2016

  1. SS. Agada, S. Geiger, H. ElSheikh, and S. Oladyshkin, “Data-driven surrogates for rapid simulation and optimisation of WAG injection in fractured carbonate reservoirs,” Petroleum Geoscience, 2016.
  2. M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte, “The DUNE-ALUGrid Module,” Archive of Numerical Software, vol. 4, pp. 1--28, 2016.
  3. M. Alk�mper, A. Dedner, R. Kl�fkorn, and M. Nolte, “The DUNE-ALUGrid Module.,” Archive of Numerical Software, vol. 4, no. 1, pp. 1--28, 2016.
  4. E. Altan, A. Zöllner, O. Avci, and O. Röhrle, “Towards modelling skeletal muscle growth and adaptation,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 921--924, 2016.
  5. M. Altenbernd and D. Göddeke, “Soft fault detection and correction for multigrid,” The International Journal of High Performance Computing Applications, 2016.
  6. S. Alvarez Barcia, M. Russ, J. Meisner, and J. Kästner, “Atom tunnelling in the reaction NH3+ + H2 --> NH4+ + H and its astrochemical relevance,” Faraday Discuss., 2016.
  7. D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” AMSES, Advanced Modeling and Simulation in Engineering Sciences, vol. 3, no. 6, 2016.
  8. A. C. Antoulas, B. Haasdonk, and B. Peherstorfer, MORML 2016 Book of Abstracts. University of Stuttgart, 2016.
  9. A. Barth, R. Bürger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener model with several random perturbations: a hybrid stochastic Galerkin approach,” Computers & Chemical Engineering, vol. 89, pp. 11--26, 2016.
  10. A. Barth and T. Stüwe, “Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Levy noise,” Mathematics and Computers in Simulation, 2016.
  11. A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Lévy processes,” 2016.
  12. A. Barth, C. Schwab, and J. Sukys, “Multilevel Monte Carlo simulation of statistical solutions to  the Navier-Stokes equations,” in Monte Carlo and quasi-Monte Carlo methods, vol. 163, Springer, Cham, 2016, pp. 209--227.
  13. A. Barth, R. B�rger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach,” Computers & Chemical Engineering, vol. 89, pp. 11-- 26, 2016.
  14. A. Barth and I. Kröker, “Finite volume methods for hyperbolic partial differential equations  with spatial noise,” in Springer Proceedings in Mathematics and Statistics, vol. submitted, Springer International Publishing, 2016.
  15. A. Barth, R. Burger, I. Kr�ker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener model    with several random perturbations: A hybrid stochastic Galerkin approach,” COMPUTERS & CHEMICAL ENGINEERING, vol. 89, pp. 11–26, 2016.
  16. A. Barth and F. G. Fuchs, “Uncertainty quantification for hyperbolic conservation laws with  flux coefficients given by spatiotemporal random fields,” SIAM J. Sci. Comput., vol. 38, no. 4, pp. A2209--A2231, 2016.
  17. A. Barth, S. Moreno-Bromberg, and O. Reichmann, “A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate  Setting,” Comp. Economics, vol. 47, no. 3, pp. 447--472, 2016.
  18. P. Bastian et al., Advances Concerning Multiscale Methods and Uncertainty Quantification in “EXA-DUNE in Software for Exascale Computing -- SPPEXA 2013--2015.” Springer, 2016.
  19. P. Bastian et al., Hardware-Based Efficiency Advances in the EXA-DUNE Project in “Software for Exascale Computing -- SPPEXA 2013--2015.” Springer, 2016.
  20. P. Bastian et al., “Advances Concerning Multiscale Methods and Uncertainty Quantification  in EXA-DUNE,” in Software for Exascale Computing -- SPPEXA 2013--2015, H.-J. Bungartz, P. Neumann, and W. E. Nagel, Eds. Springer, 2016, pp. 25--43.
  21. P. Bastian et al., “Hardware-Based Efficiency Advances in the EXA-DUNE Project,” in Software for Exascale Computing -- SPPEXA 2013--2015, H.-J. Bungartz, P. Neumann, and W. E. Nagel, Eds. Springer, 2016, pp. 3--23.
  22. U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier, and M. Ohlberger, “Comparison of methods for parametric model order reduction of instationary  problems,” in Model Reduction and Approximation for Complex Systems, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds. Birkhäuser Publishing, 2016.
  23. F. Bayer, F. D. Brunner, M. Lazar, M. Wijnand, and F. Allgöwer, “A tube-based approach to nonlinear explicit MPC,” 55th IEEE Conference on Decision and Control (CDC), pp. 4059--4064, 2016.
