Publications of EXC 2075

  1. Preprint: arXiv:2211.05639, 2022

    1. Martin, T., Schön, T. B., & Allgöwer, F. (n.d.). Gaussian inference for data-driven state-feedback design of nonlinear systems. 22nd IFAC World Congress (Submitted), Preprint: ArXiv:2211.05639.
  2. 2023

    1. Zaverkin, V., Holzmüller, D., Bonfirraro, L., & Kästner, J. (2023). Transfer learning for chemically accurate interatomic neural network potentials. Phys. Chem. Chem. Phys., 25(7), 5383–5396. https://doi.org/10.1039/D₂CP05793J
    2. Schlottke, A., Ibach, M., Steigerwald, J., & Weigand, B. (2023). Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’21 (pp. 239--257). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_14
    3. Morato, M. M., Holicki, T., & Scherer, C. W. (2023). Stabilizing Model Predictive Control Synthesis using Integral Quadratic Constraints and Full-Block Multipliers. https://doi.org/10.48550/ARXIV.2210.03712
    4. Monninger, T., Schmidt, J., Rupprecht, J., Raba, D., Jordan, J., Frank, D., Staab, S., & Dietmayer, K. (2023). SCENE: Reasoning about Traffic Scenes using Heterogeneous Graph Neural Networks. IEEE Robotics and Automation Letters, 1–8. https://doi.org/10.1109/LRA.2023.3234771
    5. Kurz, M., Offenhäuser, P., & Beck, A. (2023). Deep reinforcement learning for turbulence modeling in large eddy simulations. International Journal of Heat and Fluid Flow, 99, 109094. https://doi.org/10.1016/j.ijheatfluidflow.2022.109094
    6. Kneifl, J., Rosin, D., Röhrle, O., & Fehr, J. (2023). Low-dimensional Data-based Surrogate Model of a Continuum-mechanical Musculoskeletal System Based on Non-intrusive Model Order Reduction. arXiv. https://doi.org/10.48550/ARXIV.2302.06528
    7. Kharitenko, A., & Scherer, C. (2023). Time-varying Zames–Falb multipliers for LTI Systems are superfluous. Automatica, 147, 110577. https://doi.org/10.1016/j.automatica.2022.110577
    8. Kempf, D., Gao, M., Beck, A., Blind, M., Kopper, P., Kuhn, T., Kurz, M., Schwarz, A., & Munz, C.-D. (2023). Development of turbulent inflow methods for the high order HPC framework FLEXI. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’21 (pp. 289--304). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_17
    9. Ibach, M., Steigerwald, J., & Weigand, B. (2023). Thixotropic effects in oscillating droplets. 11th International Conference on Multiphase Flow (ICMF), April 2–7, 2023, Kobe, Japan.
    10. Hornischer, N. (2023). Model Order Reduction with Dynamically Transformed Modes for Electrophysiological Simulations. GAMM Archive for Students.
    11. Holzmüller, D., & Bach, F. (2023). Convergence rates for non-log-concave sampling and log-partition estimation. ArXiv:2303.03237.
    12. Holicki, T., & Scherer, C. W. (2023). Input-Output-Data-Enhanced Robust Analysis via Lifting. https://doi.org/10.48550/arXiv.2211.02149
    13. Holicki, T., & Scherer, C. W. (2023). IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties. https://doi.org/10.48550/arXiv.2212.08837
    14. Herkert, R., Buchfink, P., Haasdonk, B., Rettberg, J., & Fehr, J. (2023). Randomized Symplectic Model Order Reduction for Hamiltonian Systems.
    15. Grioui, F., & Blascheck, T. (2023). Heart Rate Visualizations on a Virtual Smartwatch to Monitor Physical Activity Intensity. Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. https://doi.org/10.5220/0011665500003417
    16. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM J. Sci. Comput., 45(1), A49–A73. https://doi.org/10.1137/21M1415005
  3. sdsds 2022

    1. Martin, T., Schön, T. B., & Allgöwer, F. (n.d.). Gaussian inference for data-driven state-feedback design of nonlinear systems. 22nd IFAC World Congress (Submitted), Preprint: ArXiv:2211.05639.
  4. 2022 (submitted)

    1. Horuz, C. C., Karlbauer, M., Praditia, T., Butz, M. V., Oladyshkin, S., Nowak, W., & Otte, S. (n.d.). Inferring Boundary Conditions in Finite Volume Neural Networks. International Conference on Artificial Neural Networks 2022.
  5. 2022

    1. Zimmermann, N. E. R., Guevara-Carrion, G., Vrabec, J., & Hansen, N. (2022). Predicting and Rationalizing the Soret Coefficient of Binary Lennard-Jones Mixtures in the Liquid State. Advanced Theory and Simulations, 5(11), 2200311. https://doi.org/10.1002/adts.202200311
    2. Zhou, Q., Fehr, J., Bestle, D., & Rui, X. (2022). Simulation of generally shaped 3D elastic body dynamics with large motion using transfer matrix method incorporating model order reduction. Multibody System Dynamics. https://doi.org/10.1007/s11044-022-09869-2
    3. Zhang, X., Divinski, S. V., & Grabowski, B. (2022). Ab initio prediction of vacancy energetics in HCP Al-Hf-Sc-Ti-Zr high entropy alloys and the subsystems. Acta Materialia, 227, 117677. https://doi.org/10.1016/j.actamat.2022.117677
    4. Zaverkin, V., Holzmüller, D., Schuldt, R., & Kästner, J. (2022). Predicting properties of periodic systems from cluster data: A case study of liquid water. The Journal of Chemical Physics, 156(11), 114103. https://doi.org/10.1063/5.0078983
    5. Zaverkin, V., Netz, J., Zills, F., Köhn, A., & Kästner, J. (2022). Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments. J. Chem. Theory Comput., 18, 1–12. https://doi.org/10.1021/acs.jctc.1c00853
    6. Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2022). Exploring chemical and conformational spaces by batch mode deep active learning. Digital Discovery, 1, 605–620. https://doi.org/10.1039/D₂DD00034B
    7. Zaverkin, V., Molpeceres, G., & Kästner, J. (2022). Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – II. Diffusion. Mon. Not. R. Astron. Soc., 510(2), 3063–3070. https://doi.org/10.1093/mnras/stab3631
    8. Yi, T., Chu, X., Wang, B., Wu, J., & Yang, G. (2022). Numerical simulation of single bubble evolution in low gravity with fluctuation. International Communications in Heat and Mass Transfer, 130, 105828. https://doi.org/10.1016/j.icheatmasstransfer.2021.105828
    9. Xiao, S., & Nowak, W. (2022). Reliability sensitivity analysis based on a two-stage Markov chain Monte Carlo simulation. Aerospace Science and Technology, 130, 107938. https://doi.org/10.1016/j.ast.2022.107938
    10. Wenzel, T., Santin, G., & Haasdonk, B. (2022). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains. arXiv. https://doi.org/10.48550/ARXIV.2203.12532
    11. Wenzel, T., Kurz, M., Beck, A., Santin, G., & Haasdonk, B. (2022). Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 410--418). Springer International Publishing.
    12. Wenzel, T., Santin, G., & Haasdonk, B. (2022). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, \$\$f \backslashcdot P\$\$- and f/P-Greedy. Constructive Approximation. https://doi.org/10.1007/s00365-022-09592-3
    13. Weder, B., Barzen, J., Beisel, M., & Leymann, F. (2022). Analysis and Rewrite of Quantum Workflows: Improving the Execution of Hybrid Quantum Algorithms. Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), 38--50. https://doi.org/10.5220/0011035100003200
    14. Weder, B., Barzen, J., Leymann, F., & Vietz, D. (2022). Quantum Software Development Lifecycle. In M. A. Serrano, R. Pérez-Castillo, & M. Piattini (Eds.), Quantum Software Engineering (pp. 61--83). Springer International Publishing. https://doi.org/10.1007/978-3-031-05324-5_4
    15. Wagner, V., Höpfl, S., Klingel, V., Pop, M. C., & Radde, N. E. (2022). An inverse transformation algorithm to infer parameter distributions from population snapshot data. IFAC-PapersOnLine, 55(23), 86–91. https://doi.org/10.1016/j.ifacol.2023.01.020
    16. Wagner, V., Castellaz, B., Oesting, M., & Radde, N. (2022). Quasi-Entropy Closure : a fast and reliable approach to close the moment equations of the Chemical Master Equation. Bioinformatics, 38(18), 4352–4359. https://doi.org/10.1093/bioinformatics/btac501
    17. Vera, J., Lai, X., Baur, A., Erdmann, M., Gupta, S., Guttà, C., Heinzerling, L., Heppt, M. V., Kazmierczak, P. M., Kunz, M., Lischer, C., Pützer, B. M., Rehm, M., Ostalecki, C., Retzlaff, J., Witt, S., Wolkenhauer, O., & Berking, C. (2022). Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Briefings in Bioinformatics. https://doi.org/10.1093/BIB/BBAC433
    18. van Gunsteren, W. F., Pechlaner, M., Smith, L. J., Stankiewicz, B., & Hansen, N. (2022). A Method to Derive Structural Information on Molecules from Residual Dipolar Coupling NMR Data. The Journal of Physical Chemistry B, 126(21), 3867--3888. https://doi.org/10.1021/acs.jpcb.2c02410
    19. Vaikuntanathan, V., Ibach, M., Arad, A., Chu, X., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2022). An Analytical Study on the Mechanism of Grouping of Droplets. Fluids, 7(5), Article 5. https://doi.org/10.3390/fluids7050172
    20. Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D., & Niepert, M. (2022). PDEBench: An Extensive Benchmark for Scientific Machine Learning. 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.
    21. Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2022). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 402--409). Springer International Publishing.
    22. Seetha, N., & Hassanizadeh, S. M. (2022). A two-way coupled model for the co-transport of two different colloids in porous media. Journal of Contaminant Hydrology, 244, 103922. https://doi.org/10.1016/j.jconhyd.2021.103922
    23. Schäfer Rodrigues Silva, A., Weber, T. K., Gayler, S., Guthke, A., Höge, M., Streck, T., & Nowak, W. (2022). Diagnosing Similarities in Probabilistic Multi-Model Ensembles - an Application to Soil-Plant-Growth-Modeling. Modeling Earth Systems and Environment, 8, 5143–5175. https://doi.org/10.1007/s40808-022-01427-1
    24. Schwarz, A., Kopper, P., Keim, J., Sommerfeld, H., Koch, C., & Beck, A. (2022). A neural network based framework to model particle rebound and fracture. Wear, 508–509, 204476. https://doi.org/10.1016/j.wear.2022.204476
    25. Schmid, P., Ebel, H., & Eberhard, P. (2022). Dependable Data-based Design of Embedded Model Predictive Control. 2022 European Control Conference (ECC), 859–866. https://doi.org/10.23919/ECC55457.2022.9838194
    26. Scherer, C. W. (2022). Dissipativity, Convexity and Tight O\textquotesingleShea-Zames-Falb Multipliers for Safety Guarantees. IFAC-PapersOnLine, 55(30), 150--155. https://doi.org/10.1016/j.ifacol.2022.11.044
    27. Scherer, C. (2022). Dissipativity and Integral Quadratic Constraints, Tailored computational robustness tests for complex interconnections. IEEE Control Systems Magazine (to Appear). https://arxiv.org/abs/2105.07401
    28. Rösinger, C. A., & Scherer, C. W. (2022). Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings.
    29. Rosin, D., Kässinger, J., Yu, X., Avci, O., Sedlmair, M., Rothermel, K., & Röhrle, O. (2022). Neural Network-based Real-time Visualization on Mobile Devices for Pervasive Continuum-Mechanical Simulations in Biomechanics. Medical Image Analysis.
    30. Rosin, D., Kässinger, J., Yu, X., Avci, O., & Röhrle, O. (2022). Neural Network-based Real-time Visualization on Mobile Devices for Pervasive Continuum-Mechanical Simulations in Biomechanics. To Be Submitted to: Medical Image Analysis.
