5. Juli 2017

Argyris Lecture: Multiscale Poromechanics

Fluid flow, solid deformation, and anisotropic thermoplasticity

5. Juli 2017 16:30 Uhr
Vorlesungssaal V7.01, Pfaffenwaldring 7, 70569 Stuttgart

Der diesjährige Argyris Visiting Professor Ronaldo Borja (Stanford University, USA) hält die traditionelle Argyris Lecture.

Natural geomaterials often exhibit pore size distributions with two dominant porosity scales. Examples include fractured rocks where the dominant porosities are those of the fractures and rock matrix, and aggregated soils where the dominant porosities are those of the micropores and macropores. I will present a framework for this type of materials that covers both steady-state and transient fluid flow responses. The framework relies on a thermodynamically consistent effective stress previously developed for porous media with two dominant porosity scales. I will show that this effective stress is equivalent to the weighted sum of the individual effective stresses in the micropores and macropores, with the weighting done according to the pore fractions. Apart from this feature, some geomaterials such as shale exhibit pronounced anisotropy in their hydromechanical behavior due to the presence of distinct bedding planes. In this talk I will also present a thermo-plastic framework for transversely isotropic materials incorporating anisotropy and thermal effects in both elastic and plastic responses. Computational stress-point simulations under isothermal and adiabatic conditions reveal the importance of anisotropy and thermal effects on the inception of a deformation band. I will show that anisotropy promotes the formation of dilation band across a wide range of bedding plane orientations relative to the direction of loading.