  24. F. Bayer, M. A. Müller, and F. Allgöwer, “Min-max economic model predictive control approaches with guaranteed performance,” 55th IEEE Conference on Decision and Control (CDC), pp. 3210--3215, 2016.
  25. F. Bayer, M. Lorenzen, M. A. Müller, and F. Allgöwer, “Robust economic Model Predictive Control using stochastic information,” Automatica, vol. 74, pp. 151--161, 2016.
  26. A. Beck, D. Flad, C. Tonhäuser, G. Gassner, and C.-D. Munz, “On the Influence of Polynomial De-aliasing on Subgrid Scale Models,” Flow Turbulence Combustion, vol. 97, pp. 475--511, 2016.
  27. F. Betancourt and C. Rohde, “Finite-Volume Schemes for Friedrichs Systems with Involutions,” App. Math. Comput., vol. 272, Part 2, pp. 420–439, 2016.
  28. A. Bhatt and B. E. Moore, “Structure-preserving Exponential Runge-Kutta Methods,” SIAM J. Sci Comp, 2016.
  29. A. Bhatt, “Structure-preserving Finite Difference Methods for Linearly Damped  Differential Equations,” PhD dissertation, University of Central Florida, 2016.
  30. A. Bhatt and B. E. Moore, “Geometric Integration of a Damped Driven Nonlinear Schrodinger Equation.” 2016.
  31. S. Bidier and W. Ehlers, “A homogenisation strategy for micromorphic continua based on particle mechanics,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 515--516, 2016.
  32. V. Bruder, S. Frey, and T. Ertl, “Real-Time Performance Prediction and Tuning for Interactive Volume Raycasting,” SIGGRAPH ASIA 2016 Symposium on Visualization, vol. 7, 2016.
  33. F. D. Brunner, M. A. Müller, and F. Allgöwer, “Enhancing Output Feedback MPC for Linear Discrete-time Systems with Set-valued Moving Horizon Estimation,” 55th IEEE Conference on Decision and Control (CDC), pp. 2733--2738, 2016.
  34. F. D. Brunner, M. Heemels, and F. Allgöwer, “Robust self-triggered MPC for constrained linear systems: A tube-based approach,” Automatica, vol. 72, pp. 73--83, 2016.
  35. F. D. Brunner and F. Allgöwer, “A Lyapunov Function Approach to the Event-triggered Stabilization of the Minimal Robust Positively Invariant Set,” 6th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 25--30, 2016.
  36. F. D. Brunner, F. A. Bayer, and F. Allgöwer, “Robust Steady State Optimization for Polytopic Systems,” 55th IEEE Conference on Decision and Control (CDC), pp. 4084--4089, 2016.
  37. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, ?“-invasive event-triggered and self-triggered control for perturbed linear systems,” 55th IEEE Conference on Decision and Control (CDC), pp. 1346--1351, 2016.
  38. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Dynamic Thresholds in Robust Event-Triggered Control for Discrete-Time Linear Systems,” Proceedings of the European Control Conference (2016), pp. 983--988, 2016.
  39. F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Numerical Evaluation of a Robust Self-Triggered MPC Algorithm,” 6th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 151--156, 2016.
  40. M. Burch, R. Woods, R. Netzel, and D. Weiskopf, “The Challenges of Designing Metro Maps,” Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 195--202, 2016.
  41. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-driven time parallelism via forecasting,” 2016.
  42. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” Applied Numerical Mathematics, 2016.
  43. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Approximating basins of attraction for dynamical systems via stable  radial bases,” in AIP Conf. Proc., 2016.
  44. A. Chertock, P. Degond, and J. Neusser, “An Asymptotic-Preserving Method for a Relaxation of the Navier-Stokes-Korteweg  Equations,” Journal of Computational Physics, vol. 335, pp. 387–403, 2016.
  45. S.-Y. Chong and O. Röhrle, “Exploring the Use of Non-Image-Based Ultrasound to Detect the Position of the Residual Femur within a Stump,” PLoS ONE, vol. 11, 2016.
  46. R. M. Colombo, G. Guerra, and V. Schleper, “The compressible to incompressible limit of 1D Euler equations: the  non-smooth case,” Archive for Rational Mechanics and Analysis, vol. 219, no. 2, pp. 701–718, 2016.