    31. Rosenfelder, M., Ebel, H., Krauspenhaar, J., & Eberhard, P. (2022). Model Predictive Control of Non-Holonomic Vehicles: Beyond Differential-Drive. https://arxiv.org/abs/2205.11400
    32. Rosenfelder, M., Ebel, H., & Eberhard, P. (2022). A Force-Based Control Approach for the Non-Prehensile Cooperative Transportation of Objects Using Omnidirectional Mobile Robots. 2022 IEEE Conference on Control Technology and Applications (CCTA), 349–356. https://doi.org/10.1109/CCTA49430.2022.9966052
    33. Rosenfelder, M., Ebel, H., & Eberhard, P. (2022). Cooperative distributed nonlinear model predictive control of a formation of differentially-driven mobile robots. Robotics and Autonomous Systems, 150(April), 103993. https://doi.org/10.1016/j.robot.2021.103993
    34. Rodriguez-Pretelin, A., Morales-Casique, E., & Nowak, W. (2022). Optimization-based clustering of random fields for computationally efficient and goal-oriented uncertainty quantification: concept and demonstration for delineation of wellhead protection areas in transient aquifers. Advances in Water Resources, 162, 104146. https://doi.org/10.1016/j.advwatres.2022.104146
    35. Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., & Haasdonk, B. (2022). Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. https://doi.org/10.48550/arXiv.2203.10061
    36. Praditia, T., Karlbauer, M., Otte, S., Oladyshkin, S., Butz, M. V., & Nowak, W. (2022). Learning Groundwater Contaminant Diffusion-Sorption Processes with a Finite Volume Neural Network. Water Resources Research, 58(12), Article 12. https://doi.org/10.1029/2022WR033149
    37. Potyka, J., Stober, J., Wurst, J., Ibach, M., Steigerwald, J., Weigand, B., & Schulte, K. (2022). Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’22. Springer International Publishing. https://arxiv.org/abs/2212.09727
    38. Pluhackova, K., Schittny, V., Bürkner, P.-C., Siligan, C., & Horner, A. (2022). Multiple pore lining residues modulate water permeability of GlpF. Protein Science, 31(10), e4431. https://doi.org/10.1002/pro.4431
    39. Pechlaner, M., van Gunsteren, W. F., Hansen, N., & Smith, L. J. (2022). Molecular dynamics simulation or structure refinement of proteins: are solvent molecules required? A case study using hen lysozyme. European Biophysics Journal, 51(3), 265--282. https://doi.org/10.1007/s00249-022-01593-1
    40. Oppold, S., & Herschel, M. (2022). Provenance-based explanations: are they useful? International Workshop on the Theory and Practice  of Provenance (TAPP), 2:1--2:4. https://doi.org/10.1145/3530800.3534529
    41. Oladyshkin, S., Praditia, T., Kröker, I., Mohammadi, F., Nowak, W., & Otte, S. (2022). The Deep Arbitrary Polynomial Chaos Neural Network or how Deep Artificial Neural Networks could benefit from Data-Driven Homogeneous Chaos Theory. Neural Networks.
    42. Oesting, M., & Strokorb, K. (2022). A comparative tour through the simulation algorithms for max-stable processes. Statistical Science.
    43. Novikov, I., Grabowski, B., Körmann, F., & Shapeev, A. (2022). Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. Npj Computational Materials, 8(1), 13. https://doi.org/10.1038/s41524-022-00696-9
    44. Nicodemus, J., Kneifl, J., Fehr, J., & Unger, B. (2022). Physics-informed Neural Networks-based Model Predictive Control for Multi-link Manipulators. IFAC-PapersOnLine, 55(20), 331--336. https://doi.org/10.1016/j.ifacol.2022.09.117
    45. Müller, D., Feilhauer, J., Wickert, J., Berberich, J., Allgöwer, F., & Sawodny, O. (2022). Data-driven predictive disturbance observer for quasi continuum manipulators. Proc. 61st IEEE Conf. Decision and Control (CDC), 1816–1822. https://doi.org/10.1109/CDC51059.2022.9992740
    46. Munz, T., Väth, D., Kuznecov, P., Vu, N. T., & Weiskopf, D. (2022). Visualization-based improvement of neural machine translation. Computers & Graphics, 103, 45–60. https://doi.org/10.1016/j.cag.2021.12.003
    47. Mossier, P., Beck, A., & Munz, C.-D. (2022). A p-adaptive discontinuous Galerkin method with hp-shock capturing. Joural of Scientific Computing, 91(4), Article 4. https://doi.org/10.1007/s10915-022-01770-6
    48. Morales Oreamuno, M. F., Oladyshkin, S., & Nowak, W. (2022). Information-Theoretic Scores for Bayesian Model Selection and Similarity Analysis: Concept and Application to a Groundwater Problem. Water Resources Research. https://doi.org/10.1002/essoar.10512501.1
    49. Molpeceres, G., Kästner, J., Herrero, V. J., Peláez, R. J., & Maté, B. (2022). Desorption of organic molecules from interstellar ices, combining experiments and computer simulations: Acetaldehyde as a case study. Astron. Astrophys., 664, A169. https://doi.org/10.1051/0004-6361/202243489
    50. Molpeceres, G., Jiménez-Serra, I., Oba, Y., Nguyen, T., Watanabe, N., de la Concepción, J. Garc\’ıa, Maté, B., Oliveira, R., & Kästner, J. (2022). Hydrogen abstraction reactions in formic and thioformic acid isomers by hydrogen and deuterium atoms. Astron. Astrophys., 663, A41. https://doi.org/10.1051/0004-6361/202243366
    51. Meister, D., Aurzada, F., Lifshits, M. A., & Allgöwer, F. (2022). Analysis of Time- versus Event-Triggered Consensus for a Single-Integrator Multi-Agent System. Proc. 61st IEEE Conf. on Decision and Control (CDC), 441–446. https://doi.org/10.1109/CDC51059.2022.9993301
    52. Martin, T., & Allgöwer, F. (2022). Determining dissipativity for nonlinear systems from noisy data using Taylor polynomial approximation. Proc. American Control Conf. (ACC), 1432–1437.
    53. Martin, T., & Allgöwer, F. (2022). Data-driven system analysis of nonlinear systems using polynomial approximation. In Proc. American Control Conf. (ACC) (Accepted), Preprint:  ArXiv:2108.11298.
    54. Markthaler, D., Kraus, H., & Hansen, N. (2022). Binding free energies for the SAMPL8 CB8 ``Drugs of Abuse’’ challenge from umbrella sampling combined with Hamiltonian replica exchange. Journal of Computer-Aided Molecular Design, 36(1), 1--9. https://doi.org/10.1007/s10822-021-00439-w
    55. Markthaler, D., Fleck, M., Stankiewicz, B., & Hansen, N. (2022). Exploring the Effect of Enhanced Sampling on Protein Stability Prediction. Journal of Chemical Theory and Computation, 18(4), 2569--2583. https://doi.org/10.1021/acs.jctc.1c01012
    56. Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2022). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System.
    57. Maier, B., & Schulte, M. (2022). Mesh generation and multi-scale simulation of a contracting muscle–tendon complex. Journal of Computational Science, 59, 101559. https://doi.org/10.1016/j.jocs.2022.101559
    58. Luo, W., Chen, J., Ebel, H., & Eberhard, P. (2022). Time-Optimal Handover Trajectory Planning for Aerial Manipulators based on Discrete Mechanics and Complementarity Constraints. https://doi.org/10.48550/arXiv.2209.00533
    59. Luo, W., Eschmann, H., & Eberhard, P. (2022). Gaussian Process Regression-augmented Nonlinear Model Predictive Control for Quadrotor Object Grasping. International Conference on Unmanned Aircraft Systems (ICUAS22), Vol. 16, 11–19. https://doi.org/10.1109/ICUAS54217.2022.9836200
    60. Luo, W., Ebel, H., & Eberhard, P. (2022). An LSTM-based Approach to Precise Landing of a UAV on a Moving Platform. International Journal of Mechanical System Dynamics, 00, 1–12.
    61. Ludwig-Słomczyńska, A. H., & Rehm, M. (2022). Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases. Obesity. https://doi.org/10.1002/OBY.23424
    62. Lieb, D. (2022). Advanced neural network architectures for continuum biomechanical simulation surrogates (D. Rosin, Ed.).
    63. Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2022). Surrogate-data-enriched Physics-Aware Neural Networks. Proceedings of the Northern Lights Deep Learning Workshop 2022, 3. https://doi.org/10.7557/18.6268
    64. Legrand, J., Naveau, P., & Oesting, M. (2022). Evaluation of binary classifiers for asymptotically dependent and independent extremes.
    65. Lee, J. S., Ko, W.-S., & Grabowski, B. (2022). Atomistic simulations of the deformation behavior of an Nb nanowire embedded in a NiTi shape memory alloy. Acta Materialia, 228, 117764. https://doi.org/10.1016/j.actamat.2022.117764
    66. Köhler, M., Berberich, J., Müller, M. A., & Allgöwer, F. (2022). Data-driven distributed MPC of dynamically coupled linear systems. Proc. 25th Int. Symp. Mathematical Theory of Networks and Systems, 906–911.
    67. Kurz, M., Offenhäuser, P., Viola, D., Shcherbakov, O., Resch, M., & Beck, A. (2022). Deep reinforcement learning for computational fluid dynamics on HPC systems. Journal of Computational Science, 65, 101884. https://doi.org/10.1016/j.jocs.2022.101884
    68. Kurz, M., Offenhäuser, P., Viola, D., Resch, M., & Beck, A. (2022). Relexi — A scalable open source reinforcement learning framework for high-performance computing. Software Impacts, 14, 100422. https://doi.org/10.1016/j.simpa.2022.100422
    69. Kröker, I., Oladyshkin, S., & Rybak, I. (2022). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems. https://doi.org/10.21203/rs.3.rs-1742793/v1
    70. Kröker, I., & Oladyshkin, S. (2022). Arbitrary Multi-Resolution Multi-Wavelet-based Polynomial Chaos Expansion for Data-Driven Uncertainty Quantification. Reliability Engineering & System Safety, 222, 108376. https://doi.org/10.1016/j.ress.2022.108376
    71. Korn, V., & Pluhackova, K. (2022). Not sorcery after all: Roles of multiple charged residues in membrane insertion of gasdermin-A3. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.958957
    72. Klink, M. (2022). Time Error Estimators and Adaptive Time-stepping Schemes [Bathesis].
    73. Klingel, V., Graf, D., Weirich, S., Jeltsch, A., & Radde, N. E. (2022). Model-Based Design of a Synthetic Oscillator Based on an Epigenetic Methylation Memory System. ACS Synthetic Biology, 11(7), 2445--2455. https://doi.org/10.1021/acssynbio.2c00118
    74. Kharitenko, A., & Scherer, C. W. (2022). On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities.
    75. Kessler, C., Schuldt, R., Emmerling, S., Lotsch, B. V., Kästner, J., Gross, J., & Hansen, N. (2022). Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Microporous and Mesoporous Materials, 336, 111796. https://doi.org/10.1016/j.micromeso.2022.111796
    76. Kempf, D., Gao, M., Beck, A., Blind, M., Kopper, P., Kuhn, T., Kurz, M., Schwarz, A., & Munz, C.-D. (2022). Development of Turbulent Inflow Methods for the High Order HPC Framework FLEXI. High Performance Computing in Science and Engineering ’21.
    77. Karlbauer, M., Praditia, T., Otte, S., Oladyshkin, S., Nowak, W., & Butz, M. V. (2022). Composing Partial Differential Equations with Physics-Aware Neural Networks. Proceedings of the 39th International Conference on Machine Learning.
    78. Ibach, M., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., Schulte, K., & Weigand, B. (2022). Numerical Investigation of Multiple Droplet Streams and the Effect on Grouping Behavior. ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Tel-Aviv (Virtual).
    79. Ibach, M., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2022). Investigation of droplet grouping in monodisperse streams by direct numerical simulations. Physics of Fluids, 34(8), 083314. https://doi.org/10.1063/5.0097551
    80. Hsueh, H., Guthke, A., Wöhling, T., & Nowak, W. (2022). Diagnosis of model-structural errors with a sliding time-window Bayesian analysis. Water Resources Research, 58, e2021WR030590. https://doi.org/doi:10.1029/2021WR030590
    81. Hornischer, N. (2022). Model Order Reduction with Transformed Modes for Electrophysiological Simulations [Bathesis].
    82. Holzmüller, D., Zaverkin, V., Kästner, J., & Steinwart, I. (2022). A Framework and Benchmark for Deep Batch Active Learning for Regression. ArXiv:1112.5745.
    83. Holicki, T., & Scherer, C. W. (2022). Input-Output-Data-Enhanced Robust Analysis via Lifting.
    84. Holicki, T., & Scherer, C. W. (2022). IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties.
    85. Holicki, T., & Scherer, C. W. (2022). A Dynamic S-Procedure for Dynamic Uncertainties. IFAC-PapersOnline, 55(25), 103–108. https://doi.org/10.1016/j.ifacol.2022.09.331
    86. Hillebrecht, B., & Unger, B. (2022). Certified machine learning: Rigorous a posteriori error bounds for PDE defined PINNs.
    87. Hillebrecht, B., & Unger, B. (2022). Certified machine learning: A posteriori error estimation for physics-informed neural networks. ArXiv E-Print 2203.17055. http://arxiv.org/abs/2203.17055
    88. Hertneck, M., & Allgöwer, F. (2022). Dynamic self-triggered control for nonlinear systems with delays. Proc. 9th IFAC Conf. on Networked Systems (NECSYS), 312–317. https://doi.org/10.1016/j.ifacol.2022.07.278
    89. Hermann, S., & Fehr, J. (2022). Documenting research software in engineering science. Scientific Reports, 12(1), 6567. https://doi.org/10.1038/s41598-022-10376-9
    90. Hagenlocher, C., Siebert, R., Taschke, B., Wieske, S., Hausser, A., & Rehm, M. (2022). ER stress-induced cell death proceeds independently of the TRAIL-R2 signaling axis in pancreatic β cells. Cell Death Discovery, 8(1), 34. https://doi.org/10.1038/s41420-022-00830-y
    91. Gössweiner-Mohr, N., Siligan, C., Pluhackova, K., Umlandt, L., Koefler, S., Trajkovska, N., & Horner, A. (2022). The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. Small, 18(31), 2202056. https://doi.org/10.1002/smll.202202056
    92. Guttà, C., Morhard, C., & Rehm, M. (2022). Applying GAN-based data augmentation to improve transcriptome-based prognostication in breast cancer. In medRxiv. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/2022.10.07.22280776
    93. Guttà, C., Morhard, C., & Rehm, M. (2022). T-GAN-D: a GAN-based classifier for breast cancer                    prognostication. Zenodo. https://doi.org/10.5281/zenodo.7151831
    94. Gramlich, D., Scherer, C. W., & Ebenbauer, C. (2022). Robust Differential Dynamic Programming. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9992569
    95. Gramlich, D., Ebenbauer, C., & Scherer, C. W. (2022). Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions. Syst. Control Lett., 165. https://arxiv.org/abs/2006.09946
    96. Graf, D., Laistner, L., Klingel, V., Radde, N. E., Weirich, S., & Jeltsch, A. (2022). Reversible switching and stability of the epigenetic memory system in bacteria. The FEBS Journal. https://doi.org/10.1111/febs.16690
    97. Gebhardt, P., Yu, X., Köhn, A., & Sedlmair, M. (2022). MolecuSense: Using Force-Feedback Gloves for Creating and Interacting  with Ball-and-Stick Molecules in VR. http://arxiv.org/abs/2203.09577
    98. Gavrilenko, P., Haasdonk, B., Iliev, O., Ohlberger, M., Schindler, F., Toktaliev, P., Wenzel, T., & Youssef, M. (2022). A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 378--386). Springer International Publishing.
