). The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death & Differentiation, 27, 2828–2842. https://doi.org/10.1038/s41418-020-0545-9
- Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
- Flaig, S. (2020). Prognose von Wasserständen in einem durch die Trinkwassergewinnung beeinflussten Moor-Grundwassersystem mithilfe eines künstlichen neuronalen Netzwerks. MSc Thesis, University of Stuttgart.
- Fischer, M., Bauer, G., & Gross, J. (2020). Transferable Anisotropic United-Atom Mie (TAMie) Force Field: Transport Properties from Equilibrium Molecular Dynamic Simulations. Industrial & Engineering Chemistry Research, 59(18), 8855--8869.
- Fernández, M., Rezaei, S., Mianroodi, J. R., Fritzen, F., & Reese, S. (2020). Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Advanced Modeling and Simulation in Engineering Sciences, 7(1), 27. https://doi.org/10.1186/s40323-019-0138-7
- Fernández, M., & Fritzen, F. (2020). On the generation of periodic discrete structures with identical two-point correlation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2242), 20200568. https://doi.org/10.1098/rspa.2020.0568
- Fernández, M., & Fritzen, F. (2020). Construction of a Class of Sharp Löwner Majorants for a Set of Symmetric Matrices. Journal of Applied Mathematics, 2020, 18. https://doi.org/10.1155/2020/9091387
- Fernández, M., & Fritzen, F. (2020). Construction of a class of sharp Löwner majorants for a set of symmetric matrices. Journal of Applied Mathematics, 2020, 1–18. https://doi.org/10.1155/2020/9091387
- Fernandez, M., & Fritzen, F. (2020). On the generation of periodic discrete structures with identical two-point correlation. Proceedings of the Royal Society A, 476(2242), 20200568.
- Eisenkolb, I., Jensch, A., Eisenkolb, K., Kramer, A., Buchholz, P., Pleiss, J., Spiess, A., & Radde, N. (2020). Modeling of biocatalytic reactions: A workflow for model calibration, selection and validation using Bayesian statistics. AIChE J, 66, e16866.
- Diestelkämper, R., & Herschel, M. (2020). Tracing nested data with structural provenance for big data analytics. Proceedings of the International Conference on Extending Database Technology (EDBT), 253–264. https://doi.org/10.5441/002/edbt.2020.23
- Diestelkämper, R., & Herschel, M. (2020). Distributed Tree-Pattern Matching in Big Data Analytics Systems. In Proceedings of the Conference on Advances in Databases and Information Systems (ADBIS), 171–186. https://doi.org/10.1007/978-3-030-54832-2_14
- Denzel, A., & Kästner, J. (2020). Hessian Matrix Update Scheme for Transition State Search Based on Gaussian Process Regression. J. Chem. Theory Comput., 16, 5083–5089. https://doi.org/10.1021/acs.jctc.0c00348
- de Souza, F. A. L., Sivaraman, G., Fyta, M., Scheicher, R. H., Scopel, W. L., & Amorim, R. G. (2020). Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore. Nanoscale, 12(35), 18289–18295. https://doi.org/10.1039/D0NR04363J
- Cooper, A. M., Kästner, J., Urban, A., & Artrith, N. (2020). Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide. Npj Computational Materials, 6(1), 1--14.
- Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01445-6
- Chu, X. (初旭), Liu, Y. (刘雁超), Wang, W. (王文康), Yang, G. (杨光), Weigand, B., & Nemati, H. (2020). Turbulence, pseudo-turbulence, and local flow topology in dispersed bubbly flow. Physics of Fluids, 32(8), 083310. https://doi.org/10.1063/5.0014833
- Chu, X., Wu, Y., Rist, U., & Weigand, B. (2020). Instability and transition in an elementary porous medium. Phys. Rev. Fluids, 5(4), 044304. https://doi.org/10.1103/PhysRevFluids.5.044304
- Buchfink, P., Haasdonk, B., & Rave, S. (2020). PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems. In P. Frolkovič, K. Mikula, & D. Ševčovič (Eds.), Proceedings of the Conference Algoritmy 2020 (pp. 151--160). Vydavateľstvo SPEKTRUM. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
- Brencher, L., & Barth, A. (2020). Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions. International Conference on Finite Volumes for Complex Applications, 265--273.
- Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-19903-6
- Berberich, J., Koch, A., Scherer, C. W., & Allgower, F. (2020). Robust data-driven state-feedback design. 2020 American Control Conference (ACC), 1532–1538. https://doi.org/10.23919/acc45564.2020.9147320
- Berberich, J., Scherer, C. W., & Allgöwer, F. (2020). Combining Prior Knowledge and Data for Robust Controller Design. https://arxiv.org/abs/2009.05253
- Beckers, F., Heredia, A., Noack, M., Nowak, W., Wieprecht, S., & Oladyshkin, S. (2020). Bayesian Calibration and Validation of a Large-scale and Time-demanding Sediment Transport Model. Water Resources Research, 56(7), e2019WR026966. https://doi.org/10.1029/2019WR026966
- Beck, A. D., Zeifang, J., Schwarz, A., & Flad, D. G. (2020). A neural network based shock detection and localization approach for discontinuous Galerkin methods. Journal of Computational Physics, 423, 109824. https://doi.org/10.1016/j.jcp.2020.109824
- Bauer, T., Buchholz, P., & Pleiss, J. (2020). The modular structure of α/β-hydrolases. FEBS J, 287, 1035–1053.