  47. R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” Oberwolfach Reports, vol. 13, pp. 1683–1751, 2016.
  48. R. M. Colombo, G. Guerra, and V. Schleper, “The Compressible to Incompressible Limit of One Dimensional Euler    Equations: The Non Smooth Case,” ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, vol. 219, no. 2, pp. 701–718, 2016.
  49. A. Dedner and J. Giesselmann, “A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS    GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS,” SIAM JOURNAL ON NUMERICAL ANALYSIS, vol. 54, no. 6, pp. 3523–3549, 2016.
  50. A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws,” SIAM J. Numer. Anal., vol. 54, no. 6, pp. 3523–3549, 2016.
  51. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical Solution of Navier-Stokes-Korteweg Systems by Local Discontinuous  Galerkin Methods in Multiple Space Dimensions,” Appl. Math. Comput., vol. 272, Part 2, pp. 309–335, 2016.
  52. D. Diehl, J. Kremser, D. Kroener, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by Local    Discontinuous Galerkin methods in multiple space dimensions,” APPLIED MATHEMATICS AND COMPUTATION, vol. 272, no. 2, pp. 309–335, 2016.
  53. M. Dihlmann and B. Haasdonk, “A REDUCED BASIS KALMAN FILTER FOR PARAMETRIZED PARTIAL DIFFERENTIAL    EQUATIONS,” ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, vol. 22, no. 3, pp. 625–669, 2016.
  54. F. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” INTERNATIONAL JOURNAL OF THERMAL SCIENCES, vol. 104, pp. 386–395, 2016.
  55. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” Inter. J. Thermal Sci., vol. 104, pp. 386–395, 2016.
  56. F. Drunsel and J. Gross, “Theory of model electrolyte solutions: Assessing the short- and long-ranged contributions by molecular simulations,” Fluid Phase Equilibria, vol. 430, pp. 195--206, 2016.
  57. F. Drunsel and J. Gross, “Chemical potential of model electrolyte solutions consisting of hard sphere ions and hard dipoles from molecular simulations,” Fluid Phase Equilibria, vol. 429, pp. 205--213, 2016.
  58. M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’,” Appl. Math. Comput., vol. 272, no. part 2, pp. 235--236, 2016.
  59. W. Ehlers and K. Häberle, “Interfacial mass transfer during gas-liquid phase change in deformable porous media with heat transfer,” Transport in Porous Media, vol. 114, pp. 525--556, 2016.
  60. L. Eurich, R. Schott, A. Wagner, A. Roth-Nebelsick, and W. Ehlers, “From functional properties of frost-resistant plant tissues towards customised construction materials - A continuum-mechanical approach,” PAMM, vol. 16, pp. 81--82, 2016.
  61. J. Fehr, J. Fuhrer, C. Kleinbach, M. Hanss, and P. Eberhard, “Fuzzy-Based Analysis of a Hill-Type Muscle Model,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 31--34, 2016.
  62. J. Fehr, P. Holzwarth, and P. Eberhard, “Interface and Model Reduction for Efficient Explicit Simulations -a Case Study with Nonlinear Vehicle Crash Models,” Mathematical and Computer Modelling of Dynamical Systems, vol. 22, pp. 380--396, 2016.
  63. L. Feller, C. Kleinbach, J. Fehr, and S. Schmitt, Incorporating Muscle Activation Dynamics into the Global Human Body Model. 2016.
  64. O. Fernandes, S. Frey, and T. Ertl, “Interpolation-Based Extraction of Representative Isosurfaces,” Lecture Notes in Computer Science, 2016.
  65. J. Fernandez et al., “Multiscale musculoskeletal modelling, data--model fusion and electromyography-informed modelling,” Interface Focus, vol. 6, 2016.
  66. M. Fetzer and C. W. Scherer, “A General Integral Quadratic Constraints Theorem with Applications to a Class of Sampled-Data Systems.,” SIAM J. Contr. Optim., vol. 54, no. 3, pp. 1105–1125, 2016.
  67. M. Fetzer and C. W. Scherer, Stability and performance analysis on Sobolev spaces. 55th IEEE Conf. on Decision and Control, 2016.
  68. D. Fink and W. Ehlers, “Model reduction for multi-component porous-media models of biological materials using POD-DEIM,” PAMM, vol. 16, pp. 441--442, 2016.
  69. D. Flad, A. Beck, and C.-D. Munz, “Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method,” Journal of Computational Physics, vol. 313, pp. 1--12, 2016.
  70. B. Flemisch, JM. Nordbotten, W. Nowak, and A. Raoof, “Special Issue on NUPUS: Non-linearities and Upscaling in Porous Media (Editorial),” Transport in Porous Media, vol. 114, pp. 237--2340, 2016.