    99. Frank, D., Latif, D. A., Muehlebach, M., Unger, B., & Staab, S. (2022). Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees [Publication]. https://doi.org/10.48550/arXiv.2212.05781
    100. Frank, D., Latif, D. A., Muehlebach, M., & Staab, S. (2022). Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees -- Technical Report. https://doi.org/10.48550/arXiv.2212.05781
    101. Fiedler, C., Scherer, C. W., & Trimpe, S. (2022, December). Learning Functions and Uncertainty Sets Using Geometrically Constrained Kernel Regression. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9993144
    102. Fernández, M., Fritzen, F., & Weeger, O. (2022). Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. International Journal for Numerical Methods in Engineering, 123(2), 577–609. https://doi.org/10.1002/nme.6869
    103. Fellmeth, T. P. (2022). - Live or let die - Bcl-2 protein transmembrane domain interactions in apoptosis signaling. University of Stuttgart.
    104. Eschmann, H., Ebel, H., & Eberhard, P. (2022). Exploration-Exploitation-Based Trajectory Tracking of Mobile Robots Using Gaussian Processes and Model Predictive Control.
    105. Eschmann, H., Ebel, H., & Eberhard, P. (2022). High Accuracy Data-Based Trajectory Tracking of a Mobile Robot. Advances in Service and Industrial Robotics, 31, 420–427. https://doi.org/10.1007/978-3-031-04870-8_49
    106. Eirich, L., Münch, M., Jäckle, D., Sedlmair, M., Bonart, J., & Schreck, T. (2022). RfX: A Design Study for the Interactive Exploration of a Random Forest to Enhance Testing Procedures for Electrical Engines. Computer Graphics Forum (CGF), 14. https://doi.org/10.1111/cgf.14452
    107. Ebel, H., Fahse, D. N., Rosenfelder, M., & Eberhard, P. (2022). Finding Formations for the Non-prehensile Object Transportation with Differentially-Driven Mobile Robots. CISM International Centre for Mechanical Sciences Book Series, 606, 163–170. https://doi.org/10.1007/978-3-031-06409-8_17
    108. Ebel, H., & Eberhard, P. (2022). Cooperative transportation: realizing the promises of robotic networks using a tailored software/hardware architecture. At - Automatisierungstechnik, 70(4), 378–388. https://doi.org/doi:10.1515/auto-2021-0105
    109. de Botton, E., Greenberg, J. B., Arad, A., Katoshevski, D., Vaikuntanathan, V., Ibach, M., & Weigand, B. (2022). An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method. Applied Mathematical Modelling, 104, 486–498. https://doi.org/10.1016/j.apm.2021.12.001
    110. Cheng, K., Lu, Z., Xiao, S., Oladyshkin, S., & Nowak, W. (2022). Mixed covariance function Kriging model for uncertainty quantification. International Journal for Uncertainty Quantification, 12(3), 17--30. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021035851
    111. Bürkner, P.-C., Kröker, I., Oladyshkin, S., & Nowak, W. (2022). The sparse Polynomial Chaos expansion: a fully Bayesian approach with joint priors on the coefficients and global selection of terms. https://doi.org/10.48550/arXiv.2204.06043
    112. Buchfink, P., Glas, S., & Haasdonk, B. (2022). Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems. IFAC-PapersOnLine, 55(20), 463--468. https://doi.org/10.1016/j.ifacol.2022.09.138
    113. Breiten, T., Hinsen, D., & Unger, B. (2022). Towards a modeling class for port-Hamiltonian systems with time-delay. https://doi.org/10.48550/arXiv.2211.10687
    114. Breiten, T., & Unger, B. (2022). Passivity preserving model reduction via spectral factorization. Automatica, 142, 110368. https://doi.org/10.1016/j.automatica.2022.110368
    115. Boumaiza, L., Chesnaux, R., Walter, J., Lenhard, R. J., Hassanizadeh, S. M., Dokou, Z., & Alazaiza, M. Y. (2022). Predicting vertical LNAPL distribution in the subsurface under the fluctuating water table effect. Groundwater Monitoring & Remediation. https://doi.org/10.1111/gwmr.12497
    116. Boccellato, C., & Rehm, M. (2022). Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cellular Oncology. https://doi.org/10.1007/s13402-022-00684-7
    117. Berberich, J., Scherer, C. W., & Allgower, F. (2022). Combining Prior Knowledge and Data for Robust Controller Design. IEEE Transactions on Automatic Control, 1--16. https://doi.org/10.1109/tac.2022.3209342
    118. Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022). Stability in data-driven MPC: an inherent robustness perspective. Proc. 61st IEEE Conf. Decision and Control (CDC), 1105–1110. https://doi.org/10.1109/CDC51059.2022.9993361
    119. Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022). Linear tracking MPC for nonlinear systems part II: the data-driven case. IEEE Trans. Automat. Control, 67(9), 4406–4421. https://doi.org/10.1109/TAC.2022.3166851
    120. Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022). Linear tracking MPC for nonlinear systems part I: the model-based case. IEEE Trans. Automat. Control, 67(9), 4390–4405. https://doi.org/10.1109/TAC.2022.3166872
    121. Banerjee, I., Walter, P., Guthke, A., Mumford, K. G., & Nowak, W. (2022). The Method of Forced Probabilities: A Computation Trick for Bayesian Model Evidence. Computational Geosciences. https://doi.org/10.1007/s10596-022-10179-x
    122. Baier, A., & Staab, S. (2022). A Simulated 4-DOF Ship Motion Dataset for System Identification under Environmental Disturbances. https://doi.org/10.18419/darus-2905
    123. Aseyednezhad, S., Yan, L., Hassanizadeh, M., Raoof, A., & others. (2022). An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film. Advances in Water Resources, 159, 1--9. https://doi.org/10.1016/j.advwatres.2021.104058
    124. Aseyednezhad, S., Yan, L., Hassanizadeh, S. M., & Raoof, A. (2022). An accurate reduced-dimension numerical model for evolution of electrical potential and ionic concentration distributions in a nano-scale thin aqueous film. Advances in Water Resources, 159, 104058. https://doi.org/10.1016/j.advwatres.2021.104058
    125. Arad, A., Vaikuntanathan, V., Ibach, M., Greenberg, J. B., Weigand, B., & Katoshevski, D. (2022). CFD Simulations of Droplet Grouping in Acoustic Standing Waves. ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Tel-Aviv (Virtual).
    126. Adam, S., Bräcker, J., Klingel, V., Osteresch, B., Radde, N. E., Brockmeyer, J., Bashtrykov, P., & Jeltsch, A. (2022). Flanking sequences influence the activity of TET1 and TET2 methylcytosine dioxygenases and affect genomic 5hmC patterns. Communications Biology, 5(1), 92. https://doi.org/10.1038/s42003-022-03033-4
  6. 2021+

    1. Oesting, M., & Strokorb, K. (n.d.). A comparative tour through the simulation algorithms for max-stable processes. Statistical Science.
  7. 2021

    1. Zhuang, L., Hassanizadeh, S. M., Bhatt, D., & van Duijn, C. (2021). Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling. Transport in Porous Media, 139(2), 381--396. https://doi.org/10.1007/s11242-021-01670-7
    2. Zeman, J., Kondrat, S., & Holm, C. (2021). Ionic screening in bulk and under confinement. The Journal of Chemical Physics, 155(20), 204501. https://doi.org/10.1063/5.0069340
    3. Zeifang, J., & Beck, A. (2021). A data-driven high order sub-cell artificial viscosity for the discontinuous Galerkin spectral element method. Journal of Computational Physics, 441, 110475. https://doi.org/10.1016/j.jcp.2021.110475
    4. Zaverkin, V., & Kästner, J. (2021). Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design. Machine Learning: Science and Technology, 2(3), 035009.
    5. Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2021). Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. J. Chem. Theory Comput., 17(10), 6658–6670. https://doi.org/10.1021/acs.jctc.1c00527
    6. Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2021). Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. Journal of Chemical Theory and Computation, 17(10), 6658–6670. https://doi.org/10.1021/acs.jctc.1c00527
    7. Zaverkin, V., Molpeceres, G., & Kästner, J. (2021). Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – II. Diffusion. Mon. Not. R. Astron. Soc., 510(2), 3063–3070. https://doi.org/10.1093/mnras/stab3631
    8. Zaverkin, V., & Kästner, J. (2021). Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design. Mach. Learn.: Sci. Technol., 2, 035009. https://doi.org/10.1088/2632-2153/abe294
    9. Yu, S., Hirche, M., Huang, Y., Chen, H., & Allgöwer, F. (2021). Model predictive control for autonomous ground vehicles: a review. Auton. Intell. Syst., 1, 4. https://doi.org/10.1007/s43684-021-00005-z
    10. Yiotis, A., Karadimitriou, N., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), 1--16 (3891). https://doi.org/10.1038/s41598-021-83065-8
    11. Yang, G., Liu, J., Cheng, X., Wang, Y., Chu, X., Mukherjee, S., Terzis, A., Schneemann, A., Li, W., Wu, J., & others. (2021). A superhydrophilic metal--organic framework thin film for enhancing capillary-driven boiling heat transfer. Journal of Materials Chemistry A, 9(45), 25480--25487. https://doi.org/10.1039/D1TA06826A
    12. Xu, X., Binkele, P., Verestek, W., & Schmauder, S. (2021). Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars. Molecules, 26(9), 2606. https://doi.org/10.3390/molecules26092606
    13. Xiao, S., Praditia, T., Oladyshkin, S., & Nowak, W. (2021). Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis. Applied Energy, 285, 116456.
    14. Xiao, S., Xu, T., Reuschen, S., Nowak, W., & Franssen, H.-J. H. (2021). Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: an extension of preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering. Water Resources Research, 57, e2021WR030313. https://doi.org/10.1029/2021WR030313
    15. Xiao, S., Praditia, T., Oladyshkin, S., & Nowak, W. (2021). Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis. Applied Energy, 285, 116456. https://doi.org/10.1016/j.apenergy.2021.116456
    16. Wieler, N., Berberich, J., Koch, A., & Allgöwer, F. (2021). Data-driven controller design via finite-horizon dissipativity. Proc. 3rd Learning for Dynamics and Control Conf. (L4DC), 144, 287–298.
    17. Wenzel, T., Kurz, M., Beck, A., Santin, G., & Haasdonk, B. (2021). Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. https://arxiv.org/pdf/2103.13655.pdf
    18. Wenzel, T., Santin, G., & Haasdonk, B. (2021). Analysis of target data-dependent greedy kernel algorithms: Convergence rates for $f$-, $f P$- and $f/P$-greedy. arXiv. https://doi.org/10.48550/ARXIV.2105.07411
    19. Wenzel, T., Santin, G., & Haasdonk, B. (2021). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution. ELSEVIER, 262, 105508. https://doi.org/10.1016/j.jat.2020.105508
    20. Weinhardt, F., Class, H., Vahid Dastjerdi, S., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57(3), e2020WR029361. https://doi.org/10.1029/2020WR029361
    21. Weder, B., Barzen, J., Leymann, F., & Salm, M. (2021). Automated Quantum Hardware Selection for Quantum Workflows. Electronics, 10(8), Article 8. https://doi.org/10.3390/electronics10080984
    22. Weder, B., Barzen, J., Leymann, F., Salm, M., & Wild, K. (2021). QProv: A provenance system for quantum computing. IET Quantum Communication, 2(4), 171--181. https://doi.org/10.1049/qtc2.12012
    23. Wang, W., Yang, G., Evrim, C., Terzis, A., Helmig, R., & Chu, X. (2021). An assessment of turbulence transportation near regular and random permeable interfaces. Physics of Fluids, 33, 115103. https://doi.org/10.1063/5.0069311
    24. Wang, W., Chu, X., Lozano-Durán, A., Helmig, R., & Weigand, B. (2021). Information transfer between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 920, A21--. https://doi.org/DOI: 10.1017/jfm.2021.445
    25. Wagner, V., Castellaz, B., Oesting, M., & Radde, N. (2021). Quasi-Entropy Closure: A Fast and Reliable Approach to Close the Moment Equations of the Chemical Master Equation.