- Barreau, M., Scherer, C. W., Gouaisbaut, F., & Seuret, A. (2020). Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis. IFAC World Congress.
- Bahlmann, L. M., Smits, K. M., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (2020). Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research, 56(9), e2020WR027600. https://doi.org/10.1029/2020WR027600
- Alonso-Orán, D., Rohde, C., & Tang, H. (2020). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. ArXiv Preprint ArXiv:2010.09972, 1–32. https://doi.org/10.1007/s00332-021-09755-9
- Alonso-Orán, D., Rohde, C., & Tang, H. (2020). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. ArXiv Preprint ArXiv:2010.09972, 1–32. https://doi.org/10.1007/s00332-021-09755-9
- Adam, S., Anteneh, H., Hornisch, M., Wagner, V., Lu, J., Radde, N., Bashtrykov, P., Song, J., & Jeltsch, A. (2020). DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation. Nat. Communications, 11(1), 1–15. https://doi.org/10.1038/s41467-020-17531-8
2019
- Zeman, J., Holm, C., & Smiatek, J. (2019). The Effect of Small Organic Cosolutes on Water Structure and Dynamics. Journal of Chemical & Engineering Data, 65(3), 1197--1210. https://doi.org/10.1021/acs.jced.9b00577
- Xu, X., Range, J., Gygli, G., & Pleiss, J. (2019). Analysis of Thermophysical Properties of Deep Eutectic Solvents by Data Integration. Journal of Chemical & Engineering Data, 65(3), 1172--1179. https://doi.org/10.1021/acs.jced.9b00555
- Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248. https://doi.org/10.1016/j.ymssp.2019.106248
- Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248.
- Tomalka, A., Röhrle, O., Han, J.-C., Pham, T., Taberner, A. J., & Siebert, T. (2019). Extensive eccentric contractions in intact cardiac trabeculae: revealing compelling differences in contractile behaviour compared to skeletal muscles. Proceedings of the Royal Society B, 286(1903), 20190719.
- Tkachev, G., Frey, S., & Ertl, T. (2019). Local Prediction Models for Spatiotemporal Volume Visualization. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2019.2961893
- Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), 042001. https://doi.org/10.1063/1.5092169
- Steeb, H., & Renner, J. (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media, 130(2), 437--461.
- Rösinger, C. A., & Scherer, C. W. (2019). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), 6–18. https://doi.org/10.1109/TCNS.2019.2914411
- Rösinger, C. A., & Scherer, C. W. (2019). A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination. IFAC-PapersOnLine, 52(28), 50–57. https://doi.org/10.1016/j.ifacol.2019.12.347
- Romer, A., Trimpe, S., & Allgöwer, F. (2019). Data-driven inference of passivity properties via Gaussian process optimization. 2019 18th European Control Conference (ECC), 29--35.
- Romer, A., Berberich, J., Köhler, J., & Allgöwer, F. (2019). One-shot verification of dissipativity properties from input--output data. IEEE Control Systems Letters, 3(3), 709--714.
- Roddan, R., Gygli, G., Sula, A., Mendez-Sanchez, D., Pleiss, J., Ward, J., Keep, N., & Hailes, H. (2019). The acceptance and kinetic resolution of alpha-methyl substituted aldehydes by norcoclaurine synthases. ACS Catal, 9, 9640–9649.
- Ricken, T., & Lambers, L. (2019). On computational approaches of liver lobule function and perfusion simulation. GAMM-Mitteilungen, 42(4), Article 4. https://doi.org/10.1002/gamm.201900016
- Reutzsch, J., Raja Kochanattu, G. V., Ibach, M., Kieffer-Roth, C., Tonini, S., Cossali, G. E., & Weigand, B. (2019). Direct Numerical Simulations of Oscillating Liquid Droplets: a Method to Extract Shape Characteristics. ILASS-Europe 2019, 29th Conference on Liquid Atomization and Spray Systems, Paris, France.