  71. H. Frank and C.-D. Munz, “Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror,” Journal of Sound and Vibration, vol. 371, pp. 132--149, 2016.
  72. S. Frey and T. Ertl, “Auto-Tuning Intermediate Representations for In Situ Visualization,” New York Scientific Data Summit, 2016.
  73. S. Frey and T. Ertl, “Flow-Based Temporal Selection for Interactive Volume Visualization,” Computer Graphics Forum, p. 11, 2016.
  74. F. Fritzen, L. Xia, M. Leuschner, and P. Breitkopf, “Topology optimization of multiscale elastoviscoplastic structures,” International Journal for Numerical Methods in Engineering, vol. 106, pp. 430--453, 2016.
  75. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem,” University of Stuttgart, 2016.
  76. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced Landweber Method for Nonlinear Inverse Problems,” Inverse Problems, vol. 32, no. 3, pp. 1--21, 2016.
  77. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced basis Landweber method for nonlinear inverse problems,” INVERSE PROBLEMS, vol. 32, no. 3, 2016.
  78. F. D. Gaspoz, C.-J. Heine, and K. G. Siebert, “Optimal Grading of the Newest Vertex Bisection and H1-Stability of  the L2-Projection,” IMA Journal of Numerical Analysis, vol. 36, no. 3, pp. 1217--1241, 2016.
  79. J. Gebhardt and N. Hansen, “Calculation of binding affinities for linear alcohols to alpha-cyclodextrin by twin-system enveloping distribution sampling simulations,” Fluid Phase Equilibria, vol. 422, pp. 1--17, 2016.
  80. E.-M. Geissen, J. Hasenauer, S. Heinrich, S. Hauf, F. J. Theis, and N. E. Radde, “MEMO: multi-experiment mixture model analysis of censored data,” Bioinformatics, 2016.
  81. M. Geveler, B. Reuter, V. Ayzinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors -- A case study based on the Haswell and Cortex-A15 microarchitectures,” Computer Science - Research and Development, vol. 31, pp. 225--234, 2016.
  82. M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal  ocean circulation on modern commodity and mobile processors -- A  case study based on the Haswell and Cortex-A15 microarchitectures,” Computer Science -- Research and Development, vol. 31, no. 4, pp. 225–234, 2016.
  83. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics,” IMA J. Numer. Anal., vol. 36, no. 4, pp. 1685-- 1714, 2016.
  84. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin  schemes,” Bull. Braz. Math. Soc. (N.S.), vol. 47, no. 1, pp. 359--372, 2016.
  85. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase  problems in elastodynamics,” BIT Numerical Mathematics, vol. 56, pp. 99-- 127, 2016.
  86. J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary,” ArXiv, 2016.
  87. J. Gisselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 4, pp. 1685–1714, 2016.
  88. D. Grunert and J. Fehr, “Identification of Nonlinear Behavior with Clustering Techniques in Car Crash Simulations for Better Model Reduction,” Advanced Modeling and Simulation in Engineering Sciences, vol. 1, pp. 1--19, 2016.
  89. G. Guerra and V. Schleper, “A coupling between a 1D compressible-incompressible limit and the  1D p-system in the non smooth case,” Bulletin of the Brazilian Mathematical Society, New Series, vol. 47, no. 1, pp. 381–396, 2016.
  90. R. Gutt, M. Kohr, C. Pintea, and W. L. Wendland, “On the transmission problems for the Oseen and Brinkman systems on    Lipschitz domains in compact Riemannian manifolds,” MATHEMATISCHE NACHRICHTEN, vol. 289, no. 4, pp. 471–484, 2016.
  91. D. Göddeke and M. Altenbernd, “Soft fault detection and correction for multigrid,” The International Journal of High Performance Computing Applications, 2016.
  92. M. Hahn, D. Karastoyanova, and F. Leymann, “Data-Aware Service Choreographies through Transparent Data Exchange,” Lecture Notes in Computer Science (LNCS), vol. 9671, pp. 357--364, 2016.
  93. M. Hahn, D. Karastoyanova, and F. Leymann, “A Management Life Cycle for Data-Aware Service Choreographies,” Proceedings of the the 23rd International Conference on Web Services (ICWS), pp. 364--371, 2016.
  94. H. Harbrecht, W. L. Wendland, and N. Zorii, “Rapid Solution of Minimal Riesz Energy Problems,” NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, vol. 32, no. 6, pp. 1535–1552, 2016.