    26. Wagner, V., & Radde, N. (2021). SiCaSMA: An Alternative Stochastic Description via Concatenation of Markov Processes for a Class of Catalytic Systems. Mathematics, 9, 1074. https://doi.org/10.3390/math9101074
    27. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., & others. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138(1), 1--23. https://doi.org/10.1007/s11242-021-01586-2
    28. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01586-2
    29. Veenman, J., Scherer, C. W., Ardura, C., Bennani, S., Preda, V., & Girouart, B. (2021). IQClab: A new IQC based toolbox for robustness analysis and control design. IFAC-PapersOnLine, 54(8), 69--74. https://doi.org/10.1016/j.ifacol.2021.08.583
    30. Tomalka, A., Weidner, S., Hahn, D., Seiberl, W., & Siebert, T. (2021). Power Amplification Increases With Contraction Velocity During Stretch-Shortening Cycles of Skinned Muscle Fibers. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.644981
    31. Tkachev, G., Frey, S., & Ertl, T. (2021). S4: Self-Supervised learning of Spatiotemporal Similarity. IEEE Transactions on Visualization and Computer Graphics.
    32. Tkachev, G., Frey, S., & Ertl, T. (2021). Local Prediction Models for Spatiotemporal Volume Visualization. IEEE Transactions on Visualization and Computer Graphics, 27(7), 3091–3108. https://doi.org/10.1109/TVCG.2019.2961893
    33. Titze, M., Heitkämper, J., Junge, T., Kästner, J., & Peters, R. (2021). Highly Active Cooperative Lewis Acid—Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones. Angew. Chem. Int. Ed., 60(10), 5544–5553. https://doi.org/10.1002/anie.202012796
    34. Szuttor, K., Weik, F., Grad, J.-N., & Holm, C. (2021). Modeling the current modulation of bundled DNA structures in nanopores. The Journal of Chemical Physics, 154(5), 054901. https://doi.org/10.1063/5.0038530
    35. Szuttor, K., Kreissl, P., & Holm, C. (2021). A numerical investigation of analyte size effects in nanopore sensing systems. The Journal of Chemical Physics, 155(13), 134902. https://doi.org/10.1063/5.0065085
    36. Suditsch, M., Schröder, P., Lambers, L., Ricken, T., Ehlers, W., & Wagner, A. (2021). Modelling basal-cell carcinoma behaviour in avascular skin. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000283
    37. Suditsch, M., Lambers, L., Ricken, T., & Wagner, A. (2021). Application of a continuum-mechanical tumour model to brain tissue. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100204
    38. Strässer, R., Berberich, J., & Allgöwer, F. (2021). Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics. Proc. 60th IEEE Conf. Decision and Control (CDC), 4344–4351. https://doi.org/10.1109/CDC45484.2021.9683211
    39. Steigerwald, J., Ibach, M., Reutzsch, J., & Weigand, B. (2021). Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20 (pp. 261–279). Springer International Publishing. https://doi.org/10.1007/978-3-030-80602-6_17
    40. Smith, L. J., Gunsteren, W. F., & Hansen, N. (2021). On the Use of Side-Chain NMR Relaxation Data to Derive Structural and Dynamical Information on Proteins: A Case Study Using Hen Lysozyme. ChemBioChem, 22(6), 1049--1064. https://doi.org/10.1002/cbic.202000674
    41. Smith, L. J., van Gunsteren, W. F., Stankiewicz, B., & Hansen, N. (2021). On the use of 3J-coupling NMR data to derive structural information on proteins. Journal of Biomolecular NMR, 75(1), 39--70. https://doi.org/10.1007/s10858-020-00355-5
    42. Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2021). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue.
    43. Seyedpour, S. M., Nabati, M., Lambers, L., Nafisi, S., Tautenhahn, H.-M., Sack, I., Reichenbach, J. R., & Ricken, T. (2021). Application of Magnetic Resonance Imaging in Liver Biomechanics: A Systematic Review. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.733393
    44. Seyedpour, S. M., Valizadeh, I., Kirmizakis, P., Doherty, R., & Ricken, T. (2021). Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water, 13(3), 383. https://doi.org/10.3390/w13030383
    45. Scholz, M., & Torkar, R. (2021). An empirical study of Linespots: A novel past-fault algorithm. Software Testing, Verification and Reliability, n/a(n/a), e1787. https://doi.org/10.1002/stvr.1787
    46. Schmalfuss, J., Riethmüller, C., Altenbernd, M., Weishaupt, K., & Göddeke, D. (2021). Partitioned coupling vs. monolithic block-preconditioning approaches for solving Stokes-Darcy systems. Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS). https://doi.org/10.23967/coupled.2021.043
    47. Schlor, S., Hertneck, M., Wildhagen, S., & Allgöwer, F. (2021). Multi-party computation enables secure polynomial control based solely on secret-sharing. Proc. 60th IEEE Conf. Decision and Control (CDC), 4882–4887. https://doi.org/10.1109/CDC45484.2021.9683026
    48. Schlaich, A., Jin, D., Bocquet, L., & Coasne, B. (2021). Electronic screening using a virtual Thomas--Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. Nature Materials, 1--9. https://doi.org/10.1038/s41563-021-01121-0
    49. Scheurer, S., Schäfer Rodrigues Silva, A., Mohammadi, F., Hommel, J., Oladyshkin, S., Flemisch, B., & Nowak, W. (2021). Surrogate-based Bayesian Comparison of Computationally Expensive Models: Application to Microbially Induced Calcite Precipitation. Computational Geosciences, 25, 1899–1917.
    50. Scherer, C., & Ebenbauer, C. (2021). Convex Synthesis of Accelerated Gradient Algorithms. SIAM Journal on Control and Optimization, 59(6), 4615–4645. https://doi.org/10.1137/21M1398598
    51. Salm, M., Barzen, J., Leymann, F., Weder, B., & Wild, K. (2021). Automating the Comparison of Quantum Compilers for Quantum Circuits. Proceedings of the 15th Symposium and Summer School on Service-Oriented Computing (SummerSOC 2021), 64–80. https://doi.org/10.1007/978-3-030-87568-8_4
    52. Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), 055003. https://doi.org/10.1088/1361-6420/abd85a
    53. Rosenfelder, M., Ebel, H., & Eberhard, P. (2021). Cooperative Distributed Model Predictive Formation Control of Non-Holonomic Robotic Agents. Proceedings of the 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), 11–19. https://doi.org/10.1109/MRS50823.2021.9620683
    54. Rohde, C., & Tang, H. (2021). On the stochastic Dullin--Gottwald--Holm equation: global existence and wave-breaking phenomena. Nonlinear Differential Equations and Applications NoDEA, 28(5), 1--34. https://doi.org/10.1007/s00030-020-00661-9
    55. Riede, J. M., Holm, C., Schmitt, S., & Haeufle, D. F. B. (2021). The control effort to steer self-propelled microswimmers depends on their morphology: comparing symmetric spherical versus asymmetric              L              -shaped particles. Royal Society Open Science, 8(9), Article 9. https://doi.org/10.1098/rsos.201839
    56. Reuschen, S., Guthke, A., & Nowak, W. (2021). The Four Ways to Consider Measurement Noise in Bayesian Model Selection - And Which One to Choose. Water Resources Research, 57(11), Article 11.
    57. Praditia, T., Karlbauer, M., Otte, S., Oladyshkin, S., Butz, M., & Nowak, W. (2021). Finite Volume Neural Network: Modeling Subsurface Contaminant Transport. Deep Learning for Simulation ICLR Workshop 2021. https://simdl.github.io/files/33.pdf
    58. Pleiss, J. (2021). Standardized data, scalable documentation, sustainable storage –  EnzymeML as a basis for FAIR data management in biocatalysis. ChemCatChem, 13, 3909–3913. https://doi.org/10.1002/cctc.202100822
    59. Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267(108059), Article 108059. https://doi.org/10.1016/j.cpc.2021.108059
    60. Orlando, M., Buchholz, P., Lotti, M., & Pleiss, J. (2021). The GH19 Engineering Database: sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19. PLoS One, 16, e0256817. https://doi.org/10.1371/journal.pone.0256817
    61. Oberer, L., Carral, A. D., & Fyta, M. (2021). Simple Classification of RNA Sequences of Respiratory-Related Coronaviruses. ACS Omega. https://doi.org/10.1021/acsomega.1c01625
    62. Murugan, S., Klostermann, S. V., Frey, W., Kästner, J., & Buchmeiser, M. R. (2021). A sodium bis(perfluoropinacol) borate-based electrolyte for stable, high-performance room temperature sodium-sulfur batteries based on sulfurized poly(acrylonitrile). Electrochem. Commun., 132, 107137. https://doi.org/10.1016/j.elecom.2021.107137
    63. Munz, T., Väth, D., Kuznecov, P., Vu, N. T., & Weiskopf, D. (2021). NMTVis - Trained Models for our Visual Analytics System. DaRUS. https://doi.org/10.18419/DARUS-1850
    64. Munz, T., Väth, D., Kuznecov, P., Vu, T., & Weiskopf, D. (2021). Visual-Interactive Neural Machine Translation. Graphics Interface 2021. https://openreview.net/forum?id=DQHaCvN9xd
    65. Molpeceres, G., Zaverkin, V., Watanabe, N., & Kästner, J. (2021). Binding energies and sticking coefficients of H2 on crystalline and amorphous CO ice. A&A, 648, A84. https://doi.org/10.1051/0004-6361/202040023
    66. Molpeceres, G., Zaverkin, V., Watanabe, N., & Kästner, J. (2021). Binding energies and sticking coefficients of H₂ on crystalline and amorphous CO ice. Astron. Astrophys., 648, A84. https://doi.org/10.1051/0004-6361/202040023
    67. Molpeceres, G., & Kästner, J. (2021). Computational Study of the Hydrogenation Sequence of the Phosphorous Atom on Interstellar Dust Grains. Astrophys. J., 910, 55. https://doi.org/10.3847/1538-4357/abe38c
    68. Molpeceres, G., Kästner, J., Fedoseev, G., Qasim, D., Schömig, R., Linnartz, H., & Lamberts, T. (2021). Carbon Atom Reactivity with Amorphous Solid Water: H₂O-Catalyzed Formation of H₂CO. J. Phys. Chem. Lett., 12(44), 10854–10860. https://doi.org/10.1021/acs.jpclett.1c02760
    69. Miksch, A. M., Riffelt, A., Oliveira, R., Kästner, J., & Molpeceres, G. (2021). Hydrogenation of small aromatic heterocycles at low temperatures. Mon. Not. R. Astron. Soc., 505(3), 3157–3164. https://doi.org/10.1093/mnras/stab1514
    70. Miksch, A. M., Morawietz, T., Kästner, J., Urban, A., & Artrith, N. (2021). Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations. Mach. Learn.: Sci. Technol., 2, 031001. https://doi.org/10.1088/2632-2153/abfd96
    71. Michalowsky, S., Scherer, C., & Ebenbauer, C. (2021). Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach. International Journal of Control, 94(11), 2956–2979. https://doi.org/10.1080/00207179.2020.1745286
    72. Martin, T., & Allgöwer, F. (2021). Data-driven system analysis of nonlinear systems using polynomial approximation. Preprint:  ArXiv:2108.11298,.
    73. Martin, T., & Allgöwer, F. (2021). Data-driven inference on optimal input-output properties of polynomial systems with focus on nonlinearity measures. IEEE Trans. Automat. Control (Early Access). https://doi.org/10.1109/TAC.2022.3226652
    74. Martin, T., & Allgöwer, F. (2021). Dissipativity Verification With Guarantees for Polynomial Systems From Noisy Input-State Data. IEEE Control Systems Letters, 5(4), 1399–1404. https://doi.org/10.1109/LCSYS.2020.3037842
    75. Markthaler, D., & Hansen, N. (2021). Umbrella sampling and double decoupling data for methanol binding to Candida antarctica lipase B. Data in Brief, 39, 107618. https://doi.org/10.1016/j.dib.2021.107618
    76. Luo, W., Ebel, H., & Eberhard, P. (2021). An LSTM-based Approach to Precise Landing of a UAV on a Moving Platform. International Journal of Mechanical System Dynamics, 00, 1–12.
    77. Liu, Y., Geppert, A., Chu, X., Heine, B., & Weigand, B. (2021). Simulation of an annular liquid jet with a coaxial supersonic gas jet in a medical inhaler. Atomization and Sprays, 31(9), 95–116. https://doi.org/10.1615/AtomizSpr.2021037223
    78. Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2021). Surrogate-data-enriched Physics-Aware Neural Networks.
    79. Leiteritz, R., Hurler, M., & Pflüger, D. (2021). Learning Free-Surface Flow with Physics-Informed Neural Networks. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 1664–1669. https://doi.org/10.1109/ICMLA52953.2021.00266
    80. Lambers, L., Suditsch, M., Wagner, A., & Ricken, T. (2021). A Multiscale and Multiphase Model of Function-Perfusion Growth Processes in the Human Liver. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000290
    81. Lambers, L., Mielke, A., & Ricken, T. (2021). Semi-automated Data-driven FE Mesh Generation and Inverse Parameter Identification for a Multiscale and Multiphase Model of Function-Perfusion Processes in the Liver. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100190
    82. Kühnert, J., Göddeke, D., & Herschel, M. (2021). Provenance-integrated parameter selection and optimization in numerical simulations. International Workshop on the Theory and Practice of Provenance (TAPP).
    83. Képes, K., Leymann, F., Weder, B., & Wild, K. (2021). SiDD: The Situation-Aware Distributed Deployment System. In H. Hacid, F. Outay, H. Paik, A. Alloum, M. Petrocchi, M. R. Bouadjenek, A. Beheshti, X. Liu, & A. Maaradji (Eds.), Service-Oriented Computing  -- ICSOC 2020 Workshops (pp. 72--76). Springer International Publishing.