- Oladyshkin, S., & Nowak, W. (2019). The connection between Bayesian Inference and Information Theory for model selection, information gain and experimental design. Entropy, 21, 1081. https://doi.org/doi:10.3390/e21111081
- Munz, T., Burch, M., van Benthem, T., Poels, Y., Beck, F., & Weiskopf, D. (2019). Overlap-Free Drawing of Generalized Pythagoras Trees for Hierarchy Visualization. 2019 IEEE Visualization Conference (VIS), 251–255. https://doi.org/10.1109/VISUAL.2019.8933606
- Munz, T., Chuang, L. L., Pannasch, S., & Weiskopf, D. (2019). VisME: Visual microsaccades explorer. Journal of Eye Movement Research, 12(6), Article 6. https://doi.org/10.16910/jemr.12.6.5
- Martin, T., & Allgöwer, F. (2019). Nonlinearity Measures for Data-Driven System Analysis and Control. Proc. 58th IEEE Conf. Decision and Control (CDC), 3605–3610. https://doi.org/10.1109/CDC40024.2019.9029804
- Lambers, L., Ricken, T., & König, M. (2019). A multiscale and multiphase model for the description of function-perfusion processes in the human liver. Advances in Engineering Materials, Structures and Systems : Innovations, Mechanics and Applications : Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), September 2-4, 2019, Cape Town, South Africa, 304–307. https://doi.org/10.1201/9780429426506-52
- Lambers, L., Ricken, T., & König, M. (2019). Model Order Reduction (MOR) of Function--Perfusion--Growth Simulation in the Human Fatty Liver via Artificial Neural Network (ANN). PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900429
- Kuhn, T., Dürrwächter, J., Meyer, F., Beck, A., Rohde, C., & Munz, C.-D. (2019). Uncertainty quantification for direct aeroacoustic simulations of cavity flows. J. Theor. Comput. Acoust., 27(1, 1850044), Article 1, 1850044. https://doi.org/10.1142/S2591728518500445
- Holicki, T., & Scherer, C. W. (2019). A Homotopy Approach for Robust Output-Feedback Synthesis. Proc. 27th. Med. Conf. Control Autom., 87–93. https://doi.org/10.1109/MED.2019.8798536
- Holicki, T., & Scherer, C. W. (2019). Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings. Nonlinear Anal. Hybri., 34, 179–208. https://doi.org/10.1016/j.nahs.2019.06.003
- Hertneck, M., Linsenmayer, S., & Allgöwer, F. (2019). Nonlinear Dynamic Periodic Event-Triggered Control with Robustness to Packet Loss Based on Non-Monotonic Lyapunov Functions. Proc. 58th IEEE Conf. Decision and Control (CDC), 1680–1685. https://doi.org/10.1109/CDC40024.2019.9029770
- Harzenetter, L., Breitenbücher, U., Leymann, F., Saatkamp, K., Weder, B., & Wurster, M. (2019). Automated Generation of Management Workflows for Applications Based on Deployment Models. 2019 IEEE 23rd International Enterprise Distributed Object Computing Conference (EDOC), 216–225. https://doi.org/10.1109/EDOC.2019.00034
- Göküzüm, F. S., Nguyen, L. T. K., & Keip, M.-A. (2019). An Artificial Neural Network Based Solution Scheme for Periodic Computational Homogenization of Electrostatic Problems. Mathematical and Computational Applications, 24(2), 40. https://doi.org/10.3390/mca24020040
- Göküzüm, F. S., Nguyen, L. T. K., & Keip, M.-A. (2019). An Artificial Neural Network based Solution Scheme to periodic Homogenization. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900271
- Grabowski, B., Ikeda, Y., Srinivasan, P., Körmann, F., Freysoldt, C., Duff, A. I., Shapeev, A., & Neugebauer, J. (2019). Ab initio vibrational free energies including anharmonicity for multicomponent alloys. Npj Computational Materials, 5(1), 1--6.
- Geissen, E.-M., Hasenauer, J., & Radde, N. E. (2019). Inference of finite mixture models and the effect of binning. Statistical Applications in Genetics and Molecular Biology, 18(4), Article 4.
- Ferrario, V., Fischer, M., Zhu, Y., & Pleiss, J. (2019). Modelling of substrate access and substrate binding to cephalosporin acylases. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-48849-z
- Driess, D., Schmitt, S., & Toussaint, M. (2019). Active Inverse Model Learning with Error and Reachable Set Estimates. IROS, 1826--1833.
- Denzel, A., Haasdonk, B., & Kästner, J. (2019). Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. J. Phys. Chem. A, 123(44), 9600–9611. https://doi.org/10.1021/acs.jpca.9b08239
- Chu, X., Yang, G., Pandey, S., & Weigand, B. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11--20. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.172
- Carral, A. D., Sarap, C. S., Liu, K., Radenovic, A., & Fyta, M. (2019). 2D MoS2 nanopores: ionic current blockade height for clustering DNA events. 2D Materials, 6(4), 045011.
- Baz, J., Held, C., Pleiss, J., & Hansen, N. (2019). Thermophysical properties of glyceline–water mixtures investigated by molecular modelling. Phys. Chem. Chem. Phys., 21(12), 6467–6476. https://doi.org/10.1039/C9CP00036D
- Baggio, G., Zampieri, S., & Scherer, C. W. (2019). Gramian Optimization with Input-Power Constraints. 2019 IEEE 58th Conference on Decision and Control (CDC), 5686–5691. https://doi.org/10.1109/CDC40024.2019.9029169