  95. T. Heidlauf et al., “A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin--titin interaction,” Biomechanics and Modeling in Mechanobiology, vol. 15, pp. 1423--1437, 2016.
  96. F. Hempert, M. Hoffmann, U. Iben, and C.-D. Munz, “On the simulation of industrial gas dynamic applications with the discontinuous Galerkin spectral element method,” Journal of Thermal Science, vol. 25, pp. 250--257, 2016.
  97. A. Hofmann, N.-P. Walz, and M. Hanss, “An Approach to Feed-Forward Controller Design for Underactuated Multibody Systems in the Presence of Uncertainty,” Proceedings in Applied Mathematics and Mechanics, vol. 16http://onli, no. 1, pp. 59--60, 2016.
  98. T. Holicki and C. W. Scherer, Controller synthesis for distributed systems over undirected graphs. 55th IEEE Conf. on Decision and Control, 2016.
  99. M.-T. Hütt and N. Radde, “The Physics behind Systems Biology,” Eur Phys J Nonlin Biomed Phys, vol. 4, no. 1, pp. 1--19, 2016.
  100. S. Jamei, P. Asgharzadeh, and W. Ehlers, “Partitioned treatment of surface-coupled problems with application to the fluid-porous-media interaction,” PAMM, vol. 16, pp. 507--508, 2016.
  101. B. Kabil and C. Rohde, “Persistence of undercompressive phase boundaries for isothermal Euler  equations including configurational forces and surface tension,” Math. Meth. Appl. Sci., vol. 39, no. 18, pp. 5409--5426, 2016.
  102. B. Kabil and M. Rodrigues, “Spectral validation of the Whitham equations for periodic waves of  lattice dynamical systems,” Journal of Differential Equations, vol. 260, no. 3, pp. 2994–3028, 2016.
  103. M.-A. Keip and M. Rambausek, “A multiscale approach to the computational characterization of magnetorheological elastomers,” International Journal for Numerical Methods in Engineering, vol. 107, pp. 338--360, 2016.
  104. J. Kirch, C. Thomaseth, A. Jensch, and N. Radde, “The effect of model rescaling and normalization on sensitivity analysis  on an example of a MAPK pathway model,” Eur. Phys. J. Nonlin. Biomed. Phys., vol. 4, no. 3, 2016.
  105. J. Koch and W. Nowak, “Identification of contaminant source architectures - A statistical inversion that emulates multi-phase physics in a computationally practicable manner,” Water Resources Research, vol. 52, pp. 1009--1025, 2016.
  106. T. Koeppl, E. Vidotto, and B. Wohlmuth, “A local error estimate for the Poisson equation with a line source term,” Numerical Mathematics and Advanced Applications ENUMATH 2015, pp. 421--429, 2016.
  107. M. Kohr, L. de Cristoforis, S. Mikhailov, and W. L. Wendland, “Integral potential method for transmission problem with Lipschitz  interface in R� for the Stokes and Darcy-Forchheimer-Brinkman PED  systems,” ZAMP, vol. 67:116, pp. 1–30, 2016.
  108. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system,” J. Math. Fluid Mechanics, vol. 18, pp. 293–329, 2016.
  109. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds,” J. Dyn. Diff. Equations, vol. DOI 110.1007/s10884-014-9359-0, 2016.
  110. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds,” Journal of Mathematical Fluid Dynamics, vol. DOI 10.1007/s 00021-16-0273-6, 2016.
  111. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems,” JOURNAL OF MATHEMATICAL FLUID MECHANICS, vol. 18, no. 2, pp. 293–329, 2016.
  112. M. Kohr, M. L. de Cristoforis, S. E. Mikhailov, and W. L. Wendland, “Integral potential method for a transmission problem with Lipschitz    interface in R-3 for the Stokes and Darcy-Forchheimer-Brinkman PDE    systems,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 67, no. 5, 2016.
  113. A. N. Krishnamoorthy, J. Zeman, C. Holm, and J. Smiatek, “Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions,” PCCP, vol. 18, pp. 31312--31322, 2016.
  114. K. Kuritz, F. Müller, N. Pollak, and F. Allgöwer, “Too Young to Die: Age Structured Population Models Capture Cell Cycle        Dependent Apoptosis from Snapshot Data.” Boston, MA, 2016.
  115. P. N. Köhler, M. A. Müller, and F. Allgöwer, “A distributed economic MPC scheme for coordination of self-interested systems,” Proceedings of the American Control Conference, pp. 889--894, 2016.