    84. Kuron, M., Stewart, C., de Graaf, J., & Holm, C. (2021). An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids. https://doi.org/10.1140/epje/s10189-020-00005-6
    85. Krishna Moorthy, N., Seifert, O., Eisler, S., Weirich, S., Kontermann, R. E., Rehm, M., & Fullstone, G. (2021). Low-Level Endothelial TRAIL-Receptor Expression Obstructs the CNS-Delivery of Angiopep-2 Functionalised TRAIL-Receptor Agonists for the Treatment of Glioblastoma. Molecules 2021, Vol. 26, Page 7582, 26(24), 7582. https://doi.org/10.3390/MOLECULES26247582
    86. Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (2021). Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions. Advances in Water Resources, 147, 103792. https://doi.org/10.1016/j.advwatres.2020.103792
    87. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., & others. (2021). DuMux 3--an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications, 81, 423--443. https://doi.org/10.1016/j.camwa.2020.02.012
    88. Kneifl, J., & Fehr, J. (2021). Machine Learning Algorithms for Learning Nonlinear Terms of Reduced Mechanical Models in Explicit Structural Dynamics. PAMM, 20(S1), Article S1. https://doi.org/10.1002/pamm.202000353
    89. Kneifl, J., Grunert, D., & Fehr, J. (2021). A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.6712
    90. Klingel, V., Kirch, J., Ullrich, T., Weirich, S., Jeltsch, A., & Radde, N. E. (2021). Model-based robustness and bistability analysis for methylation-based, epigenetic memory systems. The FEBS Journal, 288(19), 5692–5707. https://doi.org/10.1111/febs.15838
    91. Kempter, F., Kleinbach, C., Staudenmeyer, M., & Fehr, J. (2021). An Active Female Human Body Model for Simulation of Rear-End Impact Scenarios. Proceedings in Applied Mathemathics and Mechanics. https://doi.org/10.1002/pamm.202000068
    92. Karlbauer, M., Praditia, T., Otte, S., Oladyshkin, S., Nowak, W., & Butz, M. V. (2021). Composing Partial Differential Equations with Physics-Aware Neural Networks. Submitted to International Conference on Learning Representations.
    93. Ibach, M., Schulte, K., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2021). Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions. ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK, 29 Aug.-2 Sept. 2021. https://doi.org/10.2218/iclass.2021.5815
    94. Ibach, M., Schulte, K., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, B., & Weigand, B. (2021). Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions. International Conference on Liquid Atomization and Spray Systems (ICLASS), 1(1), Article 1. https://doi.org/10.2218/iclass.2021.5815
    95. Hsueh, H., Guthke, A., Wöhling, T., & Nowak, W. (2021). Diagnosis of model-structural errors with a sliding time-window Bayesian analysis. Submitted to Water Resources Research.
    96. Holzmüller, D., & Pflüger, D. (2021). Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework. In H.-J. Bungartz, J. Garcke, & D. Pflüger (Eds.), Sparse Grids and Applications - Munich 2018 (pp. 69--100). Springer International Publishing.
    97. Holzmüller, D. (2021). On the Universality of the Double Descent Peak in Ridgeless Regression. International Conference on Learning Representations. https://openreview.net/forum?id=0IO5VdnSAaH
    98. Holicki, T., & Scherer, C. W. (2021). Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis. Int. J. Robust Nonlin., 1–33. https://doi.org/10.1002/rnc.5547
    99. Holicki, T., & Scherer, C. W. (2021). Algorithm Design and Extremum Control:Convex Synthesis due to Plant Multiplier Commutation. 60th IEEE Conf. Decision and Control.
    100. Holicki, T., Scherer, C. W., & Trimpe, S. (2021). Controller Design via Experimental Exploration with Robustness Guarantees. IEEE Control Syst. Lett., 5(2), 641–646. https://doi.org/10.1109/LCSYS.2020.3004506
    101. Holicki, T., & Scherer, C. W. (2021). Robust Gain-Scheduled Estimation with Dynamic D-Scalings. IEEE Trans. Autom. Control, 66(11), 5592–5598. https://doi.org/10.1109/TAC.2021.3052751
    102. Hitz, T., Jöns, S., Heinen, M., Vrabec, J., & Munz, C.-D. (2021). Comparison of macro-and microscopic solutions of the Riemann problem II. Two-phase shock tube. Journal of Computational Physics, 429, 110027. https://doi.org/10.1016/j.jcp.2020.110027
    103. Hilder, B. (2021). Modulating traveling fronts in a dispersive Swift-Hohenberg equation coupled to an additional conservation law.
    104. Hertneck, M., & Allgöwer, F. (2021). Dynamic self-triggered control for nonlinear systems based on hybrid Lyapunov functions. Proc. 60th IEEE Conf. Decision and Control (CDC), 533–539. https://doi.org/10.1109/CDC45484.2021.9682784
    105. Hertneck, M., Linsenmayer, S., & Allgöwer, F. (2021). Efficient stability analysis approaches for nonlinear  weakly-hard real-time control systems. Automatica, 133, 109868. https://doi.org/10.1016/j.automatica.2021.109868
    106. Herkert, R. (2021). Model Order Reduction and Geometry Parametrization for Linear Elasticity.
    107. Heinemann, M., Frey, S., Tkachev, G., Straub, A., Sadlo, F., & Ertl, T. (2021). Visual analysis of droplet dynamics in large-scale multiphase spray simulations. Journal of Visualization, 24(5), 943--961. https://doi.org/10.1007/s12650-021-00750-6
    108. Haasdonk, B., Ohlberger, M., & Schindler, F. (2021). An adaptive model hierarchy for data-augmented training of kernel models for reactive flow.
    109. Haasdonk, B., Wenzel, T., Santin, G., & Schmitt, S. (2021). Biomechanical surrogate modelling using stabilized vectorial greedy kernel methods. In Numerical Mathematics and Advanced Applications ENUMATH 2019 (pp. 499--508). Springer. https://doi.org/10.1007/978-3-030-55874-1_49
    110. Göhring, M. (2021). Model Order Reduction with Kernel Autoencoders.
    111. Grioui, F., & Blascheck, T. (2021). Study of Heart Rate Visualizations on a Virtual Smartwatch. https://doi.org/10.1145/3489849.3489913
    112. Gramlich, D., Ebenbauer, C., & Scherer, C. W. (2021). Convex Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions. Accepted for Syst. Control Lett. https://arxiv.org/abs/2006.09946
    113. Gosea, I. V., Gugercin, S., & Unger, B. (2021). Parametric model reduction via rational interpolation along parameters. ArXiv E-Print 2104.01016. https://arxiv.org/abs/2104.01016
    114. Garcia, R., Munz, T., & Weiskopf, D. (2021). Visual analytics tool for the interpretation of hidden states in recurrent neural networks. Visual Computing for Industry, Biomedicine, and Art, 4(24), Article 24. https://doi.org/10.1186/s42492-021-00090-0
    115. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer. Water Resources Research, 57(6), e2020WR028572. https://doi.org/10.1029/2020WR028572
    116. Gao, H., Tatomir, A., Karadimitriou, N., Steeb, H., & Sauter, M. (2021). Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes. Advances in Water Resources, 157, 104044. https://doi.org/10.1016/j.advwatres.2021.104044
    117. Gao, B., Coltman, E., Farnsworth, J., Helmig, R., & Smits, K. M. (2021). Determination of Vapor and Momentum Roughness Lengths Above an Undulating Soil Surface Based on PIV-Measured Velocity Profiles. Water Resources Research, 57(7), e2021WR029578. https://doi.org/10.1029/2021WR029578
    118. Flaig, S., Praditia, T., Kissinger, A., Lang, U., Oladyshkin, S., & Nowak, W. (2021). Prognosis of water levels in a moor groundwater system influenced by hydrology and water extraction using an artificial neural network. EGU General Assembly 2021.
    119. Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees. 60th IEEE Conf. Decision and Control.
    120. Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 7439–7447.
    121. Fernández, M., Fritzen, F., & Weeger, O. (2021). Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. International Journal for Numerical Methods in Engineering, n/a(n/a), 33. https://doi.org/10.1002/nme.6869
    122. Fehr, J., Himpe, C., Rave, S., & Saak, J. (2021). Sustainable Research Software Hand-Over. Journal of Open Research Software, 9(5), Article 5. https://doi.org/10.5334/jors.307
    123. Evrim, C., Chu, X., Silber, F. E., Isaev, A., Weihe, S., & Laurien, E. (2021). Flow features and thermal stress evaluation in turbulent mixing flows. 178, 121605. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121605
    124. Eschmann, H. (2021). A Data Set for Research on Data-based Methods for an Omnidirectional Mobile Robot. DaRUS. https://doi.org/10.18419/DARUS-1845
    125. Eschmann, H., Ebel, H., & Eberhard, P. (2021). Data-Based Model of an Omnidirectional Mobile Robot Using Gaussian Processes. IFAC Symposium on System Identification (SYSID) - Learning Models for Decision and Control, 13–18. https://doi.org/10.1016/j.ifacol.2021.08.327
    126. Eschmann, H., & Eberhard, P. (2021). Learning-Based Model Predictive Control for Multi-Agent Systems using Gaussian Processes. PAMM, 20(1), e202000009. https://doi.org/10.1002/pamm.202000009
    127. Eschmann, H., Ebel, H., & Eberhard, P. (2021). Trajectory tracking of an omnidirectional mobile robot using Gaussian process regression. At - Automatisierungstechnik, 69(8), 656--666. https://doi.org/doi:10.1515/auto-2021-0019
    128. Emmerling, S. T., Schuldt, R., Bette, S., Yao, L., Dinnebier, R. E., Kästner, J., & Lotsch, B. V. (2021). Interlayer Interactions as Design Tool for Large-Pore COFs. J. Am. Chem. Soc., 143(38), 15711–15722. https://doi.org/10.1021/jacs.1c06518
    129. Ehring, T. (2021). Feedback control for dynamic soft tissue systems by a surrogate of the value function.
    130. Ebel, H., & Eberhard, P. (2021). Non-Prehensile Cooperative Object Transportation with Omnidirectional Mobile Robots: Organization, Control, Simulation, and Experimentation. 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), 1–10. https://doi.org/10.1109/MRS50823.2021.9620541
    131. Dürrwächter, J., Kurz, M., Kopper, P., Kempf, D., Munz, C.-D., & Beck, A. (2021). An efficient sliding mesh interface method for high-order discontinuous Galerkin schemes. Computers & Fluids, 217, 104825. https://doi.org/10.1016/j.compfluid.2020.104825
    132. Dingler, C., Müller, H., Wieland, M., Fauser, D., Steeb, H., & Ludwigs, S. (2021). Actuators: From Understanding Mechanical Behavior to Curvature Prediction of Humidity-Triggered Bilayer Actuators (Adv. Mater. 9/2021). Advanced Materials, 33(9), 2170067. https://doi.org/10.1002/adma.202170067
    133. Diestelkämper, R., Lee, S., Herschel, M., & Glavic, B. (2021). To not miss the forest for the trees - A holistic approach for explaining missing answers over nested data. In Proceedins of the ACM SIG Conference on the Management of Data (SIGMOD).
    134. de Winter, D., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, S., & Helmig, R. (2021). The complexity of porous media flow characterized in a microfluidic model based on confocal laser scanning microscopy and micro-piv. Transport in Porous Media, 136(1), 343--367. https://doi.org/10.1007/s11242-020-01515-9
    135. Chu, X., Wang, W., Müller, J., Schöning, H. V., Liu, Y., & Weigand, B. (2021). Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media. In High Performance Computing in Science and Engineering’20 (pp. 373--386). Springer. https://doi.org/10.1007/978-3-030-80602-6_24
    136. Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (2021). Transport of turbulence across permeable interface in a turbulent channel flow: interface-resolved direct numerical simulation. Transport in Porous Media, 136(1), 165--189. https://doi.org/10.1007/s11242-020-01506-w
    137. Christ, B., Collatz, M., Dahmen, U., Herrmann, K.-H., Höpfl, S., König, M., Lambers, L., Marz, M., Meyer, D., Radde, N., Reichenbach, J. R., Ricken, T., & Tautenhahn, H.-M. (2021). Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.733868
    138. Cheng, K., Lu, Z., Xiao, S., Oladyshkin, S., & Nowak, W. (2021). Unified Bayesian inference framework for surrogate modelling: connection between existing techniques and their common fundamentals. Submitted to Reliability Engineering and System Safety.
    139. Cheng, K., Z, L., Xiao, S., Oladyshkin, S., & Nowak, W. (2021). Mixed covariance function Kriging model for uncertainty quantification. Submitted to International Journal for Uncertainty Quantification.
    140. Cheng, K., Xiao, S., Zhang, X., Oladyshkin, S., & Nowak, W. (2021). Resampling method for reliability-based design optimization based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 156, 107630. https://doi.org/10.1016/j.ymssp.2021.107630
    141. Chen, Y., Steeb, H., Erfani, H., Karadimitriou, N. K., Walczak, M. S., Ruf, M., Lee, D., An, S., Hasan, S., Connolley, T., & others. (2021). Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging. Science Advances, 7(52), eabj0960. https://doi.org/10.1126/sciadv.abj0960
    142. Chalapco, A. (2021). Markov Chain Monte Carlo for Artificial Neural Networks. BSc Thesis, University of Stuttgart.
    143. Chalapco, A. (2021). Uncertainty Quantification in Neural Networks. Project Work Report, University of Stuttgart.
    144. Carvalho, H., Ferrario, V., & Pleiss, J. (2021). The molecular mechanism of methanol inhibition in CALB-catalyzed alcoholysis: analyzing molecular dynamics simulations by a Markov state model. J Chem Theory Comput, 17, 6570–6582. https://doi.org/10.1021/acs.jctc.1c00559
    145. Carral, Á. D., Ostertag, M., & Fyta, M. (2021). Deep learning for nanopore ionic current blockades. The Journal of Chemical Physics, 154(4), 044111. https://doi.org/10.1063/5.0037938
    146. Buchfink, P., Glas, S., & Haasdonk, B. (2021). Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds. https://doi.org/10.48550/arXiv.2112.10815
    147. Buchfink, P., & Haasdonk, B. (2021). Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem. In F. J. Vermolen & C. Vuik (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019 (Vol. 139). Springer International Publishing. https://doi.org/10.1007/978-3-030-55874-1
    148. Brunn, M., Himthani, N., Biros, G., Mehl, M., & Mang, A. (2021). Fast GPU 3D diffeomorphic image registration. Journal of Parallel and Distributed Computing, 149, 149--162. https://doi.org/10.1016/j.jpdc.2020.11.006
    149. Breiten, T., & Unger, B. (2021). Passivity preserving model reduction via spectral factorization. ArXiv E-Print 2103.13194. https://arxiv.org/abs/2103.13194
    150. Born, D., & Kästner, J. (2021). Geometry Optimization in Internal Coordinates Based on Gaussian Process Regression: Comparison of Two Approaches. J. Chem. Theory Comput., 17(9), 5955–5967. https://doi.org/10.1021/acs.jctc.1c00517
    151. Boccellato, C., Kolbe, E., Peters, N., Juric, V., Fullstone, G., Verreault, M., Idbaih, A., Lamfers, M. L. M., Murphy, B. M., & Rehm, M. (2021). Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist. Cell Death & Disease, 12(7), 647. https://doi.org/10.1038/s41419-021-03927-x
    152. Bertrand, F., Lambers, L., & Ricken, T. (2021). Least Squares Finite Element Method for Hepatic Sinusoidal Blood Flow. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000306
    153. Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2021). On the design of terminal ingredients for data-driven MPC. Proc. 7th IFAC Conf. Nonlinear Model Predictive Control (NMPC), 257–263. https://doi.org/10.1016/j.ifacol.2021.08.554
    154. Berberich, J., Wildhagen, S., Hertneck, M., & Allgöwer, F. (2021). Data-driven analysis and control of continuous-time systems under aperiodic sampling. Proc. 19th IFAC Symp. System Identification (SYSID), 210–215. https://doi.org/10.1016/j.ifacol.2021.08.360
    155. Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2021). Data-driven model predictive control: closed-loop guarantees and experimental results. At-Automatisierungstechnik, 69(7), 608–618. https://doi.org/10.1515/auto-2021-0024
    156. Benacchio, T., Bonaventura, L., Altenbernd, M., Cantwell, C. D., Düben, P. D., Gillard, M., Giraud, L., Göddeke, D., Raffin, E., Teranishi, K., & Wedi, N. (2021). Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. The International Journal of High Performance Computing Applications, 35(4), 285–311. https://doi.org/10.1177/1094342021990433
    157. Beck, A., Gao, M., Kempf, D., Kopper, P., Krais, N., Kurz, M., Zeifang, J., & Munz, C.-D. (2021). Increasing the flexibility of the high order discontinuous Galerkin framework FLEXI towards large scale industrial applications. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20. Springer International Publishing.
    158. Beck, A., & Kurz, M. (2021). A perspective on machine learning methods in turbulence modeling. GAMM-Mitteilungen, 44(1), Article 1. https://doi.org/10.1002/gamm.202100002
    159. Banerjee, I., Guthke, A., Van de Ven, C. J. C., Mumford, K. G., & Nowak, W. (2021). Overcoming the model-data-fit problem in porous media: A quantitative method to compare invasion-percolation models to high-resolution data. Water Resources Research, 57(7), e2021WR029986. https://doi.org/10.1029/2021WR029986
    160. Baier, A., Boukhers, Z., & Staab, S. (2021). Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction. http://arxiv.org/abs/2103.06727
    161. Aslannejad, H., Loginov, S., van der Hoek, B., Schoonderwoerd, E., Gerritsen, H., & Hassanizadeh, S. (2021). Liquid droplet imbibition into a thin coating layer: direct pore-scale modeling and experimental observations. Progress in Organic Coatings, 151, 106054. https://doi.org/10.1016/j.porgcoat.2020.106054
    162. Armiti-Juber, A., & Ricken, T. (2021). Model order reduction for deformable porous materials in thin domains via asymptotic analysis. Archive of Applied Mechanics. https://doi.org/10.1007/s00419-021-01907-3
    163. Arad, A., Katoshevski, D., Vaikuntanathan, V., Ibach, M., Greenberg, J. B., & Weigand, B. (2021, December). Longitudinal and Lateral Grouping in Droplet Streams using the Eulerian-Lagrangian Approach.
    164. Alsalti, M., Berberich, J., Lopez, V. G., Allgöwer, F., & Müller, M. A. (2021). Data-Based System Analysis and Control of Flat Nonlinear Systems. Proc. 60th IEEE Conf. Decision and Control (CDC), 1484–1489. https://doi.org/10.1109/CDC45484.2021.9683327
    165. Alonso-Orán, D., Rohde, C., & Tang, H. (2021). A Local-in-Time Theory for Singular SDEs with Applications to Fluid Models with Transport Noise. Journal of Nonlinear Science. https://doi.org/10.1007/s00332-021-09755-9
  8. 2020

    1. Zimmermann, M., Breitenbücher, U., Képes, K., Leymann, F., & Weder, B. (2020). Data Flow Dependent Component Placement of Data Processing Cloud Applications. 2020 IEEE International Conference on Cloud Engineering (IC2E), 83–94. https://doi.org/10.1109/IC2E48712.2020.00016
    2. Zeman, J., Kondrat, S., & Holm, C. (2020). Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations. Chem. Commun., 56(100), 15635–15638. https://doi.org/10.1039/D0CC05023G
    3. Zaverkin, V., & Kästner, J. (2020). Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials. Journal of Chemical Theory and Computation, 16(8), 5410--5421. https://doi.org/10.1021/acs.jctc.0c00347
    4. Zaverkin, V., & Kästner, J. (2020). Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials. J. Chem. Theory Comput., 16, 5410–5421. https://doi.org/10.1021/acs.jctc.0c00347
    5. Yu, X., Angerbauer, K., Mohr, P., Kalkofen, D., & Sedlmair, M. (2020). Perspective Matters: Design Implications for Motion Guidance in Mixed Reality. Proceedings of the IEEE 19th International Symposium on Mixed and Augmented Reality.
    6. Yang, G. (杨光), Chu, X. (初旭), Vaikuntanathan, V., Wang, S. (王珊珊), Wu, J. (吴静怡), Weigand, B., & Terzis, A. (2020). Droplet mobilization at the walls of a microfluidic channel. Physics of Fluids, 32(1), 012004. https://doi.org/10.1063/1.5139308
    7. Xu, X., Range, J., Gygli, G., & Pleiss, J. (2020). Analysis of thermophysical properties of deep eutectic solvents by data integration. J Chem Eng Data, 65, 1172–1179. https://doi.org/10.1021/acs.jced.9b00555
    8. Xu, T., Reuschen, S., Nowak, W., & Franssen, H.-J. H. (2020). Preconditioned Crank-Nicolson Markov chain Monte Carlo coupled with parallel tempering: An efficient method for Bayesian inversion of multi-Gaussian log-hydraulic conductivity fields. Water Resources Research, 56(8), e2020WR027110. https://doi.org/10.1029/2020WR027110
    9. Xiao, S., Oladyshkin, S., & Nowak, W. (2020). Reliability analysis with stratified importance sampling based on adaptive Kriging. Reliability Engineering & System Safety, 197, 106852. https://doi.org/10.1016/j.ress.2020.106852
    10. Xiao, S., Oladyshkin, S., & Nowak, W. (2020). Reliability analysis with conditional importance sampling based on adaptive Kriging. Reliability Engineering & System Safety, 197, 106852. https://doi.org/10.1016/j.ress.2020.106852
    11. Xiao, S., Oladyshkin, S., & Nowak, W. (2020). Forward-reverse switch between density-based and regional sensitivity analysis. Applied Mathematical Modelling, 84, 377–392.
    12. Wochner, I., Driess, D., Zimmermann, H., Haeufle, D. F., Toussaint, M., & Schmitt, S. (2020). Optimality principles in human point-to-manifold reaching accounting for muscle dynamics. Frontiers in Computational Neuroscience, 14, 38.
    13. Wild, K., Breitenbücher, U., Képes, K., Leymann, F., & Weder, B. (2020). Decentralized Cross-Organizational Application Deployment Automation: An Approach for Generating Deployment Choreographies Based on Declarative Deployment Models. Proceedings of the 32nd Conference on Advanced Information Systems Engineering (CAiSE 2020), 12127, 20--35. https://doi.org/10.1007/978-3-030-49435-3_2
    14. Weder, B., Breitenbücher, U., Képes, K., Leymann, F., & Zimmermann, M. (2020). Deployable Self-Contained Workflow Models. Proceedings of the 8th European Conference on Service-Oriented and Cloud Computing (ESOCC 2020), 85--96. https://doi.org/10.1007/978-3-030-44769-4_7
    15. Weder, B., Barzen, J., Leymann, F., Salm, M., & Vietz, D. (2020). The Quantum Software Lifecycle. Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software (APEQS 2020), 2--9. https://doi.org/10.1145/3412451.3428497
    16. Weder, B., Breitenbücher, U., Leymann, F., & Wild, K. (2020). Integrating Quantum Computing into Workflow Modeling and Execution. 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), 279–291. https://doi.org/10.1109/UCC48980.2020.00046
    17. Vetma, V., Guttà, C., Peters, N., Praetorius, C., Hutt, M., Seifert, O., Meier, F., Kontermann, R., Kulms, D., & Rehm, M. (2020). Convergence of pathway analysis and pattern recognition predicts sensitization to latest generation TRAIL therapeutics by IAP antagonism. Cell Death & Differentiation, 27(8), 2417--2432. https://doi.org/10.1038/s41418-020-0512-5
    18. Tovey, S., Krishnamoorthy, A. N., Sivaraman, G., Guo, J., Benmore, C., Heuer, A., & Holm, C. (2020). DFT Accurate Interatomic Potential for Molten NaCl from Machine Learning. The Journal of Physical Chemistry C, 124(47), 25760--25768. https://doi.org/10.1021/acs.jpcc.0c08870
    19. Tomalka, A., Weidner, S., Hahn, D., Seiberl, W., & Siebert, T. (2020). Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00921
    20. Stöhr, D., Schmid, J. O., Beigl, T. B., Mack, A., Maichl, D. S., Cao, K., Budai, B., Fullstone, G., Kontermann, R. E., Mürdter, T. E., Tait, S. W. G., Hagenlocher, C., Pollak, N., Scheurich, P., & Rehm, M. (2020). Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids. Cell Death & Differentiation, 27, 3037–3052. https://doi.org/10.1038/s41418-020-0559-3
    21. Stöhr, D., Jeltsch, A., & Rehm, M. (2020). TRAIL receptor signaling: From the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response. Cell Death Regulation in Health and Disease-Part A, 57.
    22. Stöhr, D., & Rehm, M. (2020). Linking hyperosmotic stress and apoptotic sensitivity. The FEBS Journal, febs.15520. https://doi.org/10.1111/febs.15520
    23. Stockinger, P., Roth, S., Müller, M., & Pleiss, J. (2020). Systematic evaluation of imine-reducing enzymes: Common principles in imine reductases, β-hydroxyacid dehydrogenases, and short-chain dehydrogenases/reductases. ChemBioChem, 21, 2689–2695.
    24. Steigerwald, J., Ibach, M., Reutzsch, J., & Weigand, B. (2020). Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions. In High Performance Computing in Science and Engineering ’20. Springer.
    25. Sood, E., Tannert, S., Frassinelli, D., Bulling, A., & Vu, N. T. (2020). Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension. Proceedings of the 24th Conference on Computational Natural Language Learning, 12--25. https://doi.org/10.18653/v1/2020.conll-1.2
    26. Sood, E., Tannert, S., Mueller, P., & Bulling, A. (2020). Improving Natural Language Processing Tasks with Human Gaze-Guided Neural Attention. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in Neural Information Processing Systems (Vol. 33, pp. 6327--6341). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
    27. Sivaraman, G., Krishnamoorthy, A. N., Baur, M., Holm, C., Stan, M., Csányi, G., Benmore, C., & Vázquez-Mayagoitia, Á. (2020). Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide. Npj Computational Materials, 6(1), Article 1. https://doi.org/10.1038/s41524-020-00367-7
    28. Schäfer Rodrigues Silva, A., Guthke, A., Höge, M., Cirpka, O. A., & Nowak, W. (2020). Strategies for simplifying reactive transport models - a Bayesian model comparison. Water Resources Research, 56, e2020WR028100. https://doi.org/10.1029/2020WR028100
    29. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401, 109012. https://doi.org/10.1016/j.jcp.2019.109012
    30. Schlottke, K., Reutzsch, J., Kieffer-Roth, C., & Weigand, B. (2020). Direct Numerical Simulations of Evaporating Droplets at Higher Temperatures: Application of a Consistent Numerical Approach. Droplet Interactions and Spray Processes, 287–299.