  116. M. Köppel and C. Rohde, “Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media,” PAMM Proc. Appl. Math. Mech., vol. 16, no. 1, p. 749�750, 2016.
  117. S. Linsenmayer, D. V. Dimarogonas, and F. Allgöwer, “A non-monotonic approach to periodic event-triggered control with packet loss,” Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pp. 507--512, 2016.
  118. F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,” COMPUTATIONAL GEOSCIENCES, vol. 20, no. 2, pp. 341–353, 2016.
  119. C. Luo and W. Ehlers, “A three-dimensional model of hydraulic fracturing,” PAMM, vol. 16, pp. 465--466, 2016.
  120. O. Lötgering-Lin, A. Schöniger, W. Nowak, and J. Gross, “Bayesian Model Selection Helps To Choose Objectively between Thermodynamic Models: A Demonstration of Selecting a Viscosity Model Based on Entropy Scaling,” Industrial & Engineering Chemistry Research, vol. 55, no. 38, pp. 10191--10207, 2016.
  121. O. Lötgering-Lin, A. Schwinger, W. Nowak, and J. Gross, “Bayesian Model Selection Helps To Choose Objectively between Thermodynamic Models: A Demonstration of Selecting a Viscosity Model Based on Entropy Scaling,” I&EC research, vol. 55, pp. 10191--10207, 2016.
  122. J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface  flow,” Transp. Porous Media, vol. 114, no. 2, pp. 425–455, 2016.
  123. S. Mauthe and C. Miehe, “Hydraulic fracture in poro-hydro-elastic media,” Mechanics Research Communications, 2016.
  124. J. Meisner and J. Kästner, “Atom-Tunneling in Chemistry,” Angewandte Chemie International Edition, vol. 55, pp. 5400--5413, 2016.
  125. J. Meisner and J. Kästner, “Reaction rates and kinetic isotope effects of H2 + OH ? H2O + H,” The Journal of Chemical Physics, vol. 144, p. 174303, 2016.
  126. J. M. Montenbruck and F. Allgöwer, “Asymptotic Stabilization of Submanifolds Embedded in Riemannian Manifolds,” Automatica, vol. 74, pp. 349--359, 2016.
  127. J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Compensating Drift Vector Fields with Gradient Vector Fields for Asymptotic Submanifold Stabilization,” IEEE Transactions on Automatic Control, vol. 61, 2016.
  128. S. Most, B. Bijeljic, and W. Nowak, “Evolution and persistence of cross-directional statistical dependence during finite-Pu00e9clet transport through a real porous medium,” Water Resources Research, vol. 52, pp. 8920--8937, 2016.
  129. S. Most, B. Bijeljic, and W. Nowak, “Evolution and persistence of cross-directional statistical dependence during finite-Peclet transport through a real porous medium,” Water Resources Research Internet, 2016.
  130. O. Nadgir, M.-A. Keip, and C. Miehe, “An anisotropic phase-field model for transversely isotropic barium titanate with bounded moduli,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 467--468, 2016.
  131. S. M. Najmabadi, Z. Wang, Y. Baroud, and S. Simon, A self-adaptive dynamic partial reconfigurable architecture for online data stream compression. 2016.
  132. S. M. Najmabadi, Z. Wang, Y. Baroud, and S. Simon, Online bandwidth reduction using dynamic partial reconfiguration. 2016.
  133. A. Namhata, S. Oladyshkin, RM. Dilmore, L. Zhang, and DV. Nakles, “Probabilistic Assessment of Above Zone Pressure Predictions at a Geologic Carbon Storage Site,” Scientific Reports, vol. 6, p. 39536, 2016.
  134. I. Notarnicola, F. Bayer, G. Notarstefano, and F. Allgöwer, “Final-State Constrained Optimal Control via a Projection Operator Approach,” European Control Conference (ECC), pp. 148--153, 2016.
  135. W. Nowak and A. Guthke, “Entropy-based experimental design for optimal model discrimination in the geosciences,” Entropy, vol. 18, no. 11, p. 409, 2016.
  136. L. Ostrowski, B. Ziegler, and G. Rauhut, “Tensor decomposition in potential energy surface representations,” The Journal of Chemical Physics, vol. 145, no. 10, p. 104103, 2016.
  137. D. Paul, L. K. F. Dehkordi, M. von Scheven, M. Bischoff, and N. Radde, “Structural Design with Biological Methods: Optimality, Multi-functionality and Robustness,” in Biomimetic Research for Architecture and Building Construction, Springer, 2016, pp. 341--360.