    31. Schepp, L. L., Ahrens, B., Balcewicz, M., Duda, M., Nehler, M., Osorno, M., Uribe, D., Steeb, H., Nigon, B., Stöckhert, F., Swanson, D. A., Siegert, M., Gurris, M., Saenger, E. H., & Ruf, M. (2020). Digital rock physics and laboratory considerations on a high-porosity volcanic rock: micro-XRCT data sets. In DaRUS. https://doi.org/10.18419/DARUS-680
    32. Schepp, L. L., Ahrens, B., Balcewicz, M., Duda, M., Nehler, M., Osorno, M., Uribe, D., Steeb, H., Nigon, B., Stöckhert, F., & others. (2020). Digital rock physics and laboratory considerations on a high-porosity volcanic rock. Scientific Reports, 10(1), 1--16.
    33. Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., & Wild, K. (2020). The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms. Proceedings of the 14th Symposium and Summer School on Service-Oriented Computing (SummerSOC 2020), 66--85. https://doi.org/10.1007/978-3-030-64846-6_5
    34. Salm, M., Barzen, J., Leymann, F., & Weder, B. (2020, November). About a Criterion of Successfully Executing a Circuit in the NISQ Era: What $wd 1/\epsilon_eff$ Really Means. Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software. https://doi.org/10.1145/3412451.3428498
    35. Rösinger, C. A., & Scherer, C. W. (2020). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), 6–18. https://doi.org/10.1109/TCNS.2019.2914411
    36. Rösinger, C. A., & Scherer, C. W. (2020). Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings. IFAC-PapersOnLine, 53(2), 7292–7298. https://doi.org/10.1016/j.ifacol.2020.12.570
    37. Reutzsch, J., Kieffer-Roth, C., & Weigand, B. (2020). A consistent method for direct numerical simulation of droplet evaporation. Journal of Computational Physics, 109455. https://doi.org/10.1016/j.jcp.2020.109455
    38. Praditia, T., Walser, T., Oladyshkin, S., & Nowak, W. (2020). Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture. Energies, 13(15), 3873. https://doi.org/10.3390/en13153873
    39. Oladyshkin, S., Mohammadi, F., Kröker, I., & Nowak, W. (2020). Bayesian3 active learning for Gaussian process emulator using information theory. Entropy, 22(0890), 1–27. https://doi.org/10.3390/e22080890
    40. Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy, 22(8), 890. https://doi.org/10.3390/e22080890
    41. Nguyen, L. T. K., Rambausek, M., & Keip, M.-A. (2020). Variational framework for distance-minimizing method in data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 365, 112898. https://doi.org/10.1016/j.cma.2020.112898
    42. Müller, S. (2020). Symplectic Neural Networks.
    43. Müller, P., Sood, E., & Bulling, A. (2020). Anticipating Averted Gaze in Dyadic Interactions. ACM Symposium on Eye Tracking Research and Applications, 1–10. https://doi.org/10.1145/3379155.3391332
    44. Munz, T., Schäfer, N., Blascheck, T., Kurzhals, K., Zhang, E., & Weiskopf, D. (2020). Supplemental Material for Comparative Visual Gaze Analysis for Virtual Board Games. DaRUS. https://doi.org/10.18419/DARUS-1130
    45. Munz, T., Schaefer, N., Blascheck, T., Kurzhals, K., Zhang, E., & Weiskopf, D. (2020). Demo of a Visual Gaze Analysis System for Virtual Board Games. ACM Symposium on Eye Tracking Research and Applications. https://doi.org/10.1145/3379157.3391985
    46. Munz, T., Schäfer, N., Blascheck, T., Kurzhals, K., Zhang, E., & Weiskopf, D. (2020). Comparative Visual Gaze Analysis for Virtual Board Games. The 13th International Symposium on Visual Information Communication and Interaction (VINCI 2020). https://doi.org/10.1145/3430036.3430038
    47. Molpeceres, G., Zaverkin, V., & Kästner, J. (2020). Neural-network assisted study of nitrogen atom dynamics on amorphous solid water--I. adsorption and desorption. Monthly Notices of the Royal Astronomical Society, 499(1), 1373--1384.
    48. Molpeceres, G., Zaverkin, V., & Kästner, J. (2020). Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – I. adsorption and desorption. Mon. Not. R. Astron. Soc., 499, 1373–1384. https://doi.org/10.1093/mnras/staa2891
    49. Michalowsky, S., Scherer, C., & Ebenbauer, C. (2020). Robust and structure exploiting optimisation algorithms : an integral quadratic constraint approach. International Journal of Control, 2020, 1–24. https://doi.org/10.1080/00207179.2020.1745286
    50. Michalowsky, S., Scherer, C. W., & Ebenbauer, C. (2020). Robust and structure exploiting optimization algorithms: An integral quadratic constraint approach. Int. J. Control, 1–24. https://doi.org/10.1080/00207179.2020.1745286
    51. Martin, T., Koch, A., & Allgöwer, F. (2020). Data-driven surrogate models for LTI systems via saddle-point dynamics. Proc. 21st IFAC World Congress, 971–976. https://doi.org/10.1016/j.ifacol.2020.12.1261
    52. Martin, T., & Allgöwer, F. (2020). Iterative data-driven inference of nonlinearity measures via successive graph approximation. Proc. 59th IEEE Conf. Decision and Control (CDC), 4760–4765. https://doi.org/10.1109/CDC42340.2020.9304285
    53. Mangiagalli, M., Carvalho, H., Natalello, A., Ferrario, V., Pennati, M., Barbiroli, A., Lotti, M., Pleiss, J., & Brocca, S. (2020). Diverse effects of aqueous polar co-solvents on Candida antarctica lipase B. Int J Biol Macromol, 150, 930–940.
    54. Kurz, M., & Beck, A. (2020). A machine learning framework for LES closure terms. ETNA - Electronic Transactions on Numerical Analysis, 117–137. https://doi.org/10.1553/etna_vol56s117
    55. Kuritz, K., Stöhr, D., Maichl, D. S., Pollak, N., Rehm, M., & Allgöwer, F. (2020). Reconstructing temporal and spatial dynamics from single-cell pseudotime using prior knowledge of real scale cell densities. Scientific Reports, 10(1), 3619. https://doi.org/10.1038/s41598-020-60400-z
    56. Kunc, O., & Fritzen, F. (2020). Many-scale finite strain computational homogenization via Concentric Interpolation. International Journal for Numerical Methods in Engineering, 121(21), 4689--4716. https://doi.org/10.1002/nme.6454
    57. Kneifl, J., Grunert, D., & Fehr, J. (2020). A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning. Universität Stuttgart. https://doi.org/10.18419/OPUS-11181
    58. Kempter, F., Bechler, F., & Fehr, J. (2020). Calibration Approach for Muscle Activated Human Models in Pre-Crash Maneuvers with a Driver-in-the-Loop Simulator. Proceedings in 6th Digital Human Modeling Symposium. https://doi.org/10.3233/ATDE200029
    59. Imig, D., Pollak, N., Allgöwer, F., & Rehm, M. (2020). Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis. PLOS Computational Biology, 16(6), 1–17. https://doi.org/10.1371/journal.pcbi.1007812
    60. Häufle, D. F. B., Wochner, I., Holzmüller, D., Driess, D., Günther, M., & Schmitt, S. (2020). Muscles Reduce Neuronal Information Load : Quantification of Control Effort in Biological vs. Robotic Pointing and Walking. Frontiers In Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
    61. Häufle, D. F. B., Wochner, I., Holzmüller, D., Drieß, D., Günther, M., & Schmitt, S. (2020). Muscles reduce neuronal information load : quantification of control effort in biological vs. robotic pointing and walking. Frontiers in Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
    62. Holzmüller, D., & Steinwart, I. (2020). Training two-layer ReLU networks with gradient descent is inconsistent. ArXiv:2002.04861. https://arxiv.org/abs/2002.04861
    63. Holzmüller, D. (2020). On the Universality of the Double Descent Peak in Ridgeless Regression. ArXiv Preprint ArXiv:2010.01851. https://openreview.net/pdf?id=0IO5VdnSAaH
    64. Holicki, T., & Scherer, C. W. (2020). Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems. IFAC-PapersOnline, 53(2), 7299–7304. https://doi.org/10.1016/j.ifacol.2020.12.981
    65. Hirche, M., Köhler, P. N., Müller, M. A., & Allgöwer, F. (2020). Distributed Model Predictive Control for Consensus of Constrained Heterogeneous Linear Systems. Proc. 59th IEEE Conf. on Decision and Control (CDC), 1248–1253. https://doi.org/10.1109/CDC42340.2020.9303838
    66. Heyen, F., Munz, T., Neumann, M., Ortega, D., Vu, N. T., Weiskopf, D., & Sedlmair, M. (2020). ClaVis: An Interactive Visual Comparison System for Classifiers. Proceedings of the International Conference on Advanced Visual Interfaces, 9, 1--9. https://doi.org/10.1145/3399715.3399814
    67. Hertneck, M., Linsenmayer, S., & Allgöwer, F. (2020). Stability Analysis for Nonlinear Weakly Hard Real-Time Control Systems. Proc. 21st IFAC World Congress, 2632–2637. https://doi.org/10.1016/j.ifacol.2020.12.307
    68. Hertneck, M., & Allgöwer, F. (2020). Exploiting Information for Decentralized Periodic Event-Triggered Control. Proc. 59th IEEE Conf. Decision and Control (CDC), 4999–5004. https://doi.org/10.1109/CDC42340.2020.9304456
    69. Hertneck, M., Linsenmayer, S., & Allgöwer, F. (2020). Model-Based Nonlinear Periodic Event-Triggered Control for Continuous-Time Systems with Sampled-Data Prediction. Proc. European Control Conf. (ECC), 1814–1819.
    70. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56(10), Article 10. https://doi.org/10.1029/2020wr027332
    71. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences, 117(38), 23443--23449. https://doi.org/10.1073/pnas.2011716117
    72. Hansen, N., Öehlknecht, C., de Ruiter, A., Lier, B., van Gunsteren, W. F., Oostenbrink, C., & Gebhardt, J. (2020). A Suite of Advanced Tutorials for the GROMOS Biomolecular Simulation Software Article v1.0. Living Journal of Computational Molecular Science, 2(1), Article 1. https://doi.org/10.33011/livecoms.2.1.18552
    73. Gygli, G., & Pleiss, J. (2020). Simulation foundry: Automated and FAIR molecular modeling. Journal of Chemical Information and Modeling, 60(4), 1922--1927.
    74. Gygli, G., Xu, X., & Pleiss, J. (2020). Meta-analysis of viscosity of aqueous deep eutectic solvents and their components. Sci Rep, 10, 21395–21395.
    75. Guttà, C., Rahman, A., Aura, C., Dynoodt, P., Charles, E. M., Hirschenhahn, E., Joseph, J., Wouters, J., de Chaumont, C., Rafferty, M., Warren, M., van den Oord, J. J., Gallagher, W. M., & Rehm, M. (2020). Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death & Disease, 11(2), Article 2. https://doi.org/10.1038/s41419-020-2309-3
    76. Gebhardt, J., Kiesel, M., Riniker, S., & Hansen, N. (2020). Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients. Journal of Chemical Information and Modeling, 60(11), 5319--5330. https://doi.org/10.1021/acs.jcim.0c00479
    77. Fullstone, G., Guttà, C., Beyer, A., & Rehm, M. (2020). The FLAME-accelerated signalling tool (FaST) for facile parallelisation of flexible agent-based models of cell signalling. Npj Systems Biology and Applications, 6(1), 10--. https://doi.org/10.1038/s41540-020-0128-x
    78. Fullstone, G., Bauer, T. L., Guttà, C., Salvucci, M., Prehn, J. H. M., & Rehm, M. (2020). The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death & Differentiation, 27, 2828–2842. https://doi.org/10.1038/s41418-020-0545-9
    79. Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
    80. Flaig, S. (2020). Prognose von Wasserständen in einem durch die Trinkwassergewinnung beeinflussten Moor-Grundwassersystem mithilfe eines künstlichen neuronalen Netzwerks. MSc Thesis, University of Stuttgart.
    81. Fischer, M., Bauer, G., & Gross, J. (2020). Transferable Anisotropic United-Atom Mie (TAMie) Force Field: Transport Properties from Equilibrium Molecular Dynamic Simulations. Industrial & Engineering Chemistry Research, 59(18), 8855--8869.
    82. Fernández, M., Rezaei, S., Mianroodi, J. R., Fritzen, F., & Reese, S. (2020). Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Advanced Modeling and Simulation in Engineering Sciences, 7(1), 27. https://doi.org/10.1186/s40323-019-0138-7
    83. Fernández, M., & Fritzen, F. (2020). On the generation of periodic discrete structures with identical two-point correlation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2242), 20200568. https://doi.org/10.1098/rspa.2020.0568
    84. Fernández, M., & Fritzen, F. (2020). Construction of a Class of Sharp Löwner Majorants for a Set of Symmetric Matrices. Journal of Applied Mathematics, 2020, 18. https://doi.org/10.1155/2020/9091387
    85. Fernández, M., & Fritzen, F. (2020). Construction of a class of sharp Löwner majorants for a set of symmetric matrices. Journal of Applied Mathematics, 2020, 1–18. https://doi.org/10.1155/2020/9091387
    86. Fernandez, M., & Fritzen, F. (2020). On the generation of periodic discrete structures with identical two-point correlation. Proceedings of the Royal Society A, 476(2242), 20200568.