  138. D. Paul and N. Radde, “Robustness and filtering properties of ubiquitous signaling network motifs,” IFAC-PapersOnLine, vol. 49, no. 26, pp. 120--127, 2016.
  139. C. Rahmann, V. Vittal, J. Ascui, and J. Haas, “Mitigation Control against Partial Shading Effects in Large-scale PV Power Plants,” IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 173--180, 2016.
  140. M. Rambausek, M.-A. Keip, and C. Miehe, “A multiscale view on shape effects in the computational characterization of magnetorheological elastomers,” Proceedings in Applied Mathematics and Mechanics, vol. 16, pp. 383--384, 2016.
  141. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,” MCMDS, Mathematical and Computer Modelling of Dynamical Systems, 2016.
  142. M. Redeker, C. Rohde, and I. S. Pop, “Upscaling of a tri-phase phase-field model for precipitation in porous    media,” IMA JOURNAL OF APPLIED MATHEMATICS, vol. 81, no. 5, pp. 898–939, 2016.
  143. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions,” ESAIM Math. Model. Numer. An., vol. 50, no. 2, pp. 475–497, 2016.
  144. I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, vol. 104, pp. 613--621.
  145. O. Röhrle, M. Sprenger, and S. Schmitt, “A two-muscle, continuum-mechanical forward simulation of the upper limb,” Biomechanics and Modeling in Mechanobiology, 2016.
  146. O. Röhrle, V. Neumann, and T. Heidlauf, “The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study,” Computational and Mathematical Methods in Medicine, 2016.
  147. G. Santin, “Approximation in kernel-based spaces, optimal subspaces and approximation  of eigenfunction,” PhD dissertation, Doctoral School in Mathematical Sciences, University of Padova, 2016.
  148. G. Santin and R. Schaback, “Approximation of eigenfunctions in kernel-based spaces,” ADVANCES IN COMPUTATIONAL MATHEMATICS, vol. 42, no. 4, pp. 973–993, 2016.
  149. M. Schenke and W. Ehlers, “Numerical investigation of vacuum-assisted resin transfer moulding (VARTM) within deformable fibre fabrics,” PAMM, vol. 16, pp. 479--480, 2016.
  150. C. W. Scherer, “Lossless H?-synthesis for 2D systems (special issue JCW),” Syst. Contr. Letters, vol. 35, pp. 25--35, 2016.
  151. V. Schleper, “A HLL-type Riemann solver for two-phase flow with surface forces and    phase transitions,” APPLIED NUMERICAL MATHEMATICS, vol. 108, pp. 256–270, 2016.
  152. A. Schmidt and B. Haasdonk, “Reduced basis method for H2 optimal feedback control problems,” IFAC-PapersOnLine, vol. 49, no. 8, pp. 327–332, 2016.
  153. M. Schneider, B. Flemisch, and R. Helmig, “Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media,” International Journal for Numerical Methods in Fluids, 2016.
  154. P. Schröder, A. Wagner, and W. Ehlers, “Multi-component modelling and simulation of metastases proliferation within brain tissue,” PAMM, vol. 15, pp. 101--102, 2016.
  155. P. Schröder, A. Wagner, and W. Ehlers, Multi-component modelling and simulation of metastases proliferation within brain tissue. 2016.
  156. DO. Schulte, W. Rühaak, S. Oladyshkin, B. Welsch, and I. Sass, “Optimization of Medium Deep Borehole Thermal Energy Storages,” Energy Technology, vol. 4, pp. 104--113, 2016.
  157. A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Efficient Algorithm-Based Fault Tolerance for Sparse Matrix Operations,” Proceedings of the 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 251--262, 2016.
  158. A. Schöll, C. Braun, and H.-J. Wunderlich, “Applying Efficient Fault Tolerance to Enable the Preconditioned Conjugate Gradient Solver on Approximate Computing Hardware,” Proceedings of the International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), pp. 21--26, 2016.
  159. V. Sharanya, G. P. R. Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary    effects,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 67, no. 4, 2016.
  160. L. Smith, W. F. van Gunsteren, and N. Hansen, “On the use of time-averaging restraints when deriving biomolecular structure from 3J-coupling values obtained from NMR experiments,” Journal of Biomolecular NMR, vol. 66, pp. 69--83, 2016.
  161. A. Sridhar, M.-A. Keip, and C. Miehe, “Homogenization in micro-magneto-mechanics,” Computational Mechanics, vol. 58, pp. 151--169, 2016.
  162. A. Stein, “Exakte Simulation von Optionspreisen und Sensitivitäten unter  stochastischer Volatilität,” Germany, 2016.
  163. P. Tempel, “Improved Modeling of Cables for Kinematics and Dynamics of Lightweight Robots (iCaMDyRo),” Im Blickpunkt 2016, 2016.
  164. P. Tempel and A. Pott, “Parallele Seilroboter in Theorie und Praxis - Leichtbau, Energieeffizienz und Hohe Dynamiken als Potential, Elastizität als Hauptherausforderung,” wt Werkstattstechnik online Jahrgang 106 (2016), vol. 9, pp. 643--647, 2016.
  165. P. Tempel, A. Verl, and A. Pott, “On the Dynamics and Emergency Stop Behavior of Cable-Driven Parallel Robots,” ROMANSY 21 Robot Design, Dynamics and Control, vol. 569, pp. 431--438, 2016.
  166. P. Tempel, A. Verl, and A. Pott, “On the Dynamics and Emergency Stop Behavior of Cable-Driven Parallel Robots,” in ROMANSY 21 - Robot Design, Dynamics and Control, vol. 569, V. Parenti-Castelli and W. Schiehlen, Eds. Switzerland: Springer Verlag and Springer International Publishing, 2016, pp. 431--438.
  167. C. Thomaseth and N. Radde, “Normalization of Western blot data affects the statistics of estimators,” IFAC-PapersOnLine, vol. 49, no. 26, pp. 56--62, 2016.
  168. E. Trottemant, M. Mazo, and C. W. Scherer, “Synthesis of Robust Piecewise Affine Output-Feedback Strategies,” J. Guid. Control Dynam., vol. 39, pp. 1461--1469, 2016.
  169. W. F. van?Gunsteren et al., “Deriving Structural Information from Experimentally Measured Data on Biomolecules,” Angewandte Chemie International Edition, vol. 55, pp. 15990--16010, 2016.
  170. J. Veenman, C. W. Scherer, and H. Koroglu, “Robust stability and performance analysis with integral quadratic constraints,” EJC, vol. 31, pp. 1--32, 2016.
  171. J. Veenman, M. Lahr, and C. W. Scherer, Robust controller synthesis with unstable weights. 55th IEEE Conf. on Decision and Control, 2016.
  172. K. Vukojevic-Haupt, F. Haupt, and F. Leymann, “On-demand provisioning of workflow middleware and services into the cloud: an overview,” Computing, 2016.
  173. D. Weidler and A. Gross, “Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Aldehydes, Ketones, and Small Cyclic Alkanes,” I&EC research, vol. 55, pp. 12123--12132, 2016.
  174. J. Wu and F. Allgöwer, “Verteilte Ausgangsregelung von Multiagentensystemen mit gekoppelten Messgrößen,” at-Automatisierungstechnik, vol. 64, no. 8, pp. 645--657, 2016.
  175. J. Wu, A. Elser, S. Zeng, and F. Allgöwer, “Consensus-based distributed Kalman-Bucy filter for continuous-time systems,” IFAC-PapersOnLine, vol. 49, no. 22, pp. 321--326, 2016.
  176. H.-J. Wunderlich, C. Braun, and A. Schöll, “Pushing the Limits: How Fault Tolerance Extends the Scope of Approximate Computing,” Proceedings of the 22nd IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 133--136, 2016.
  177. L. Xia, F. Fritzen, and P. Breitkopf, “Evolutionary topology optimization of elastoplastic structures,” Structural and Multidisciplinary Optimization, 2016.
  178. S. Zeng, H. Ishii, and F. Allgöwer, “Sampled Observability of Discrete Heterogeneous Ensembles from Anonymized Output Measurements,” Proceedings of the 54th IEEE Conference on Decision and Control, p. 6, 2016.
  179. S. Zeng, S. Waldherr, C. Ebenbauer, and F. Allgöwer, “Ensemble Observability of Linear Systems,” IEEE Transactions on Automatic Control, vol. 61, p. 14, 2016.
  180. Y. Zhang, D. M. Pedroso, and W. Ehlers, “One-dimensional dynamics of saturated incompressible porous media: analytical solutions and influence of inertia terms,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 40, pp. 2489--2513, 2016.
  181. Y. Zhang, Y. Liu, G. Pau, S. Oladyshkin, and S. Finsterle, “Evaluation of multiple reduced-order models to enhance confidence in global sensitivity analyses,” International Journal of Greenhouse Gas Control, vol. 49, pp. 217--226, 2016.
Zum Seitenanfang