    87. Eisenkolb, I., Jensch, A., Eisenkolb, K., Kramer, A., Buchholz, P., Pleiss, J., Spiess, A., & Radde, N. (2020). Modeling of biocatalytic reactions: A workflow for model calibration, selection and validation using Bayesian statistics. AIChE J, 66, e16866.
    88. Diestelkämper, R., & Herschel, M. (2020). Tracing nested data with structural provenance for big data analytics. Proceedings of the International Conference on Extending Database Technology (EDBT), 253–264. https://doi.org/10.5441/002/edbt.2020.23
    89. Diestelkämper, R., & Herschel, M. (2020). Distributed Tree-Pattern Matching in Big Data Analytics Systems. In Proceedings of the Conference on Advances in Databases and Information Systems (ADBIS), 171–186. https://doi.org/10.1007/978-3-030-54832-2_14
    90. Denzel, A., & Kästner, J. (2020). Hessian Matrix Update Scheme for Transition State Search Based on Gaussian Process Regression. J. Chem. Theory Comput., 16, 5083–5089. https://doi.org/10.1021/acs.jctc.0c00348
    91. de Souza, F. A. L., Sivaraman, G., Fyta, M., Scheicher, R. H., Scopel, W. L., & Amorim, R. G. (2020). Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore. Nanoscale, 12(35), 18289–18295. https://doi.org/10.1039/D0NR04363J
    92. Cooper, A. M., Kästner, J., Urban, A., & Artrith, N. (2020). Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide. Npj Computational Materials, 6(1), 1--14.
    93. Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil--Water Evaporation Across Different Interfaces. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01445-6
    94. Chu, X. (初旭), Liu, Y. (刘雁超), Wang, W. (王文康), Yang, G. (杨光), Weigand, B., & Nemati, H. (2020). Turbulence, pseudo-turbulence, and local flow topology in dispersed bubbly flow. Physics of Fluids, 32(8), 083310. https://doi.org/10.1063/5.0014833
    95. Chu, X., Wu, Y., Rist, U., & Weigand, B. (2020). Instability and transition in an elementary porous medium. Phys. Rev. Fluids, 5(4), 044304. https://doi.org/10.1103/PhysRevFluids.5.044304
    96. Buchfink, P., Haasdonk, B., & Rave, S. (2020). PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems. In P. Frolkovič, K. Mikula, & D. Ševčovič (Eds.), Proceedings of the Conference Algoritmy 2020 (pp. 151--160). Vydavateľstvo SPEKTRUM. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
    97. Brencher, L., & Barth, A. (2020). Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions. International Conference on Finite Volumes for Complex Applications, 265--273.
    98. Breitsprecher, K., Janssen, M., Srimuk, P., Mehdi, B. L., Presser, V., Holm, C., & Kondrat, S. (2020). How to speed up ion transport in nanopores. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-19903-6
    99. Berberich, J., Koch, A., Scherer, C. W., & Allgower, F. (2020). Robust data-driven state-feedback design. 2020 American Control Conference (ACC), 1532–1538. https://doi.org/10.23919/acc45564.2020.9147320
    100. Berberich, J., Scherer, C. W., & Allgöwer, F. (2020). Combining Prior Knowledge and Data for Robust Controller Design. https://arxiv.org/abs/2009.05253
    101. Beckers, F., Heredia, A., Noack, M., Nowak, W., Wieprecht, S., & Oladyshkin, S. (2020). Bayesian Calibration and Validation of a Large-scale and Time-demanding Sediment Transport Model. Water Resources Research, 56(7), e2019WR026966. https://doi.org/10.1029/2019WR026966
    102. Beck, A. D., Zeifang, J., Schwarz, A., & Flad, D. G. (2020). A neural network based shock detection and localization approach for discontinuous Galerkin methods. Journal of Computational Physics, 423, 109824. https://doi.org/10.1016/j.jcp.2020.109824
    103. Bauer, T., Buchholz, P., & Pleiss, J. (2020). The modular structure of α/β-hydrolases. FEBS J, 287, 1035–1053.
    104. Barreau, M., Scherer, C. W., Gouaisbaut, F., & Seuret, A. (2020). Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis. IFAC World Congress.
    105. Bahlmann, L. M., Smits, K. M., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (2020). Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research, 56(9), e2020WR027600. https://doi.org/10.1029/2020WR027600
    106. Alonso-Orán, D., Rohde, C., & Tang, H. (2020). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. ArXiv Preprint ArXiv:2010.09972, 1–32. https://doi.org/10.1007/s00332-021-09755-9
    107. Alonso-Orán, D., Rohde, C., & Tang, H. (2020). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. ArXiv Preprint ArXiv:2010.09972, 1–32. https://doi.org/10.1007/s00332-021-09755-9
    108. Adam, S., Anteneh, H., Hornisch, M., Wagner, V., Lu, J., Radde, N., Bashtrykov, P., Song, J., & Jeltsch, A. (2020). DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation. Nat. Communications, 11(1), 1–15. https://doi.org/10.1038/s41467-020-17531-8
  9. 2019

    1. Zeman, J., Holm, C., & Smiatek, J. (2019). The Effect of Small Organic Cosolutes on Water Structure and Dynamics. Journal of Chemical & Engineering Data, 65(3), 1197--1210. https://doi.org/10.1021/acs.jced.9b00577
    2. Xu, X., Range, J., Gygli, G., & Pleiss, J. (2019). Analysis of Thermophysical Properties of Deep Eutectic Solvents by Data Integration. Journal of Chemical & Engineering Data, 65(3), 1172--1179. https://doi.org/10.1021/acs.jced.9b00555
    3. Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248. https://doi.org/10.1016/j.ymssp.2019.106248
    4. Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248.
    5. Tomalka, A., Röhrle, O., Han, J.-C., Pham, T., Taberner, A. J., & Siebert, T. (2019). Extensive eccentric contractions in intact cardiac trabeculae: revealing compelling differences in contractile behaviour compared to skeletal muscles. Proceedings of the Royal Society B, 286(1903), 20190719.
    6. Tkachev, G., Frey, S., & Ertl, T. (2019). Local Prediction Models for Spatiotemporal Volume Visualization. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2019.2961893
    7. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), 042001. https://doi.org/10.1063/1.5092169
    8. Steeb, H., & Renner, J. (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media, 130(2), 437--461.
    9. Rösinger, C. A., & Scherer, C. W. (2019). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), 6–18. https://doi.org/10.1109/TCNS.2019.2914411
    10. Rösinger, C. A., & Scherer, C. W. (2019). A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination. IFAC-PapersOnLine, 52(28), 50–57. https://doi.org/10.1016/j.ifacol.2019.12.347
    11. Romer, A., Trimpe, S., & Allgöwer, F. (2019). Data-driven inference of passivity properties via Gaussian process optimization. 2019 18th European Control Conference (ECC), 29--35.
    12. Romer, A., Berberich, J., Köhler, J., & Allgöwer, F. (2019). One-shot verification of dissipativity properties from input--output data. IEEE Control Systems Letters, 3(3), 709--714.
    13. Roddan, R., Gygli, G., Sula, A., Mendez-Sanchez, D., Pleiss, J., Ward, J., Keep, N., & Hailes, H. (2019). The acceptance and kinetic resolution of alpha-methyl substituted aldehydes by norcoclaurine synthases. ACS Catal, 9, 9640–9649.
    14. Ricken, T., & Lambers, L. (2019). On computational approaches of liver lobule function and perfusion simulation. GAMM-Mitteilungen, 42(4), Article 4. https://doi.org/10.1002/gamm.201900016
    15. Reutzsch, J., Raja Kochanattu, G. V., Ibach, M., Kieffer-Roth, C., Tonini, S., Cossali, G. E., & Weigand, B. (2019). Direct Numerical Simulations of Oscillating Liquid Droplets: a Method to Extract Shape Characteristics. ILASS-Europe 2019, 29th Conference on Liquid Atomization and Spray Systems, Paris, France.
    16. Oladyshkin, S., & Nowak, W. (2019). The connection between Bayesian Inference and Information Theory for model selection, information gain and experimental design. Entropy, 21, 1081. https://doi.org/doi:10.3390/e21111081
    17. Munz, T., Burch, M., van Benthem, T., Poels, Y., Beck, F., & Weiskopf, D. (2019). Overlap-Free Drawing of Generalized Pythagoras Trees for Hierarchy Visualization. 2019 IEEE Visualization Conference (VIS), 251–255. https://doi.org/10.1109/VISUAL.2019.8933606
    18. Munz, T., Chuang, L. L., Pannasch, S., & Weiskopf, D. (2019). VisME: Visual microsaccades explorer. Journal of Eye Movement Research, 12(6), Article 6. https://doi.org/10.16910/jemr.12.6.5
    19. Martin, T., & Allgöwer, F. (2019). Nonlinearity Measures for Data-Driven System Analysis and Control. Proc. 58th IEEE Conf. Decision and Control (CDC), 3605–3610. https://doi.org/10.1109/CDC40024.2019.9029804
    20. Lambers, L., Ricken, T., & König, M. (2019). A multiscale and multiphase model for the description of function-perfusion processes in the human liver. Advances in Engineering Materials, Structures and Systems : Innovations, Mechanics and Applications : Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), September 2-4, 2019, Cape Town, South Africa, 304–307. https://doi.org/10.1201/9780429426506-52
    21. Lambers, L., Ricken, T., & König, M. (2019). Model Order Reduction (MOR) of Function--Perfusion--Growth Simulation in the Human Fatty Liver via Artificial Neural Network (ANN). PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900429
    22. Kuhn, T., Dürrwächter, J., Meyer, F., Beck, A., Rohde, C., & Munz, C.-D. (2019). Uncertainty quantification for direct aeroacoustic simulations of cavity flows. J. Theor. Comput. Acoust., 27(1, 1850044), Article 1, 1850044. https://doi.org/10.1142/S2591728518500445
    23. Holicki, T., & Scherer, C. W. (2019). A Homotopy Approach for Robust Output-Feedback Synthesis. Proc. 27th. Med. Conf. Control Autom., 87–93. https://doi.org/10.1109/MED.2019.8798536
    24. Holicki, T., & Scherer, C. W. (2019). Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings. Nonlinear Anal. Hybri., 34, 179–208. https://doi.org/10.1016/j.nahs.2019.06.003
    25. Hertneck, M., Linsenmayer, S., & Allgöwer, F. (2019). Nonlinear Dynamic Periodic Event-Triggered Control with Robustness to Packet Loss Based on Non-Monotonic Lyapunov Functions. Proc. 58th IEEE Conf. Decision and Control (CDC), 1680–1685. https://doi.org/10.1109/CDC40024.2019.9029770
    26. Harzenetter, L., Breitenbücher, U., Leymann, F., Saatkamp, K., Weder, B., & Wurster, M. (2019). Automated Generation of Management Workflows for Applications Based on Deployment Models. 2019 IEEE 23rd International Enterprise Distributed Object Computing Conference (EDOC), 216–225. https://doi.org/10.1109/EDOC.2019.00034
    27. Göküzüm, F. S., Nguyen, L. T. K., & Keip, M.-A. (2019). An Artificial Neural Network Based Solution Scheme for Periodic Computational Homogenization of Electrostatic Problems. Mathematical and Computational Applications, 24(2), 40. https://doi.org/10.3390/mca24020040
    28. Göküzüm, F. S., Nguyen, L. T. K., & Keip, M.-A. (2019). An Artificial Neural Network based Solution Scheme to periodic Homogenization. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900271
    29. Grabowski, B., Ikeda, Y., Srinivasan, P., Körmann, F., Freysoldt, C., Duff, A. I., Shapeev, A., & Neugebauer, J. (2019). Ab initio vibrational free energies including anharmonicity for multicomponent alloys. Npj Computational Materials, 5(1), 1--6.
    30. Geissen, E.-M., Hasenauer, J., & Radde, N. E. (2019). Inference of finite mixture models and the effect of binning. Statistical Applications in Genetics and Molecular Biology, 18(4), Article 4.
    31. Ferrario, V., Fischer, M., Zhu, Y., & Pleiss, J. (2019). Modelling of substrate access and substrate binding to cephalosporin acylases. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-48849-z
    32. Driess, D., Schmitt, S., & Toussaint, M. (2019). Active Inverse Model Learning with Error and Reachable Set Estimates. IROS, 1826--1833.
    33. Denzel, A., Haasdonk, B., & Kästner, J. (2019). Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. J. Phys. Chem. A, 123(44), 9600–9611. https://doi.org/10.1021/acs.jpca.9b08239
    34. Chu, X., Yang, G., Pandey, S., & Weigand, B. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11--20. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.172
    35. Carral, A. D., Sarap, C. S., Liu, K., Radenovic, A., & Fyta, M. (2019). 2D MoS2 nanopores: ionic current blockade height for clustering DNA events. 2D Materials, 6(4), 045011.
    36. Baz, J., Held, C., Pleiss, J., & Hansen, N. (2019). Thermophysical properties of glyceline–water mixtures investigated by molecular modelling. Phys. Chem. Chem. Phys., 21(12), 6467–6476. https://doi.org/10.1039/C9CP00036D
    37. Baggio, G., Zampieri, S., & Scherer, C. W. (2019). Gramian Optimization with Input-Power Constraints. 2019 IEEE 58th Conference on Decision and Control (CDC), 5686–5691. https://doi.org/10.1109/CDC40024.2019.9029169
To the top of the page